Кассетная генетическая конструкция, экспрессирующая две биологически активные siPHK, эффективно атакующие мишени в мРНК генов vpu и env ВИЧ-1 субтипа А у больных в России, и одну siPHK, направленную на мРНК гена CCR5 Российский патент 2017 года по МПК C12N15/86 C12N15/11 A61K48/00 

Описание патента на изобретение RU2630644C1

Изобретение относится к областям медицинской и молекулярной генетики, а также к генотерапии и связано с использованием ранее выявленных мишеней для РНК-интерференции в вирусе иммунодефицита человека 1 типа (ВИЧ-1) субтипа А для создания кассетной генетической конструкции. На основе детального анализа последовательности нуклеотидов в гене vpu, кодирующего белок, способствующий выделению дочерних вирионов из клетки, и гене env, кодирующего белок, необходимый для проникновения вируса в клетку, с помощью глубокого секвенирования генома ВИЧ-1 субтипа А у больных в России предложены последовательности соответствующих двух siPHK, предназначенные для эффективного подавления продукции данных клинических вариантов ВИЧ-1 в клетках человека.

Мишень в гене env атакует область мРНК, кодирующую гликопротеин GP120. Этот белок имеет сайт связывания с клеточным рецептором CD4 и семь трансмембранных доменов рецепторов хемокинов, служащих ко-рецепторами для ВИЧ-1. Мишень в гене vpu атакует 3' кодирующую область мРНК, кодирующую вирусный белок U (Vpu).

Данная кассета экспрессирует две биологически активные анти-ВИЧ-1 siPHK, что приводит к атаке двух мишеней в транскриптах вируса, кодирующих жизненно важные белки Vpu и ENV, и мощному ингибированию его репродукции в клетках человека. Указанная кассетная генетическая конструкция экспрессирует шпильки РНК, которые in vivo процессируются в биологически активные siPHK. Последние эффективно доставляются в белковые комплексы, осуществляющие разрезание транскриптов вируса, чем и достигается ингибирование его репродукции. Кроме того, данная кассета экспрессирует и биологически активную siPHK, атакующую мРНК гена CCR5 человека. Указанный ген кодирует ко-рецептор, облегчающий проникновение вируса в Т-лимфоциты человека. Такая генетическая конструкция может быть использована в медицине для генотерапии СПИДа и ВИЧ-инфекции, а также в научных исследованиях для мощного подавления продукции ВИЧ-1 субтипа А.

В настоящее время основным подходом лечения СПИДа и ВИЧ-инфекции является назначение пациентам противовирусной химиотерапии, включающей препараты, действующие на ключевые ферменты ВИЧ-1 - обратную транскриптазу, интегразу, протеазу. Однако, несмотря на большое количество разработанных препаратов, существует проблема эффективности применяемой противовирусной терапии. Основная причина, объясняющая неэффективность лечения - адаптивный мутагенез вируса, приводящий к появлению вариантов вируса, обладающих устойчивостью к противовирусным препаратам. Серьезными проблемами являются также токсичность и высокая стоимость применяемых лекарственных средств.

Известно применение рибозимов и антисмысловых РНК для терапии ВИЧ-инфекции [Dorman N. And Lever A.M. (2001) RNA-based gene therapy for HIV infection. HIV Med., 2, 114-122; Michienzi A., Conti L., Varano В., Prislei S., Gessani S., and Bozzoni I. (1998) Inhibition of human immunodeficiency virus type 1 replication by nuclear chimeric anti-HIVribozymes in a human T lymphoblastoid cell line. Hum. Gene Ther., 9., 621-628; Veres G., Junker U., Baker J., Barske C., Kalfoglou C., lives H., Escaich S., Kaneshima H., and Bohnlein E. (1998) Comparative analysis of intracellularly expressed antisense RNAs as inhibitors of human immunodeficiency virus type 1 replication. J. Virol., 72, 1894-1901], которые блокируют несколько генов ВИЧ, что снижает его активность.

Наиболее близким к данному изобретению является генетическая конструкция, обеспечивающая экспрессию siPHK внутри ВИЧ-инфицированных клеток организма (патент РФ №2425150, опубликован 23 ноября 2009 г.).

Настоящее изобретение отличается тем, что в настоящей генетической конструкции в первой и второй позициях находятся шпильки, кодирующие две siPHK, направленные на мРНК, кодирующие Vpu и GP120, соответственно. Области шпилек содержат нуклеотидные замены, которые характерны для вариантов данных мишеней у больных в России (Таблица 1). Найдено 6 таких замен для области мРНК vpu и 13 для мРНК gp120. Т.о., предлагаемая конструкция экспрессирует две siPHK, которые нацелены на мишени в мРНК, кодирующих Vpu и GP120 в вариантах ВИЧ-1 субтипа А у больных в России, а одна siPHK - на мРНК гена CCR5 человека, кодирующего клеточный ко-рецептор, вовлеченный в проникновение вируса в Т-лимфоциты. Данные о мишенях РНК-интерференции ВИЧ-1 субтипа А в клинических вариантах вируса, выделенных у больных в России, получены с помощью капиллярного и глубокого секвенирования и депонированы в GenBank (accession numbers: KC681847-KC681888).

Техническим результатом предлагаемого изобретения является кассетная генетическая конструкция, которая содержит три палиндрома, предназначенные для образования "шпилек РНК". Экспрессия такой конструкции в клетках человека приводит к образованию трех интерферирующих РНК (siPHK). Предлагаемая генетическая конструкция кодирует биологически активные siPHK, которые были отобраны с помощью невирусной тест-системы с использованием культур клеток человека.

Представленный технический результат достигается путем создания кассетной генетической конструкции на базе вектора GeneClip™U1 Neomycin (Ac.number AY745746), http://www.promega.com/pnotes/89/12416_21/12416_21.pdf.

Созданная генетическая конструкция anti-HIV-4R-anti-HIV-5R-anti-CCR5-8 длиной 202 bp содержит вставку ДНК, указанную в Таблице 1.

В Таблице 2 представлены отличия в мишенях вируса из базы данных - HIV-1 subtype А, номер последовательности в GenBank - AF316544, изолят 1997 года ВИЧ-1 субтипа А из Конго; и в клинических вариантах вируса субтипа А, выделенных у больных в России.

В мишенях РНК-интерференции, находящихся в мРНК гена vpu и гена env (в его домене GP120) выявлены отличия, характерные для генома вируса у больных в России (затенением указаны 6 позиций нуклеотидных замен, характерных для гена vpu и 13, характерных для гена env в его домене GP120 для вариантов вируса субтипа А в России). Известно, что даже единичные отличия между мишенью и siPHK могут существенно ослабить эффективность РНК-интерференции. Следовательно, знание последовательности нуклеотидов в мишенях клинических вариантов ВИЧ-1 субтипа А позволяет создать генетические конструкции, эффективно поражающие транскрипты вируса и его продукцию у больных.

Указанную генетическую конструкцию тестировали с помощью невирусной системы. Данная система предназначена для количественной оценки биологической активности siPHK, которые образуются in vivo при экспрессии генетических конструкций. Она создана на базе вектора psiCHECK™-2 (Promega, номер последовательности в GenBank AY535007). Вектор содержит ген люциферазы светлячка и ген люциферазы коралла (Renilla). Указанные люциферазы вызывают свечение разной длины волны, и их экспрессию можно измерять с помощью люминометра. В 3' концевую некодирующую область гена Renilla вставляли короткие области генома вируса (домены), соответствующие выбранным мишеням РНК-интерференции в транскриптах вируса. Домены получали с помощью химического синтеза олигонуклеотидов ДНК. В таблице 3 представлены тексты доменов, которые клонировали в векторе psiCHECK™-2 по сайтам рестриктаз XhoI и NotI.

Тестирование биологической активности кассеты проводят в экспериментах по ко-трансфекции культуральных клеток человека. При этом используют два препарата ДНК: кассетную генетическую конструкцию, содержащую промотор U1 РНК полимеразы II и кодирующую три siPHK, а также ДНК плазмиды, созданной на базе вектора psi-CHECK-2, содержащей три клонированных домена, соответствующих трем мишеням РНК-интерференции) (Таблица 3). В клетках человека на генетических конструкциях экспрессируется вставка, содержащая палиндромы. Синтезированная РНК образует шпильки, которые являются природным субстратом Дайсера, фермента, вырезающего 21 нуклеотидные дуплексы РНК из шпильки. Если Дайсер работает на дуплексе РНК длиной более 19 пар нуклеотидов (природный субстрат), то далее он, оставаясь связанным с двуспиральной siPHK, активно участвуют также и в ее "загрузке" в белковый комплекс RISC. В данном комплексе происходит "раскручивание" цепей siPHK и освобождение его от одной из них (от так называемой "passenger"-цепи). Если в комплексе остается антисмысловая siPHK, то она используется как "наводчик", узнающий комплементарную мишень в транскриптах клетки. После связывания комплекса с соответствующей мРНК происходит ее разрезание одним из его белков, что приводит к выключению экспрессии соответствующего гена вируса и нарушает его размножение в клетке-хозяине. В трансфецированных клетках мРНК Renilla, содержащая в 3'-некодирующей области испытываемую мишень РНК-интерференции, разрезается, что приводит к резкому снижению голубого свечения, вызываемого данной люциферазой (478 nm). Желто-зеленое свечение, вызываемое люциферазой светлячка Photinus pyralis (557 nm), кодируемой той же ДНК psiCHECK-2, служит внутренним контролем.

В настоящем исследовании использовали одиннадцать критериев для отбора последовательностей мишеней РНК-интерференции в мРНК гена CCR5. Они важны для того, чтобы именно антисмысловая цепь siPHK оставалась в комплексе RISC. Каждая из приведенных в Таблице 1 вставок в генетических конструкциях соответствует, по крайней мере, десяти из одиннадцати ниже перечисленных критериев, которые использовались для отбора коровых 19-нуклеотидних последовательностей siPHK:

- состав G/C 30-52%

- не менее 3 A/U в позициях 15-19 смысловой цепи

- отсутствие внутренних повторов

- А в позиции 19 смысловой цепи

- А в позиции 3 смысловой цепи

- U в позиции 10 смысловой цепи

- отсутствие G/C в позиции 19 смысловой цепи

- отсутствие G в позиции 13 смысловой цепи

- отсутствие гомополимерных трактов (А)4-5 или (Т)4-5 в смысловой цепи

- локализация мишени в консервативном районе генома вируса

- отсутствие гомологии с известными транскриптами генома человека.

Часть вышеперечисленных критериев отбора биологически активных siPHK опубликована [Reynolds A., Leake D., Boese Q., Scaringe S., Marshall W.S., Khvorova A. (2004) Rational siRNA design for RNA interference. Nature Biotechnol. 22, 326-330] и представлена на сайте http://www.dharmacon.com.

Приведенная в Таблице 1 кассетная генетическая конструкция обеспечивает целенаправленное воздействие на мРНК вариантов вируса в России с помощью соответствующих двух siPHK, а также на мРНК CCR5. Терапевтическим результатом такого воздействия является подавление репродукции вариантов ВИЧ-1 субтипа А у больных в России.

Для вируса иммунодефицита человека первого типа характерно быстрое возникновение и отбор мутантных вариантов, обладающих резистентностью к различным противовирусным препаратам. Для решения проблемы вирусной изменчивости получена кассетная генетическая конструкция, атакующая разные мишени и поэтому в значительной степени не зависящая от изменчивости вируса.

Краткое описание таблиц и рисунков

В Таблицах 1-3 приведены нуклеотидные последовательности ДНК (номера 1-4): кассетной конструкции, которая имеет длину 202 bp и кодирует три siPHK (номер 1); мишеней РНК-интерференции в мРНК генов vpu и gp120, выявленные у больных в России (номера 2 и 3); мишеней РНК-интерференции, использованных для тестирования в невирусной системе (номер 4).

На рис. 1 приведена физическая карта вектора GeneClipU1-neo.

На рис. 2 приведена физическая карта вектора psiCHECK-2.

На рис. 3 представлены результаты проверки эффективности РНК-интерференции, вызываемой созданной кассетной генетической конструкцией на невирусной тест-системе.

В таблице 1 указаны 19-30-bp последовательности, соответствующие транскриптам вируса или мРНК CCR5. Строчными буквами жирным шрифтом в следующем порядке указаны: области, соответствующие ДНК-шпилькам, которые соответствуют последовательностям смысловых и антисмысловых цепей мРНК генов vpu, env вируса, а также гена CCR5 (области смысловых мРНК подчеркнуты). Последовательности ДНК представлены в ориентации 5'-3'.

Строчными буквами показаны тексты петель и спейсеров, содержащих искусственные сайты для рестриктаз EcoRI или BamHI (жирные строчные буквы). Три петли образуются в транскрипте после отжига комплементарных областей палиндромов (смысловых и антисмысловых). Тексты генетической конструкции соответствуют мишеням в штаммах ВИЧ-1 субтипа А, выделенных у больных в России. Нумерация области гена CCR5 указана по последовательности GenBank - U54994. Указанная конструкция предназначена для поражения двух областей мРНК, кодирующих консервативные области генов vpu и env вируса, а также 5' области мРНК гена CCR5 человека в области первых кодонов. Затенены шесть нуклеотидных замен в мишени vpu и тринадцать в мишени env, характерные для ВИЧ-1 субтипа А у больных в России (затенены только области, соответствующие смысловым РНК). В скобках указан номер данной 202-bp последовательности нуклеотидов ДНК.

Таблица 2. В скобках указаны номера последовательностей нуклеотидов ДНК.

В Таблице 3 строчными буквами показаны области, содержащие сайты рестрикции эндонуклеаз XhoI и NotI, а также два спейсера между фрагментами генома HIV-1 (мишени HIV-4R и HIV-5R) и кДНК CCR5. Жирным шрифтом показаны области генома клинических вариантов вируса в России и кДНК CCR5, которые соответствуют мишеням РНК-интерференции. В скобках указан номер данной последовательности нуклеотидов ДНК.

Рис. 1. Физическая карта вектора GeneClip-U1-neo. Вектор использовался для создания кассетной генетической конструкции, вызывающей РНК-интерференцию, направленную против транскриптов вируса и мРНК CCR5. Указаны ген устойчивости к ампициллину (Амп), сайт полиаденилирования и энхансер SV40.

Рис. 2. Физическая карта вектора psiCHECK-2. Вектор использовался для создания невирусной системы количественной оценки эффективности РНК-интерференции, вызываемой созданной кассетной генетической конструкцией. Указаны ген устойчивости к ампициллину (Амп), сайт полиаденилирования и энхансер SV40.

Рис. 3. Эффективность РНК-интерференции, вызываемой кассетной генетической конструкцией anti-HIV-1R-anti-HIV-2R-anti-CCR5-8 в невирусной тест-системе на разные мишени, клонированные в векторе GeneClip-U1-neo. Приведены данные в % к эффекту генетической конструкции anti-HIV-4R-anti-HIV-5R-anti-CCR5-8 на исходный вектор GeneClip-U1-neo, не содержащий вставки или содержащий "рандомизированную" последовательность (rand.) мишеней; HIV-4R - мишень, соответствующая области гена vpu у больных в России; HIV-5R - мишень, соответствующая другой области гена env (его домена, кодирующего GP120) у больных в России; 4R-5R-CCR5 - мишени для двух выше указанных siPHK и для siPHK, направленной на мРНК гена CCR5. * - р<0.05. Эксперименты проводили в трех параллелях (n=3).

Осуществление изобретения

Пример 1. Описание генетической конструкции и способа ее получения

Вектор GeneClipU1-neo зарегистрирован в GenBank (Accession # AC AY745746), имеет размер 4,758 kb (kilobases - тысяча пар оснований) и характеризующийся тем, что содержит:

старт-сайт РНК полимеразы Т7: 1

U1 промотор РНК полимеразы II человека: 46-438

10 bp спейсер: 439-448

U1 терминатор: 449-465

промотор РНК полимеразы SP6: 527-546

ранний энхансер/промотор вируса SV40: 798-1216

сигнал начала репликации вируса SV40: 1114-1179

ген neo: 1251-2045

синтетический поли(А): 2080-2128

ген β-лактамазы: 3080-3940

промотор РНК полимеразы Т7: 4742-3.

В данный вектор, который поставляется Promega в линейной форме, вставляют химически синтезированные олигонуклеотиды ДНК, которые соответствуют генетическим конструкциям, продуцирующим шпильки РНК (Таблица 1).

Вектор psiCHECK-2 зарегистрирован в GenBank (Accession # AY535007), имеет размер 6,27 kb и характеризуется тем, что содержит:

ранний энхансер/промотор вируса SV40: 7-425

химерный интрон: 489-621

промотор РНК полимеразы Т7: 666-684

ген люциферазы Relilla: 694-1629

полилинкер: 1636-1680

синтетический поли(А): 1688-1736

промотор HSK-TK: 1744-2496

ген люциферазы светлячка: 2532-4184

поздний сигнал поли(А) SV40: 4219-4440

ген β-лактамазы: 4587-5447.

В данном векторе в сайты XhoI и NotI полилинкера вставляют химически синтезированные олигонуклеотиды ДНК, которые соответствуют выбранным мишеням РНК-интерференции (Таблица 2).

Пример 2. Оценка эффективности РНК-интерференции, вызываемой созданными генетическими конструкциями в невирусной системе

Накануне проведения ко-трансфекции (за 18-20 часов) клетки HEK293 рассевают в лунки 24-луночного планшета Nunc - по 50 тыс. клеток в 500 мкл культуральной среды DMEM (ПанЭко), содержащей глютамин и сыворотку (полная среда), на лунку. В день эксперимента готовят пробы ДНК для ко-трансфекции при комнатной температуре следующим образом (на одну экспериментальную точку). В 200 мкл среды DMEM, не содержащей сыворотки (SFM), добавляют 100 ng ДНК генетической конструкции в векторе GeneClip-U1-пео (см. Таблицу 1) и 10 ng ДНК плазмиды, содержащий соответствующие клонированные домены в векторе psiCHECK-2 (см. Таблицу 2). После перемешивания добавляют 1 мкл свежеразмороженного реагента TransFast (Promega), встряхивают смесь и инкубируют ее 15 мин. Затем отсасывают среду из лунок с "сидящими" клетками, встряхивают пробирку со смесью ДНК-TransFast и сразу добавляют смесь в лунки с клетками. После инкубации 1 час при 37°С в СО2-инкубаторе добавляют в лунки по 600 мкл среды с сывороткой, перемешивают и инкубируют планшет 48-72 час.

Для измерения экспрессии люцифераз среду над клетками в лунках планшета отсасывают, добавляют 100 мкл раствора трипсина-ЭДТА (ПанЭко) на лунку, после 10 мин инкубации при 37°С в СО2-инкубаторе добавляют по 100 мкл полной среды, переносят полностью суспензию клеток в пробирку эппендорф на 0.5 мл, осаждают центрифугированием при комнатной температуре в центрифуге Eppendorf (5 мин- 2000 rpm), надосадочную жидкость отсасывают, суспендируют клетки в 70 мкл 1xPBS и проводят измерение свечения люцифераз светлячка и Renilla согласно рекомендациям к набору Dual-Luciferase Reporter Assay System (Promega) на люминометре Reporter Microplate Luminometer (Turner BioSystems). На рис. 3 показаны результаты испытания генетических конструкций на невирусной системе. Видно, что генетические конструкции специфически подавляют экспрессию мишеней на 77-90%.

Похожие патенты RU2630644C1

название год авторы номер документа
КАССЕТНАЯ ГЕНЕТИЧЕСКАЯ КОНСТРУКЦИЯ, ЭКСПРЕССИРУЮЩАЯ ДВЕ БИОЛОГИЧЕСКИ АКТИВНЫЕ siPHK, ЭФФЕКТИВНО АТАКУЮЩИЕ ТРАНСКРИПТЫ ВИЧ-1 СУБТИПА А У БОЛЬНЫХ В РОССИИ, И ОДНУ siPHK, НАПРАВЛЕННУЮ НА мРНК ГЕНА CCR5 2012
  • Чуриков Николай Андреевич
  • Кретова Ольга Валерьевна
RU2552607C2
Кассетная генетическая конструкция, экспрессирующая две биологически активные siPHK, эффективно атакующие мишени в мРНК обратной транскриптазы ВИЧ-1 субтипа А у больных в России, и одну siPHK, направленную на мРНК гена CCR5 2015
  • Чуриков Николай Андреевич
  • Кретова Ольга Валерьевна
  • Федосеева Дарья Михайловна
RU2607381C1
КАССЕТНАЯ ГЕНЕТИЧЕСКАЯ КОНСТРУКЦИЯ, ЭКСПРЕССИРУЮЩАЯ ДВЕ БИОЛОГИЧЕСКИ АКТИВНЫЕ siPHK, ЭФФЕКТИВНО АТАКУЮЩИЕ ТРАНСКРИПТЫ ВИЧ-1 СУБТИПА А У БОЛЬНЫХ В РОССИИ, НАПРАВЛЕННЫЕ НА мPHK ОБРАТНОЙ ТРАНСКРИТАЗЫ И ИНТЕГРАЗЫ, И ОДНУ siPHK, НАПРАВЛЕННУЮ НА мPHK ГЕНА CCR5 2013
  • Чуриков Николай Андреевич
  • Кретова Ольга Валерьевна
RU2552486C2
КАССЕТНАЯ ГЕНЕТИЧЕСКАЯ КОНСТРУКЦИЯ, ЭКСПРЕССИРУЮЩАЯ ТРИ БИОЛОГИЧЕСКИ АКТИВНЫЕ siPHK, ЭФФЕКТИВНО АТАКУЮЩИЕ ТРАНСКРИПТЫ ВИРУСА ИММУНОДЕФИЦИТА ЧЕЛОВЕКА И ГЕНА CCR5 С ПОМОЩЬЮ PHK-ИНТЕРФЕРЕНЦИИ 2009
  • Чуриков Николай Андреевич
  • Кретова Ольга Валерьевна
RU2425150C1
Эффективные мишени РНК-интерференции в геноме ВИЧ-1 и субстраты Дайсера, предназначенные для их поражения 2017
  • Чуриков Николай Андреевич
  • Кретова Ольга Валерьевна
RU2650774C1
ГЕНЕТИЧЕСКИЕ КОНСТРУКЦИИ, АТАКУЮЩИЕ ШЕСТЬ НОВЫХ МИШЕНЕЙ РНК-ИНТЕРФЕРЕНЦИИ В ТРАНСКРИПТАХ ВИРУСА ИММУНОДЕФИЦИТА ЧЕЛОВЕКА 1 ТИПА И ПОДАВЛЯЮЩИЕ РЕПРОДУКЦИЮ ВИРУСА В КЛЕТКАХ ЧЕЛОВЕКА 2008
  • Чуриков Николай Андреевич
  • Кретова Ольга Валерьевна
  • Покровский Андрей Георгиевич
  • Гашникова Наталья Матвеевна
RU2385939C1
СПОСОБ ПОЛУЧЕНИЯ КАССЕТНЫХ ГЕНЕТИЧЕСКИХ КОНСТРУКЦИЙ, ЭКСПРЕССИРУЮЩИХ НЕСКОЛЬКО РНК-ШПИЛЕК 2012
  • Чуриков Николай Андреевич
  • Кретова Ольга Валерьевна
RU2525935C2
ГЕНЕТИЧЕСКИЕ КОНСТРУКЦИИ ДЛЯ АНТИВИЧ-ТЕРАПИИ 2010
  • Глазкова Дина Викторовна
  • Ветчинова Анна Сергеевна
  • Богословская Елена Владимировна
  • Маркелов Михаил Леонидович
  • Шипулин Герман Александрович
  • Куевда Дмитрий Александрович
  • Покровский Валентин Иванович
  • Покровский Вадим Валентинович
RU2426788C1
Генетическая конструкция для экспрессии генов mNG_CD4-CCR5, рекомбинантная плазмида rVSV_mNG_CD4-CCR5 и рекомбинантный штамм вируса везикулярного стоматита rVSV_mNG_CD4-CCR5, обеспечивающий таргетный виролизис клеток, экспонирующих на своей поверхности белки gp120/gp41 ВИЧ-1 тропности R5 2021
  • Бочкарева Мария Дмитриевна
  • Иматдинов Ильназ Рамисович
  • Иматдинов Алмаз Рамисович
  • Сульгина Татьяна Владимировна
  • Тишин Антон Евгеньевич
  • Сульгин Александр Андреевич
  • Прудникова Елена Юрьевна
  • Гаврилова Елена Васильевна
  • Максютов Ринат Амирович
RU2769125C1
УСОВЕРШЕНСТВОВАНИЕ ГЕНЕТИЧЕСКИХ КОНСТРУКЦИЙ ДЛЯ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АНТИВИЧ ТЕРАПИИ 2013
  • Глазкова Дина Викторовна
  • Богословская Елена Владимировна
  • Маркелов Михаил Леонидович
  • Шипулин Герман Александрович
  • Покровский Валентин Иванович
  • Покровский Вадим Валентинович
RU2533817C1

Иллюстрации к изобретению RU 2 630 644 C1

Реферат патента 2017 года Кассетная генетическая конструкция, экспрессирующая две биологически активные siPHK, эффективно атакующие мишени в мРНК генов vpu и env ВИЧ-1 субтипа А у больных в России, и одну siPHK, направленную на мРНК гена CCR5

Изобретение относится к областям медицинской и молекулярной генетики. Предложенная кассетная генетическая конструкция anti-HIV-4R-anti-HIV-5R-anti-CCR5-8 получена на основе вектора GeneClip-U1-neo и продуцирует три siPHK - ингибиторы репродукции вируса иммунодефицита человека 1 типа и гена CCR5 человека. Конструкция содержит фрагмент длиной 28 bp, соответствующий консервативному району гена vpu ВИЧ-1 субтипа А у больных в России (первая строка), фрагмент, длиной 30 bp, соответствующий консервативному району гена env (его домена GP120) ВИЧ-1 субтипа А у больных в России (вторая строка), а также 19-bр фрагмент, соответствующий мРНК гена CCR5 (третья строка):

Строчными буквами показаны области петель между частями палиндромов, способных образовать двуспиральные дуплексы. Изобретение обеспечивает целенаправленное воздействие на мРНК вариантов ВИЧ-1 субтипа А в России с помощью соответствующих двух siРНК, а также на мРНК ССR5, что приводит к подавлению их репродукции. 3 ил., 3 табл., 2 пр.

Формула изобретения RU 2 630 644 C1

Кассетная генетическая конструкция anti-HIV-4R-anti-HIV-5R-anti-CCR5-8 на основе вектора GeneClip-U1-neo, содержащая вставку, экспрессирующую три шпильки РНК, кодирующие siPHK - ингибиторы репродукции вируса иммунодефицита человека 1 типа субтипа А и экспрессии гена CCR5 человека - и содержащая два фрагмента генома ВИЧ-1 субтипа А, выявленного у больных в России, и соответствующие двум консервативным районам доменов Vpu и GP120 (плюс и минус тексты палиндромов, соответствующих этим районам, приведены в первой и второй строках), а также 19-bp область, соответствующую гену CCR5 (плюс и минус тексты этого палиндрома, приведены в третьей строке):

5'TGTGTGGACTATAGTAGGTATAGAATGTttaagagaACATTCTATACCTACTATAGTCCACACAgcgaattctgACCAGGACAGACATGGTATGGAACAGGTGAagagaattcTCACCTGTTCCATACCATGTCTGTCCTGGTatggatcctcGGAACAAGATGGATTATCActtcctgtcaTGATAATCCATCTTGTTCC 3',

где строчными буквами показаны области петель между частями палиндромов, способными образовать двуспиральные дуплексы.

Документы, цитированные в отчете о поиске Патент 2017 года RU2630644C1

КАССЕТНАЯ ГЕНЕТИЧЕСКАЯ КОНСТРУКЦИЯ, ЭКСПРЕССИРУЮЩАЯ ТРИ БИОЛОГИЧЕСКИ АКТИВНЫЕ siPHK, ЭФФЕКТИВНО АТАКУЮЩИЕ ТРАНСКРИПТЫ ВИРУСА ИММУНОДЕФИЦИТА ЧЕЛОВЕКА И ГЕНА CCR5 С ПОМОЩЬЮ PHK-ИНТЕРФЕРЕНЦИИ 2009
  • Чуриков Николай Андреевич
  • Кретова Ольга Валерьевна
RU2425150C1
ГЕНЕТИЧЕСКАЯ КОНСТРУКЦИЯ НА ОСНОВЕ ВЕКТОРНОЙ ПЛАЗМИДЫ pEGFP-N1, ПРОДУЦИРУЮЩАЯ siPHK-ИНГИБИТОРЫ РЕПРОДУКЦИИ ВИРУСА ИММУНОДЕФИЦИТА ЧЕЛОВЕКА 1 ТИПА (ЕЕ ВАРИАНТЫ) 2006
  • Чуриков Николай Андреевич
  • Кретова Ольга Валерьевна
  • Гашникова Наталья Матвеевна
  • Покровский Андрей Георгиевич
RU2324738C2
ГЕНЕТИЧЕСКИЕ КОНСТРУКЦИИ, АТАКУЮЩИЕ ШЕСТЬ НОВЫХ МИШЕНЕЙ РНК-ИНТЕРФЕРЕНЦИИ В ТРАНСКРИПТАХ ВИРУСА ИММУНОДЕФИЦИТА ЧЕЛОВЕКА 1 ТИПА И ПОДАВЛЯЮЩИЕ РЕПРОДУКЦИЮ ВИРУСА В КЛЕТКАХ ЧЕЛОВЕКА 2008
  • Чуриков Николай Андреевич
  • Кретова Ольга Валерьевна
  • Покровский Андрей Георгиевич
  • Гашникова Наталья Матвеевна
RU2385939C1
US 2006269518 A1, 30.11.2006
US 2008003658 A1, 03.01.2008.

RU 2 630 644 C1

Авторы

Чуриков Николай Андреевич

Кретова Ольга Валерьевна

Даты

2017-09-11Публикация

2016-10-04Подача