Область техники, к которой относится изобретение
Заявка относится к способам и устройствам для управления способом маскировки для потерянных аудиокадров принятого аудиосигнала.
Уровень техники
Традиционные системы аудиосвязи передают речевые и аудиосигналы в кадрах, что означает, что посылающая сторона сначала организует сигнал в коротких сегментах или кадрах, например, по 20-40 мс, которые затем кодируются и передаются как логические блоки, например, в пакете передачи. Приемник декодирует каждый из этих блоков и восстанавливает соответствующие кадры сигнала, которые, в свою очередь, наконец выводятся как непрерывная последовательность восстановленных семплов (отсчетов) сигнала. До кодирования обычно имеется этап аналого-цифрового (A/D) преобразования, который преобразует аналоговый речевой или аудиосигнал от микрофона в последовательность аудиосемплов. С другой стороны, на принимающем конце обычно имеется конечный этап цифро-аналогового (D/A) преобразования, который преобразует последовательность восстановленных цифровых семплов сигнала в непрерывный во времени аналоговый сигнал для воспроизведения громкоговорителем.
Однако такая система передачи для речевых и аудио-сигналов может страдать от ошибок передачи, которые могут приводить к ситуации, в которой один или несколько переданных кадров отсутствуют в приемнике для восстановления. В этом случае декодер должен генерировать подстановочный сигнал для каждого из стертых, то есть недоступных кадров. Это делается в так называемом блоке маскировки потери кадров или ошибок декодера сигнала принимающей стороны. Цель маскировки потери кадров состоит в том, чтобы сделать потерю кадров настолько неслышимой, насколько это возможно, и, следовательно, смягчить воздействие потери кадров на качество восстановленного сигнала в максимально возможной степени.
Традиционные способы маскировки потери кадров могут зависеть от структуры или архитектуры кодека, например, путем применения формы повторения ранее принятых параметров кодека. Такие методики повторения параметров явно зависят от конкретных параметров используемого кодека и, следовательно, не так легко применимы для других кодеков с другой структурой. Текущие способы маскировки потери кадров могут, например, применять концепцию замораживания и экстраполяции параметров ранее полученного кадра для генерации подстановочного кадра для потерянного кадра.
Эти способы маскировки потери кадров существующего уровня техники включают в себя некоторые схемы обработки пакетных потерь. Обычно, после потери множества кадров подряд синтезируемый сигнал ослабляется, пока он полностью не заглушается после длинных пакетов ошибок. Кроме того, параметры кодирования, которые, по сути, повторяются и экстраполируются, изменяются так, что выполняется ослабление, и так, что спектральные пики сглаживаются.
Методики маскировки потери кадров существующего уровня техники обычно применяют концепцию замораживания и экстраполяции параметров ранее полученного кадра для генерации подстановочного кадра для потерянного кадра. Многие параметрические кодеки для разговорных сигналов, такие как кодеки с линейным предсказанием, такие как AMR или AMR-WB, как правило замораживают ранее принятые параметры или используют некоторую их экстраполяцию и используют с ними декодер. В сущности, принцип состоит в том, что должна быть заданная модель для кодирования/декодирования, и в том, чтобы применять одну и ту же модель с замороженными или экстраполируемыми параметрами. Методики маскировки потери кадров AMR и AMR-WB могут рассматриваться как типичные представители. Они подробно описаны в соответствующих описаниях стандартов.
Многие кодеки из класса аудиокодеков применяют методики кодирования в частотной области. Это означает, что после некоторого преобразования в частотную область к спектральным параметрам применяется модель кодирования. Декодер восстанавливает спектр сигнала из принятых параметров и, наконец, преобразует спектр обратно во временной сигнал. Как правило, временной сигнал восстанавливается кадр за кадром. Такие кадры объединяются с помощью добавляющих перекрытие методик в конечный восстановленный сигнал. Даже в этом случае аудиокодеков маскировка ошибок существующего уровня техники обычно применяется к одной и той же или по меньшей мере к аналогичной модели декодирования для потерянных кадров. Параметры частотной области из ранее полученного кадра замораживаются или соответствующим образом экстраполируются и затем используются в преобразовании из частотной во временную область. Примеры таких методик обеспечены аудиокодеками 3GPP в соответствии со стандартами 3GPP.
Сущность изобретения
Решения для маскировки потери кадров существующего уровня техники, как правило, страдают от ухудшения качества. Основная проблема состоит в том, что методика замораживания и экстраполяции параметров и повторное применение той же самой модели декодирования даже для потерянных кадров не всегда гарантирует плавное и точное развертывание сигнала из ранее декодированных кадров сигнала в потерянный кадр. Это обычно приводит к нарушениям непрерывности звукового сигнала с соответствующим влиянием на качество.
Описаны новые схемы маскировки потери кадров для систем передачи разговорных и аудио-сигналов. Новые схемы улучшают качество в случае потери кадров по сравнению с качеством, достижимым с помощью методик маскировки потери кадров предшествующего уровня техники.
Целью настоящих вариантов воплощения является управление схемой маскировки потери кадров, которая, предпочтительно, имеет тип соответствующих описанных новых способов, так что достигается наилучшее возможное качество звука восстановленного сигнала. Варианты воплощения направлены на оптимизацию этого качества восстановления и относительно свойств сигнала, и относительно временного распределения потерь кадров. Особенно проблематично обеспечить хорошее качество для маскировки потери кадров случаи, когда аудиосигнал имеет сильно изменяющиеся свойства, такие как энергетические всплески и спады, или если он спектрально сильно флуктуирует. В этом случае описанные способы маскировки могут повторять всплески, спады или спектральную флуктуацию, приводя к большим отклонениям от исходного сигнала и соответствующей потери качества.
Другой проблемный случай имеет место, когда пакеты потерь кадров происходят подряд. Концептуально, схема маскировки потери кадров в соответствии с описанными способами может справиться с такими случаями, хотя оказалось, что раздражающие тональные артефакты могут по-прежнему иметь место. Другой целью настоящих вариантов воплощения является уменьшение таких артефактов в максимально возможной степени.
В соответствии с первым аспектом способ для декодера маскировки потерянного аудиокадра содержит этапы, на которых обнаруживают в свойстве ранее принятого и восстановленного аудиосигнала или в статистическом свойстве наблюдаемых потерь кадров условие, для которого подстановка потерянного кадра обеспечивает относительно более низкое качество. В случае, если такое условие обнаружено, модифицируют способ маскировки путем выборочной настройки фазы или амплитуды спектра подстановочного кадра.
В соответствии со вторым аспектом декодер сконфигурирован реализовывать маскировку потерянного аудиокадра и содержит контроллер, сконфигурированный обнаруживать в свойстве ранее принятого и восстановленного аудиосигнала или в статистическом свойстве наблюдаемых потерь кадров условие, для которого подстановка потерянного кадра обеспечивает относительно более низкое качество. В случае, если такое условие обнаружено, контроллер сконфигурирован модифицировать способ маскировки путем выборочной настройки фазы или амплитуды спектра подстановочного кадра.
Декодер может быть реализован в устройстве, таком как, например, мобильный телефон.
В соответствии с третьим аспектом приемник содержит декодер в соответствии со вторым аспектом, описанным выше.
В соответствии с четвертым аспектом определена компьютерная программа для маскировки потерянного аудиокадра, и компьютерная программа содержит инструкции, которые при исполнении процессором предписывают процессору маскировать потерянный аудиокадр в соответствии с первым аспектом, описанным выше.
В соответствии с пятым аспектом компьютерный программный продукт содержит машиночитаемый носитель, хранящий компьютерную программу в соответствии с описанным выше четвертым аспектом.
Преимущество варианта воплощения решает проблему управления адаптацией способами маскировки потери кадров, позволяя уменьшить слышимое влияние потери кадров при передаче кодированных речевых сигналов и аудиосигналов даже больше, по сравнению с качеством, достигаемым только с помощью описанных способов маскировки. Общее преимущество вариантов воплощения состоит в обеспечении плавного и точного развертывания восстановленного сигнала даже для потерянных кадров. Слышимое влияние потери кадров значительно уменьшается по сравнению с использованием методик существующего уровня техники.
Краткое описание чертежей
Для более полного понимания иллюстративных вариантов воплощения настоящего изобретения теперь дается нижеследующее описание в сочетании с прилагаемыми чертежами, на которых:
Фигура 1 показывает прямоугольную оконную функцию.
Фигура 2 показывает комбинацию окна Хемминга с прямоугольным окном.
Фигура 3 показывает пример амплитудного спектра оконной функции.
Фигура 4 изображает линейчатый спектр иллюстративного синусоидального сигнала с частотой
Фигура 5 показывает спектр обработанного с помощью оконной функции синусоидального сигнала с частотой
Фигура 6 изображает вертикальные линии, соответствующие величине узлов решетки DFT, на основании кадра анализа.
Фигура 7 изображает параболу, совмещенную с узлами P1, P2 и P3 решетки DFT.
Фигура 8 изображает совмещение основного лепестка спектра окна.
Фигура 9 изображает совмещение функции P аппроксимации основного лепестка с узлами P1 и P2 решетки DFT.
Фигура 10 является схемой последовательности операций, изображающей иллюстративный способ в соответствии с вариантами воплощения изобретения для управления способом маскировки для потерянного аудиокадра принятого аудиосигнала.
Фигура 11 является схемой последовательности операций, изображающей другой иллюстративный способ в соответствии с вариантами воплощения изобретения для управления способом маскировки для потерянного аудиокадра принятого аудиосигнала.
Фигура 12 изображает другой иллюстративный вариант воплощения изобретения.
Фигура 13 показывает пример устройства в соответствии с вариантом воплощения изобретения.
Фигура 14 показывает другой пример устройства в соответствии с вариантом воплощения изобретения.
Фигура 15 показывает другой пример устройства в соответствии с вариантом воплощения изобретения.
Подробное описание
Новая схема управления для новых описанных методик маскировки потери кадров включает в себя следующие этапы, как показано на фигуре 10. Следует отметить, что способ может быть реализован в контроллере в декодере.
1. Обнаружить условия в свойствах ранее принятого и восстановленного аудиосигнала или в статистических свойствах наблюдаемых потерь кадров, для которых подстановка потерянного кадра в соответствии с описанными способами обеспечивает относительно более низкое качество, 101.
2. В случае, если такое условие обнаружено на этапе 1, модифицировать элемент способов, в соответствии с которыми спектр подстановочного кадра вычисляется с помощью
Синусоидальный анализ
Первый этап методики маскировки потери кадров, к которой может быть применена новая методика управления, включает в себя синусоидальный анализ части ранее принятого сигнала. Цель этого синусоидального анализа состоит в том, чтобы найти частоты основных синусоид этого сигнала, и лежащее в основе допущение состоит в том, что сигнал состоит из ограниченного числа отдельных синусоид, то есть что это мультисинусоидальный сигнал следующего типа:
В этом уравнении K является числом синусоид, из которых, как предполагается, состоит сигнал. Для каждой из синусоид с индексом
Главное значение имеет нахождение частот синусоид настолько точно, насколько это возможно. В то время как идеальный синусоидальный сигнал будет иметь линейчатый спектр с линейчатыми частотами
Предпочтительная возможность для идентификации частот синусоид
В этом уравнении
Пики амплитудного спектра умноженного на оконную функцию кадра
Эксперименты показывают, что этот уровень точности может быть слишком низким в рамках способов, описанных в настоящем документе. Улучшенная точность может быть получена на основании следующих соображений:
Спектр умноженного на оконную функцию кадра анализа дается сверткой спектра оконной функции с линейчатым спектром синусоидального модельного сигнала
Путем использования спектрального выражения для синусоидального модельного сигнала это может быть записано как
Следовательно, дискретизированный спектр дается выражением
На основании этих соображений предполагается, что наблюдаемые пики в амплитудном спектре кадра анализа происходят от умноженного на оконную функцию синусоидального сигнала с K синусоидами, где истинные частоты синусоид находятся вблизи пиков.
Пусть
Для ясности следует отметить, что свертка спектра оконной функции со спектром линейчатого спектра синусоидального модельного сигнала может пониматься как суперпозиция смещенных по частоте версий спектра оконной функции, в результате чего частоты сдвига являются частотами синусоид. Эта суперпозиция затем дискретизируется в узлах решетки DFT. Эти этапы изображены с помощью следующих фигур. Фигура 3 изображает пример амплитудного спектра оконной функции. Фигура 4 показывает амплитудный спектр (линейчатый спектр) иллюстративного синусоидального сигнала с одной синусоидой частоты. Фигура 5 показывает амплитудный спектр умноженного на оконную функцию синусоидального сигнала, который повторяет и накладывает смещенный по частоте спектр окна на частоты синусоиды. Вертикальные линии на фигуре 6 соответствуют величинам узлов решетки DFT умноженной на оконную функцию синусоиды, которые получены путем вычисления DFT кадра анализа. Следует отметить, что все спектры являются периодическими с нормированным частотным параметром
Предыдущее обсуждение и иллюстрация фигуры 6 предполагают, что более хорошая аппроксимация истинных синусоидальных частот может быть найдена только путем увеличения разрешения поиска по частотному разрешению используемого преобразования в частотную область.
Один предпочтительный путь найти более хорошую аппроксимацию частот
1. Идентифицировать пики DFT умноженного на оконную функцию кадра анализа. Поиск пиков предоставит число пиков K и соответствующие индексы DFT пиков. Поиск пиков обычно может выполняться на амплитудном спектре DFT или логарифмическом амплитудном спектре DFT.
2. Для каждого пика
Это совмещение параболы изображено на фигуре 7.
3. Для каждой из K парабол вычислить интерполированный частотный индекс
Описанный подход обеспечивает хорошие результаты, но может иметь некоторые ограничения, так как параболы не аппроксимируют форму основного лепестка амплитудного спектра
1. Идентифицировать пики DFT умноженного на оконную функцию кадра анализа. Поиск пиков предоставит число пиков K и соответствующие индексы DFT пиков. Поиск пиков обычно может выполняться на амплитудном спектре DFT или логарифмическом амплитудном спектре DFT.
2. Получить функцию
3. Для каждого пика
4. Для каждого из K сдвинутых по частоте параметров
Есть много случаев, когда переданный сигнал является гармоническим, то есть сигнал состоит из синусоидальных волн, частоты которых кратны некоторой основной частоте
Одну возможность улучшения можно описать следующим образом:
1. Проверить, является ли сигнал гармоническим. Это может быть сделано, например, путем оценки периодичности сигнала до потери кадра. Один простой способ состоит в выполнении автокорреляционного анализа сигнала. Максимум такой автокорреляционной функции для некоторой временной задержки
Многие способы кодирования речи с линейным предсказанием применяют так называемое предсказание высоты тона с обратной или без обратной связи или кодирование CELP с использованием адаптивных кодовых книг. Параметры усиление высоты тона и соответствующей задержки высоты тона, полученные с помощью таких способов кодирования, также являются полезными индикаторами, если сигнал является гармоническим и, соответственно, для временной задержки.
Дополнительный способ для получения
2. Для каждого индекса
В случае, если такой пик с соответствующей оценочной синусоидальной частотой присутствует, заменить
Для двухэтапной процедуры, данной выше, существует также возможность осуществления проверки, является ли сигнал гармоническим, и получение основной частоты неявно и, возможно, итеративным образом, не обязательно с использованием индикаторов из некоторого отдельного способа. Пример для такой методики дается следующий:
Для каждого
Начальный набор потенциальных значений
Дальнейшая возможность улучшить точность оценочных синусоидальных частот
Применение синусоидальной модели
Применение синусоидальной модели для выполнения операции по маскировке потери кадров, описанной в настоящем документе, может быть описано следующим образом.
Предполагается, что данный сегмент кодированного сигнала не может быть восстановлен декодером, так как соответствующая закодированная информация не доступна. Дополнительно предполагается, что часть сигнала до этого сегмента доступна. Пусть
Оконная функция может быть одной из оконных функций, описанных выше в синусоидальном анализе. Предпочтительно, чтобы уменьшить сложность численных расчетов, преобразованный в частотную область кадр должен быть идентичен кадру, используемому во время синусоидального анализа.
На следующем этапе применяется допущение синусоидальной модели. В соответствии с этим DFT прототипного кадра может быть записано следующим образом:
Следующий этап состоит в том, чтобы понять, что спектр используемой оконной функции имеет значительный вклад только в диапазоне частот вблизи нуля. Как изображено на фигуре 3, амплитудный спектр оконной функции больше для частот вблизи нуля и мал в противном случае (в пределах нормированного диапазона частот от
Здесь
Следующий этап в соответствии с вариантом воплощения состоит в применении синусоидальной модели в соответствии с вышеупомянутым выражением и развертывании ее K синусоид во времени. Допущение, что временные индексы удаленного сегмента по сравнению с временными индексами прототипного кадра отличаются на
Следовательно, спектр DFT развернутой синусоидальной модели дается выражением:
Применение снова аппроксимации, в соответствии с которой смещенные спектры оконной функции не перекрываются, дает выражение:
Сравнивая DFT прототипного кадра
Следовательно, в соответствии с вариантом воплощения подстановочный кадр может быть вычислен с помощью следующего выражения:
Конкретный вариант воплощения решает вопросы, связанные с фазовой рандомизацией для индексов DFT, не принадлежащих какому-либо интервалу
Было найдено выгодным для качества восстановленных сигналов оптимизировать размер интервалов
На основании приведенного выше способы маскировки потери аудиокадров включают в себя следующие этапы:
1. Анализ сегмента доступного, ранее синтезированного сигнала для получения составляющих синусоидальных частот
2. Извлечение прототипного кадра
3. Вычисление фазового сдвига
4. Для каждой синусоиды k сдвиг фазы прототипного кадра DFT на
5. Вычисление обратного DFT спектра, полученного на этапе 4.
Анализ и обнаружение свойства сигнала и потери кадров
Способы, описанные выше, основаны на допущении, что свойства аудиосигнала не изменяются значительно за короткое время от ранее принятого и восстановленного кадра сигнала до потерянного кадра. В этом случае очень хорошим выбором является сохранение амплитудного спектра ранее восстановленного кадра и развертывание фазы синусоидальных основных компонентов, обнаруженных в ранее восстановленном сигнале. Однако существуют случаи, где это допущение является неправильным, которые являются, например, транзиентами с внезапными изменениями энергии или внезапными спектральными изменениями.
Первый вариант воплощения детектора транзиентов в соответствии с изобретением может, следовательно, быть основан на изменениях энергии в пределах ранее восстановленного сигнала. Этот способ, изображенный на фигуре 11, вычисляет энергию в левой части и правой части некоторого кадра анализа, 113. Кадр анализа может быть идентичен кадру, используемому для синусоидального анализа, описанного выше. Часть (левая или правая) кадра анализа может быть первой или, соответственно, последней половиной кадра анализа или, например, первой или, соответственно, последней четвертью кадра анализа, 110. Соответствующее вычисление энергии выполняется путем суммирования квадратов семплов в этих частях кадра:
Здесь
Теперь энергия левой и правой частей кадра используются для обнаружения нарушения непрерывности сигнала. Это выполняется путем вычисления отношения
Нарушение непрерывности с внезапным уменьшением энергии (спад, окончание звука) может быть обнаружено, если отношение
В контексте описанных выше способов маскировки было найдено, что определенное выше отношение энергий во многих случаях может быть слишком нечувствительным индикатором. В частности, в реальных сигналах и особенно музыке есть случаи, когда тон на некоторой частоте внезапно появляется, в то время как некоторый другой тон на некоторой другой частоте внезапно останавливается. Анализ такого сигнального кадра с помощью определенного выше отношения энергий в любом случае приведет к неправильному результату обнаружения по меньшей мере для одного из тонов, так как этот индикатор не чувствителен к различным частотам.
Решение этой проблемы описано в следующем варианте воплощения. Обнаружение транзиентов теперь выполняется в частотно-временной плоскости. Кадр анализа снова разделяется на левую и правую часть кадра, 110. Хотя теперь, эти две части кадра (после умножения на подходящую оконную функцию, например, окно Хемминга, 111) преобразуются в частотную область, например, посредством Npart-точечного DFT, 112.
Теперь обнаружение транзиентов может быть выполнено частотно-избирательно для каждого отрезка DFT с индексом m. Используя энергии амплитудных спектров левой и правой частей кадра, для каждого индекса m DFT соответствующее отношение энергий может быть вычислено 113 в виде
Эксперименты показывают, что частотно-избирательное обнаружение транзиентов с разрешением отрезков DFT является относительно неточным из-за статистических флуктуаций (ошибок оценки). Было найдено, что качество операции довольно сильно увеличивается, если делать частотно-избирательное обнаружение транзиентов на основе полос частот. Пусть
Следует отметить, что интервал
Самая низкая граница m0 нижней полосы частот может быть задана равной 0, но может быть также задана равной индексу DFT, соответствующему большей частоте, чтобы снизить ошибки оценки, которые увеличиваются для более низких частот. Самая высокая граница mk верхней полосы частот может быть задана равной
Подходящий выбор для размеров или ширин этих полос частот состоит в том, чтобы сделать их одинакового размера шириной, например, в несколько 100 Гц. Другой предпочтительный путь состоит в том, чтобы сделать ширины полос частот зависящими от размера акустических критических полос частот человека, то есть связать их с разрешением по частоте слуховой системы. Это означает, приблизительно, что необходимо сделать ширины полос частот одинаковыми для частот до 1 кГц, и увеличивать их экспоненциально выше 1 кГц. Экспоненциальное увеличение означает, например, удвоение полосы частот с увеличением индекса полосы k.
Как описано в первом варианте воплощения детектора транзиентов, который был основан на отношении энергий двух частей кадра, любое из отношений, связанных с энергиями полос или энергиями отрезков DFT двух частей кадра, сравниваются с определенными порогами. Используется соответствующий верхний порог для (частотно-избирательного) обнаружения спадов 115 и соответствующий нижний порог для (частотно-избирательного) обнаружения всплесков 117.
Дополнительный зависящий от аудиосигнала индикатор, который является подходящим для адаптации способа маскировки потери кадров, может быть основан на параметрах кодека, переданных декодеру. Например, кодек может быть многорежимным кодеком, как ITU-T G.718. Такой кодек может использовать конкретные режимы кодека для различных типов сигнала и изменять режим кодека в кадре незадолго до того, как потеря кадра может быть расценена как индикатор для транзиента.
Другим полезным индикатором для адаптации маскировки потери кадров является параметр кодека, относящийся к свойству озвучивания и переданному сигналу. Озвучивание относится к высоко периодической речи, которая генерируется периодическим возбуждением голосовой щели вокального тракта человека.
Дополнительный предпочтительный индикатор оценивает, является ли содержание сигнала музыкой или речью. Такой индикатор может быть получен от классификатора сигналов, который может обычно быть частью кодека. В случае, если кодек выполняет такую классификацию и делает соответствующее решение о классификации доступным в качестве параметра кодирования декодеру, этот параметр предпочтительно используется в качестве индикатора содержания сигнала, который будет использоваться для адаптации способа маскировки потери кадров.
Другим индикатором, который предпочтительно используется для адаптации способов маскировки потери кадров, является пакетирование потери кадров. Пакетирование потери кадров означает, что происходит потеря нескольких кадров подряд, затрудняя для способа маскировки потери кадров использование годных только что декодированных частей сигнала для его работы. Индикатором существующего уровня техники является число nburst наблюдаемых потерь кадров подряд. Этот счетчик увеличивается на единицу при каждой потере кадра и обнуляется при приеме годного кадра. Этот индикатор также используется в контексте настоящих иллюстративных вариантов воплощения изобретения.
Адаптация способа маскировки потери кадров
В случае, если этапы, выполненные выше, указывают условие, предполагающее адаптацию операции по маскировке потери кадров, вычисление спектра подстановочного кадра модифицируется.
В то время как исходное вычисление спектра подстановочного кадра выполняется в соответствии с выражением
Следует отметить, что исходные (неадаптированные) способы маскировки потери кадров используются, если
Общая цель использования адаптации амплитуды состоит в том, чтобы избежать слышимых артефактов способа маскировки потери кадров. Такие артефакты могут быть музыкальными или тональными звуками или странными звуками, являющимися результатом повторений транзиентных звуков. Такие артефакты, в свою очередь, будут приводить к снижению качества, предотвращение чего является целью описанной адаптации. Подходящим путем такой адаптации является изменение амплитудного спектра подстановочного кадра в подходящей степени.
Фигура 12 изображает вариант воплощения модификации способа маскировки. Адаптация амплитуды, 123, предпочтительно делается, если счетчик пакетных потерь nburst превышает некоторый порог thrburst, например, thrburst=3, 121. В этом случае для коэффициента ослабления используется значение меньше, чем 1, например,
Однако было найдено, что выгодно выполнять ослабление с постепенно увеличивающейся степенью. Одним предпочтительным вариантом воплощения, который делает это, является задание логарифмического параметра, указывающего логарифмическое увеличение ослабления на кадр,
Здесь постоянная c является просто масштабирующей постоянной, позволяющей указать параметр
Дополнительная предпочтительная адаптация делается в ответ на индикатор, оценен ли сигнал как музыка или речь. Для музыкального содержания по сравнению с речевым содержанием предпочтительно увеличить порог
Дополнительная адаптация способа маскировки относительно коэффициента ослабления амплитуды предпочтительно делается в случае, если был обнаружен транзиент на основании того, что индикатор
В случае, если обнаружен всплеск, было найдено полезным скорее ограничить увеличение энергии подстановочного кадра. В этом случае множитель может быть задан равным некоторому фиксированному значению, например, 1, что означает, что ослабление отсутствует, но также нет никакого усиления.
В вышеупомянутом следует отметить, что коэффициент ослабления амплитуды предпочтительно применяется частотно-избирательно, то есть с индивидуально вычисленными множителями для каждой полосы частот. В случае, если подход с полосами не используется, соответствующие коэффициенты ослабления амплитуды, тем не менее, могут быть получены аналогичным образом.
Дополнительная предпочтительная адаптация коэффициента ослабления амплитуды делается в сочетании с модификацией фазы посредством дополнительного фазового компонента
Общая цель введения адаптации фазы состоит в том, чтобы избежать слишком сильной тональности или периодичности сигнала в генерируемых подстановочных кадрах, что, в свою очередь, привело бы к снижению качества. Подходящим путем такой адаптации является рандомизация или сглаживание фазы в подходящей степени.
Такое сглаживание фазы выполняется, если дополнительный фазовый компонент
Случайное значение, полученное с помощью функции
Масштабирующий коэффициент
В соответствии с первым вариантом воплощения масштабирующий коэффициент
Однако было найдено, что выгодно выполнять сглаживание с постепенно увеличивающейся степенью. Одним предпочтительным вариантом воплощения, который делает это, является задание параметра, указывающего увеличение сглаживания на кадр,
В вышеупомянутой формуле следует отметить, что
Следует отметить, что пороговое значение пакетных потерь
Дополнительная предпочтительная адаптация делается в ответ на индикатор, оценен ли сигнал как музыка или речь. Для музыкального содержания по сравнению с речевым содержанием предпочтительно увеличить порог
Дополнительный предпочтительный вариант воплощения состоит в адаптации сглаживания фазы в ответ на обнаруженный транзиент. В этом случае более сильная степень сглаживания фазы может использоваться для отрезков m DFT, для которых транзиент указан или для этого отрезка, отрезков DFT соответствующей полосы частот или целого кадра.
Часть описанных схем решает проблему оптимизации способа маскировки потери кадров для гармонических сигналов и, в частности, для вокализованной речи.
В случае, если способы, использующие усовершенствованную частотную оценку, как описано выше, не реализованы, другая возможность адаптации для способа маскировки потери кадров, оптимизирующего качество для сигналов вокализованной речи, состоит в том, чтобы переключиться на некоторый другой способ маскировки потери кадров, который специально спроектирован и оптимизирован для речи, а не для общих аудиосигналов, содержащих музыку и речь. В этом случае используется индикатор, что сигнал содержит сигнал вокализованной речи, чтобы выбрать другую оптимизированную для речи схему маскировки потери кадров, а не схемы, описанные выше.
Варианты воплощения применяются к контроллеру в декодере, как изображено на фигуре 13. Фигура 13 является блок-схемой декодера в соответствии с вариантами воплощения. Декодер 130 содержит блок 132 ввода, сконфигурированный принимать закодированный аудиосигнал. Фигура изображает маскировку потери кадров логическим блоком 134 маскировки потери кадров, который указывает, что декодер сконфигурирован реализовывать маскировку потерянного аудиокадра, в соответствии с вышеописанными вариантами воплощения. Дополнительно декодер содержит контроллер 136 для реализации вариантов воплощения, описанных выше. Контроллер 136 сконфигурирован обнаруживать условия в свойствах ранее принятого и восстановленного аудиосигнала или в статистических свойствах наблюдаемых потерь кадров, для которых подстановка потерянного кадра в соответствии с описанными способами обеспечивает относительно более низкое качество. В случае, если такое условие обнаружено, контроллер 136 сконфигурирован изменять элемент способов маскировки, в соответствии с которым спектр подстановочного кадра вычисляется как
Декодер с входящими в его состав блоками может быть реализован в аппаратных средствах. Есть множество вариантов схемотехнических элементов, которые могут использоваться и комбинироваться для достижения функций блоков декодера. Такие варианты охватываются вариантами воплощения. Конкретными примерами аппаратной реализации декодера является реализация в аппаратных средствах и технологии интегральной схемы цифрового сигнального процессора (DSP), включая и электронные схемы общего назначения, и специализированные схемы.
Декодер 150, описанный в настоящем документе, может быть альтернативно реализован, например, как изображено на фигуре 15, то есть с помощью одного или нескольких процессоров 154 и соответствующего программного обеспечения 155 с подходящим накопителем или памятью 156 для него для восстановления аудиосигнала, что включает в себя выполнение маскировки потери аудиокадров в соответствии с вариантами воплощения, описанными в настоящем документе, как показано на фигуре 13. Входящий закодированный аудиосигнал принимается входом (ВХОД) 152, с которым соединены процессор 154 и память 156. Декодированный и восстановленный аудиосигнал, полученный из программного обеспечения, выводится из выхода (ВЫХОД) 158.
Технология, описанная выше, может использоваться, например, в приемнике, который может использоваться в мобильном устройстве (например, мобильном телефоне, портативном компьютере) или стационарном устройстве, таком как персональный компьютер.
Следует понимать, что выбор взаимодействующих блоков или модулей, а также наименования блоков приведены только для иллюстративных целей, и они могут быть сконфигурированы множеством альтернативных путей, чтобы иметь возможность исполнять раскрытые действия процесса.
Следует также отметить, что блоки или модули, описанные в этом раскрытии, должны рассматриваться как логические объекты, а не обязательно как отдельные физические объекты. Следует иметь в виду, что объем технологии, раскрытой в настоящем документе, полностью охватывает другие варианты воплощения, которые могут быть очевидны для специалистов в области техники, и что объем этого раскрытия, соответственно, не должен ограничиваться.
Ссылка на элемент в единственном числе не означает "один и только один", если это не указано явно, а скорее означает "один или несколько".
Все структурные и функциональные эквиваленты элементов вышеописанных вариантов воплощения, которые известны специалистам в области техники, явно включены в настоящий документ по ссылке и должны охватываться им. Кроме того, устройство или способ не обязательно должно решать каждую проблему, которая должна решаться с помощью технологии, раскрытой в настоящем документе, для того, чтобы оно охватывалось настоящим документом.
В предыдущем описании для целей пояснения, а не ограничения, изложены конкретные подробности, такие как конкретная архитектура, интерфейсы, методики и т.д., чтобы обеспечить полное понимание раскрытой технологии. Однако для специалистов в области техники будет очевидно, что раскрытая технология может быть реализована в других вариантах воплощения и/или комбинациях вариантов воплощения, которые отступают от этих конкретных подробностей. То есть специалисты в области техники будут в состоянии разработать различные конструкции, которые, хотя явно не описаны или показаны в настоящем документе, воплощают принципы раскрытой технологии. В некоторых случаях подробные описания известных устройств, электрических цепей и способов опущены, чтобы не загромождать описание раскрытой технологии ненужными подробностями. Все утверждения в настоящем документе, излагающие принципы, аспекты и варианты воплощения раскрытой технологии, а также их конкретные примеры, предназначены для охвата и структурных, и функциональных их эквивалентов. Дополнительно предполагается, что такие эквиваленты включают в себя как в настоящий момент известные эквиваленты, так и эквиваленты, которые могут быть разработаны в будущем, например, любые разработанные элементы, которые выполняют ту же самую функцию, независимо от структуры.
Таким образом, например, специалистам в области техники будет понятно, что фигуры в настоящем документе могут представлять собой концептуальный вид иллюстративной электрической схемы или других функциональных блоков, воплощающих принципы технологии и/или различных процессов, которые могут быть, по сути, представлены на машиночитаемом носителе и исполнены компьютером или процессором даже при том, что такой компьютер или процессор могут быть не показаны явно на фигурах.
Функции различных элементов, в том числе функциональных блоков, могут быть обеспечены с помощью аппаратных средств, таких как аппаратные средства электрических цепей и/или аппаратные средства, способные исполнять программное обеспечения в форме кодированных инструкций, сохраненных на машиночитаемом носителе. Таким образом, такие функции и изображенные функциональные блоки должны пониматься как реализованные или с помощью аппаратных средств, и/или с помощью компьютера и, таким образом, реализованными машинным образом.
Варианты воплощения, описанные выше, следует понимать как несколько иллюстративных примеров настоящего изобретения. Специалистам в области техники будет понятно, что различные модификации, комбинации и изменения могут быть сделаны в вариантах воплощения, не отступая от объема настоящего изобретения. В частности, решения для различных частей в различных вариантах воплощения могут быть объединены в других конфигурациях, где это технически возможно.
Изобретение относится к средствам для маскировки потери аудиокадров. Технический результат заключается в повышении качества маскирования в случае потери аудиокадра. Обнаруживают в свойстве ранее принятого и восстановленного аудиосигнала условие транзиента (которое указывает на наличие всплеска или спада сигнала), которое может привести к неоптимальному качеству восстановления, когда используется исходный способ маскировки для создания подстановочного кадра. Модифицируют исходный способ маскировки путем выборочной настройки амплитуды спектра подстановочного кадра, когда обнаружено условие транзиента. Дополнительно обнаруживают в статистическом свойстве наблюдаемых потерь кадров второе условие, которое может привести к неоптимальному качеству восстановления, когда используется исходный способ маскировки для создания подстановочного кадра. Дополнительно модифицируют исходный способ маскировки путем выборочной настройки амплитуды спектра подстановочного кадра, когда обнаружено второе условие, причем вторым условием является возникновение потери нескольких кадров подряд. 5 н. и 22 з.п. ф-лы, 15 ил.
1. Способ для управления способом маскировки для потерянного аудиокадра принятого аудиосигнала, причем способ содержит этапы, на которых:
- обнаруживают (101, 122) в свойстве ранее принятого и восстановленного аудиосигнала условие транзиента, которое может привести к неоптимальному качеству восстановления, когда используется исходный способ маскировки для создания подстановочного кадра; и
- модифицируют (102, 125) исходный способ маскировки путем выборочной настройки амплитуды спектра подстановочного кадра, когда обнаружено условие транзиента;
- дополнительно обнаруживают (101, 121) в статистическом свойстве наблюдаемых потерь кадров второе условие, которое может привести к неоптимальному качеству восстановления, когда используется исходный способ маскировки для создания подстановочного кадра; и
- дополнительно модифицируют (102, 123, 127) исходный способ маскировки путем выборочной настройки амплитуды спектра подстановочного кадра, когда обнаружено второе условие;
причем условие транзиента содержит обнаруженный спад и выполнено частотно-избирательно для каждой полосы частот, при этом усиление затем сравнивается с верхним и нижним порогом для обнаружения соответственно всплеска или спада;
причем вторым условием является возникновение потери нескольких кадров подряд.
2. Способ по п. 1, в котором исходный способ маскировки содержит этапы, на которых:
- извлекают сегмент из ранее принятого или восстановленного аудиосигнала, при этом упомянутый сегмент используется в качестве прототипного кадра;
- применяют синусоидальную модель к прототипному кадру для получения синусоидальных частот синусоидальной модели; и
- осуществляют развертывание во времени полученных синусоид для создания подстановочного кадра.
3. Способ по п. 2, в котором осуществление развертывания во времени содержит сдвиг фазы спектральных коэффициентов, относящихся к полученным синусоидам (k), на
4. Способ по любому из пп. 1-3, в котором обнаружение транзиентов выполняется в частотной области.
5. Способ по п. 4, в котором обнаружение транзиентов выполняется частотно-избирательно на основе полосы частот.
6. Способ по п. 5, в котором ширины полос частот зависят от размера акустических критических полос частот человека.
7. Способ по п. 5 или 6, в котором выборочная настройка амплитуды спектра подстановочного кадра выполняется выборочно для полос частот в ответ на транзиент, обнаруженный в полосе частот.
8. Способ по п. 1, в котором спектральная амплитуда настраивается в ответ на обнаруженную потерю нескольких кадров подряд путем выполнения ослабления восстановленного сигнала с постепенно увеличивающейся степенью.
9. Способ по любому из пп. 1-3, в котором исходный способ маскировки дополнительно модифицируется путем выборочной настройки фазы спектра подстановочного кадра, когда обнаружено второе условие.
10. Способ по п. 9, в котором настройка фазы спектра подстановочного кадра содержит рандомизацию или сглаживание фазового спектра.
11. Способ по п. 10, в котором фазовый спектр настраивается путем выполнения сглаживания с постепенно увеличивающейся степенью.
12. Устройство для управления способом маскировки для потерянного аудиокадра принятого аудиосигнала, содержащее средства для выполнения способа в соответствии с по меньшей мере одним из пп. 1-11.
13. Устройство для управления способом маскировки для потерянного аудиокадра принятого аудиосигнала, содержащее:
процессор (154), и
память (156), хранящую инструкции (155), которые при исполнении процессором предписывают устройству:
- обнаруживать в свойстве ранее принятого и восстановленного аудиосигнала условие транзиента, которое может привести к неоптимальному качеству восстановления, когда используется исходный способ маскировки для создания подстановочного кадра;
- модифицировать исходный способ маскировки, когда обнаружено условие транзиента, путем выборочной настройки амплитуды спектра подстановочного кадра;
- дополнительно обнаруживать в статистическом свойстве наблюдаемых потерь кадров второе условие, которое может привести к неоптимальному качеству восстановления, когда используется исходный способ маскировки для создания подстановочного кадра; и
- дополнительно модифицировать исходный способ маскировки, когда обнаружено второе условие, путем выборочной настройки амплитуды спектра подстановочного кадра;
причем условие транзиента содержит обнаруженный спад и выполнено частотно-избирательно для каждой полосы частот, при этом усиление затем сравнивается с верхним и нижним порогом для обнаружения соответственно всплеска или спада;
причем вторым условием является возникновение потери нескольких кадров подряд.
14. Устройство по п. 13, в котором при создании подстановочного кадра с использованием исходного способа маскировки устройству предписывается:
- извлекать сегмент из ранее принятого или восстановленного аудиосигнала, при этом упомянутый сегмент используется в качестве прототипного кадра;
- применять синусоидальную модель к прототипному кадру для получения синусоидальных частот синусоидальной модели; и
- осуществлять развертывание во времени полученных синусоид для создания подстановочного кадра.
15. Устройство по п. 14, в котором осуществление развертывания во времени выполняется путем сдвига фазы спектральных коэффициентов, относящихся к полученным синусоидам (k), на
16. Устройство по любому из пп. 13-15, дополнительно содержащее детектор транзиентов.
17. Устройство по п. 16, в котором детектор транзиентов сконфигурирован выполнять обнаружение транзиентов в частотной области.
18. Устройство по п. 17, в котором детектор транзиентов сконфигурирован выполнять частотно-избирательное обнаружение транзиентов на основе полос частот.
19. Устройство по п. 18, в котором выборочная настройка амплитуды спектра подстановочного кадра выполняется выборочно для полос частот в ответ на транзиент, обнаруженный в полосе частот.
20. Устройство по любому из пп. 13-15, в котором вторым условием является возникновение потери нескольких кадров подряд.
21. Устройство по п. 20, в котором спектральная амплитуда настраивается в ответ на обнаруженную потерю нескольких кадров подряд путем выполнения ослабления восстановленного сигнала с постепенно увеличивающейся степенью.
22. Устройство по любому из пп. 13-15, при этом устройство сконфигурировано дополнительно изменять исходный способ маскировки, когда обнаружено второе условие, путем выборочной настройки фазы спектра подстановочного кадра.
23. Устройство по п. 22, в котором настройка фазы спектра подстановочного кадра содержит рандомизацию или сглаживание фазового спектра.
24. Устройство по п. 13, при этом устройство является декодером в мобильном устройстве.
25. Машиночитаемый носитель, хранящий компьютерную программу, которая при исполнении предписывает устройству выполнять способ по п. 1.
26. Декодер (130), содержащий:
- блок (132) ввода, сконфигурированный принимать закодированный аудиосигнал;
- логический блок (134) маскировки потери кадров, сконфигурированный маскировать потерянный аудиокадр;
- контроллер (136), сконфигурированный обнаруживать в свойстве ранее принятого и восстановленного аудиосигнала условие транзиента, которое может привести к неоптимальному качеству восстановления, когда используется исходный способ маскировки для создания подстановочного кадра, и модифицировать исходную маскировку потерянного аудиокадра путем выборочной настройки амплитуды спектра подстановочного кадра при обнаружении условия транзиента, при этом контроллер сконфигурирован дополнительно обнаруживать в статистическом свойстве наблюдаемых потерь кадров второе условие, которое может привести к неоптимальному качеству восстановления, когда используется исходный способ маскировки для создания подстановочного кадра, и дополнительно модифицировать исходный способ маскировки, когда обнаружено второе условие, путем выборочной настройки амплитуды спектра подстановочного кадра;
причем условие транзиента содержит обнаруженный спад и выполнено частотно-избирательно для каждой полосы частот, при этом усиление затем сравнивается с верхним и нижним порогом для обнаружения соответственно всплеска или спада;
причем вторым условием является возникновение потери нескольких кадров подряд.
27. Декодер по п. 26, в котором контроллер (136) содержит блок (146) детектора для выполнения обнаружения условия в свойстве ранее принятого и восстановленного аудиосигнала или в статистическом свойстве наблюдаемых потерь кадров, и блок (148) модификатора для выполнения модификации способа маскировки.
Способ приготовления мыла | 1923 |
|
SU2004A1 |
Устройство для формования мучных изделий | 1988 |
|
SU1722359A1 |
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
Способ приготовления лака | 1924 |
|
SU2011A1 |
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
RU 2010135724 A, 10.03.2012 | |||
КОДИРУЮЩЕЕ УСТРОЙСТВО, ДЕКОДИРУЮЩЕЕ УСТРОЙСТВО И СПОСОБ | 2008 |
|
RU2459283C2 |
Авторы
Даты
2017-08-15—Публикация
2014-01-22—Подача