СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ МЕДНЫХ ПОКРЫТИЙ Российский патент 2017 года по МПК C25D3/38 C25D5/18 

Описание патента на изобретение RU2630994C1

Изобретение относится к области гальванотехники, в частности способу электролитического осаждения медных покрытий, и может быть использовано в производстве печатных плат и других компонентов электронных устройств.

Известны способы улучшения равномерности распределения электроосажденных слоев металлов и сплавов путем введения в состав используемых электролитов химических соединений, повышающих их рассеивающую способность, например, соединений, образующих комплексы с ионами осаждаемых металлов, или органических поверхностно-активных веществ, адсорбирующихся на катоде и увеличивающих катодную поляризацию [Лайнер В.И., Кудрявцев Н.Т. Основы гальваностегии, ч. 1. М.: Металлургиздат, 1953, 624 с.]. Однако эти способы не могут обеспечить получения одинаковой толщины осажденного слоя на разных участках поверхности профилированных изделий.

В литературе [Гамбург Ю.Д., Какие формы импульсного тока целесообразно применять на практике. Гальванотехника и обработка поверхности. 2003, т. 11, №4, с. 60-65] имеются сведения о положительном воздействии реверса тока на равномерность распределения получаемых покрытий. Однако отмечено, что применение реверса импульсного тока в процессе нанесения металлического покрытия в одних случаях может способствовать улучшению равномерности его распределения на покрываемой поверхности, в то время как в других случаях, оно оказывает отрицательное воздействие на равномерность распределения покрытия.

Наиболее близким по технической сущности является способ электролитического осаждения медного покрытия из сернокислого электролита, содержащего 80 г/л пентагидрата сульфата меди и 180 г/л серной кислоты, с применением импульсного реверсивного тока при одинаковой плотности тока в катодных и анодных импульсах 1-2 А дм2, длительности катодных импульсов 20-60 с, длительности анодных импульсов 5-30 с и эффективной плотности тока 0,35-0,7 А/дм2. [Кругликов С.С, Ярлыков М.М., Юрчук Т,Е. Влияние реверсивного тока на рассеивающую способность сернокислого электролита меднения. Электрохимия, 1991, т. 27, вып. 3, с. 298-302].

Основные недостатки этого способа: невысокая максимальная эффективная плотность тока*(Эффективную плотность тока рассчитывают по известной формуле

iэфф=[iк(tк/ta)-ia]/[tк/ta+1].

Здесь iк - плотность тока в катодном импульсе, А/дм2

ia - плотность тока в анодном импульсе, А/дм2

tк - длительность катодного импульса, с

ta - длительность анодного импульса, с)

- 0,7 А/дм2, а также наличие существенного положительного эффекта в результате применения реверса тока только в условиях диффузионных ограничений скорости разряда ионов меди, когда существенно возрастает катодная поляризуемость и одновременно неизбежно ухудшается качество медного покрытия вплоть до появления подгара на выступающих участках поверхности, что отмечается в цитируемом источнике.

Технической задачей данного изобретения является получение с помощью импульсного реверсивного тока медного гальванического покрытия на покрываемой поверхности изделий с минимальными отклонениями его толщины от среднего значения, а также интенсификация процесса нанесения покрытия, то есть повышение эффективной плотности тока.

Поставленная задача решается способом электролитического осаждения медных покрытий из электролита, содержащего пентагидрат сульфата меди и серную кислоту, с использованием реверсивного импульсного тока, заключающимся в том, что концентрация пентагидрата сульфата меди составляет 80-250 г/л, концентрация серной кислоты 100-150 г/л, плотность тока в катодных импульсах составляет 2,5-4,0 А/дм2, плотность тока в анодных импульсах составляет 2,5-10,0 А/дм2, длительность катодных импульсов 100-300 с, длительность анодных импульсов 30-100 с, при одновременном соблюдении условия, чтобы отношение произведения длительности катодного импульса и катодной плотности тока к произведению длительности анодного импульса и анодной плотности тока находилось в пределах от 2,0-3,0.

Изобретение иллюстрируется следующими примерами.

ПРИМЕР 1.

Состав электролита: пентагидрат сульфата меди 80 г/л, серная кислота 180 г/л, температура комнатная. Выход по току (катодный и анодный) 100%.

Отношение межэлектродного расстояния в ячейке Херинга-Блюма для дальнего и ближнего катодов - 1,5.

Плотность тока в катодных импульсах - 2,5 А/дм2.

Плотность тока в анодных импульсах- 2,5 А/дм2.

Длительность катодных импульсов - 100 с.

Длительность анодных импульсов 83 с.

Рассчитанное значение отношения произведения длительности катодных импульсов и катодной плотности тока к произведению длительности анодных импульсов и анодной плотности тока составляет 1,2.

Эффективная плотность тока - 0,23 А/дм2.

При нанесении медного покрытия разброс по толщине медного слоя был в пределах ±3%.

ПРИМЕР 2.

Состав электролита: пентагидрат сульфата меди 250 г/л, серная кислота 100 г/л.

Плотность тока в катодных импульсах - 4 А/дм2.

Плотность тока в анодных импульсах - 10 А/дм2.

Длительность катодных импульсов 205 с.

Длительность анодных импульсов 30 с.

Рассчитанное значение отношения произведения длительности катодных импульсов и катодной плотности тока к произведению длительности анодных импульсов и анодной плотности тока составляет 2,7.

Эффективная плотность тока 2,2 А/дм2.

При нанесении медного покрытия разброс по толщине медного слоя был в пределах +7%.

ПРИМЕР 3.

Состав электролита: пентагидрат сульфата меди 150 г/л, серная кислота 100 г/л..

Плотность тока в катодных импульсах - 2,5 А/дм2.

Анодная плотность тока - 2,5 А/дм2.

Длительность катодных импульсов 300 с.

Длительность анодных импульсов 100 с.

Рассчитанное значение отношения произведения длительности катодных импульсов и катодной плотности тока к произведению длительности анодных импульсов и анодной плотности тока составляет 3.

Эффективная плотность тока 1,25 А/дм2.

При нанесении медного покрытия разброс по толщине медного слоя был в пределах +8%

ПРИМЕР 4.

Состав электролита: пентагидрат сульфата меди 200 г/л, серная кислота 150 г/л. Все параметры, за исключением плотности тока и длительности катодных и анодных импульсов - те же, что в Примере 1.

Плотность тока в катодных импульсах 3 А/дм2.

Плотность тока в анодных импульсах 3 А/дм2.

Длительность катодных импульсов 200 с.

Длительность анодных импульсов 100 с.

Рассчитанное значение отношения произведения длительности катодных импульсов и катодной плотности тока к произведению длительности анодных импульсов и анодной плотности тока составляет 2.

Эффективная плотность тока 1 А/дм2.

При нанесении медного покрытия разброс по толщине медного слоя был в пределах +5%.

При проведении процесса нанесения медного покрытия согласно данному изобретению в стандартной прямоугольной ячейке Херинга-Блюма и отношении межэлектродного расстояния для дальнего и ближнего катодов, равном 1,5, отношение толщины медного покрытия на этих катодах составляет 1,05-1,15, то есть отклонение толщины от ее среднего значения не превышает 8%. Максимальная величина эффективной плотности тока* (Эффективную плотность тока рассчитывают по известной формуле:

iэфф=[iк(tк/ta)-ia]/[tк/ta+1].

Здесь iк - плотность тока в катодном импульсе, А/дм2

ia - плотность тока в анодном импульсе, А/дм2

tк - длительность катодного импульса, с

ta - длительность анодного импульса, с)

при этом составляет 2,2 А/дм2, то есть в три раза выше, чем в прототипе

В первом примере отношение произведения длительности катодных импульсов и катодной плотности тока к произведению длительности анодных импульсов и анодной плотности тока равно 1,2 т.е меньше указанного нижнего предела, поэтому эффективная плотность тока даже меньше чем у прототипа.

Остальные примеры соответствуют предлагаемому техническому результату.

Похожие патенты RU2630994C1

название год авторы номер документа
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО НАНЕСЕНИЯ МОЛИБДЕНА ИЗ ВОДНОГО РАСТВОРА 2008
  • Кудрявцев Владимир Николаевич
  • Павлов Михаил Рашитович
  • Павлова Нина Владимировна
RU2407828C2
СПОСОБ ЭЛЕКТРООСАЖДЕНИЯ МЕДНЫХ ПОКРЫТИЙ 2014
  • Некрасова Наталья Евгеньевна
  • Кругликов Сергей Сергеевич
  • Винокуров Евгений Геннадьевич
  • Помогаев Василий Михайлович
RU2586370C1
Способ электроосаждения хромовых покрытий из электролита на основе гексагидрата сульфата хрома (III) и формиата натрия 2023
  • Аршинова Ирина Станиславовна
  • Кузнецов Виталий Владимирович
  • Тележкина Алина Валерьевна
  • Свириденкова Наталья Васильевна
  • Жуликов Владимир Владимирович
  • Железнов Евгений Валерьевич
  • Балабанова Ольга Алексеевна
RU2814771C1
ЭЛЕКТРОЛИТ И СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ СПЛАВОМ МЕДЬ-ЦИНК 2008
  • Винокуров Евгений Геннадьевич
  • Бондарь Владимир Владимирович
RU2369668C1
ЭЛЕКТРОЛИТ И СПОСОБ МЕДНЕНИЯ 2005
  • Винокуров Евгений Геннадьевич
  • Бондарь Владимир Владимирович
RU2282682C1
ЭЛЕКТРОЛИТ И СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ СПЛАВОМ ОЛОВО-КОБАЛЬТ 2008
  • Винокуров Евгений Геннадьевич
  • Квартальный Андрей Вячеславович
  • Бондарь Владимир Владимирович
RU2377344C1
Электролит для осаждения хромового покрытия, легированного молибденом 2022
  • Кругликов Сергей Сергеевич
  • Тележкина Алина Валерьевна
  • Кузнецов Виталий Владимирович
  • Аверина Юлия Михайловна
  • Алекса Александра Анатольевна
  • Жуликов Владимир Владимирович
  • Фролов Кирилл Владимирович
RU2778529C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОЛИТИЧЕСКИХ ПОРОШКОВ МЕТАЛЛОВ 2013
  • Бусько Владимир Иосифович
  • Жуликов Владимир Владимирович
RU2534181C2
Композиция для электрохимического меднения сквозных отверстий печатных плат 2023
  • Алешина Венера Халитовна
  • Григорян Неля Сетраковна
  • Аснис Наум Аронович
  • Ваграмян Тигран Ашотович
  • Абрашов Алексей Александрович
RU2817024C1
СПОСОБ РЕГЕНЕРАЦИИ РАСТВОРА ПАССИВИРОВАНИЯ МЕДИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2021
  • Кругликов Сергей Сергеевич
  • Одинокова Ирина Вячеславовна
  • Кругликова Елена Сергеевна
  • Нефедова Наталья Владимировна
RU2764583C1

Реферат патента 2017 года СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ МЕДНЫХ ПОКРЫТИЙ

Изобретение относится к области гальванотехники и может быть использовано в производстве печатных плат и других компонентов электронных устройств. Способ электролитического осаждения медных покрытий из электролита, содержащего пентагидрат сульфата меди и серную кислоту, с использованием реверсивного импульсного тока, заключается в том, что концентрация пентагидрата сульфата меди составляет 80-250 г/л, концентрация серной кислоты 100-150 г/л, плотность тока в катодных импульсах составляет 2,5-4,0 А/дм2, плотность тока в анодных импульсах составляет 2,5-10,0 А/дм2, длительность катодных импульсов 100-300 с, длительность анодных импульсов 30-100 с, при одновременном соблюдении условия, чтобы отношение произведения длительности катодного импульса и катодной плотности тока к произведению длительности анодного импульса и анодной плотности тока находилось в пределах 2,0-3,0. Технический результат: повышение равномерности покрытия с минимальными отклонениями толщины от среднего значения, интенсификация процесса нанесения покрытия за счет повышения эффективной плотности тока. 4 пр.

Формула изобретения RU 2 630 994 C1

Способ электролитического осаждения медных покрытий из электролита, содержащего пентагидрат сульфата меди и серную кислоту, с использованием реверсивного импульсного тока, заключающийся в том, что концентрация пентагидрата сульфата меди составляет 80-250 г/л, концентрация серной кислоты 100-150 г/л, плотность тока в катодных импульсах составляет 2,5-4,0 А/дм2, плотность тока в анодных импульсах составляет 2,5-10,0 А/дм2, длительность катодных импульсов 100-300 с, длительность анодных импульсов 30-100 с, при одновременном соблюдении условия, чтобы отношение произведения длительности катодного импульса и катодной плотности тока к произведению длительности анодного импульса и анодной плотности тока находилось в пределах от 2,0-3,0.

Документы, цитированные в отчете о поиске Патент 2017 года RU2630994C1

КРУГЛИКОВ С.С
и др
Влияние реверсивного тока на рассеивающую способность сернокислого электролита меднения
Электрохимия, 1991, т
Прибор с двумя призмами 1917
  • Кауфман А.К.
SU27A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
РАССЕИВАЮЩИЙ ТОПЛИВО МЕХАНИЗМ 1920
  • Палько Г.И.
SU298A1
СПОСОБ ЭЛЕКТРООСАЖДЕНИЯ МЕДНЫХ ПОКРЫТИЙ 2014
  • Некрасова Наталья Евгеньевна
  • Кругликов Сергей Сергеевич
  • Винокуров Евгений Геннадьевич
  • Помогаев Василий Михайлович
RU2586370C1
RU 2014148700 А, 27.06.2016
US 20130334053 A1, 19.12.2013.

RU 2 630 994 C1

Авторы

Кругликов Сергей Сергеевич

Колесников Владимир Александрович

Губин Александр Федорович

Кондратьева Екатерина Сергеевна

Некрасова Наталия Евгеньевна

Даты

2017-09-15Публикация

2016-06-28Подача