Изобретение относится к ракетно-космической и авиационной промышленности, может быть использовано в качестве компонентов для композиций на основе высокомолекулярных соединений, предназначенных для защиты наружных поверхностей летательных аппаратов от аэродинамических и других видов нагрева при высоких температурах эксплуатации.
В настоящее время для этих целей широко применяются теплозащитные покрытия (ТЗП) на основе полимерных латексных композиций.
Из патентной литературы известна термостойкая электроизоляционная композиция на основе полидиметилвинилсилоксанового каучука, содержащая полиорганогидридсилоксан, кремнеземный наполнитель, катализатор отверждения на основе платины, 1,2-дигидроксиантрахион (RU №2445329, С08K 3/36).
Недостаток известной композиции в том, что она не обеспечивает защиту силовых полупроводниковых приборов при высоких температурах.
Наиболее близкой к предлагаемому ТЗП можно считать латексную композицию для теплозащитного материала, предназначенную для защиты наружных поверхностей летательных аппаратов от аэродинамического и другого вида нагрева, включающую латекс каучука, содержащий латекс цис-1,4-полиизопрена-100, оксид цинка, диэтилдитиокарбамат цинка, метилцеллюлозу, полые микросферы, дополнительно серу и двуокись кремния (RU №1840662, C08L 9/10).
Однако максимальная температура эксплуатации этих ТЗП не превышает 600°-650°C.
Задачей предлагаемого ТЗП является увеличение максимальной температуры эксплуатации, снижение коэффициента температупропроводности, увеличение адгезионной прочности между компонентами и ТЗП к поверхности изделия, повышение технологичности изготовления покрытия.
Поставленная задача решается тем, что в ТЗП, включающем в свой состав полимер, наполнитель и отвердитель, в качестве полимера используется низкомолекулярный полимер «Стиросил», представляющий собой вязкотекучую жидкость белого цвета, отверждающуюся при комнатной температуре, наполнители - в виде слюды молотой с массовой долей посторонних частиц - примесей не более 0,5% и микросфер стеклянных полых натриевых борсиликатного состава, отвердитель - катализатор холодного отверждения К-68 и разбавитель - компенсатор состава подслой П-11, при следующем соотношении компонентов, мас. %:
В предлагаемом ТЗП в качестве связующего применен низкомолекулярный полимер «Стиросил» марки А, согласно ТУ 38.103453-99 его динамическая вязкость при температуре 25°C составляет 80П-120П. Это, с одной стороны, повышает адгезионную прочность между частицами наполнителя из микросфер-стеклянных марки МС-ВП-А9 группы 2÷3 и слюды молотой СМФ-125, и, с другой стороны, в комплексе - обеспечивает высокую термостойкость ТЗП.
Кроме того, применение в предлагаемом ТЗП в качестве разбавителя - компенсатора на основе подслоя П-11, согласно ТУ 38.303-04-06-90 представляющего собой раствор элементоорганических соединений в нефрасе (или в смеси уайт-спирит и нефрас), позволяет повысить адгезиционную прочность теплозащитного покрытия к поверхности изделия и компенсировать однородность состава покрытия в процессе его подготовки.
Использование в предлагаемом ТЗП двух грамм катализатора - отвердителя К-68 (согласно ТУ 38.303-04-05-90, состав, масс. %: активная добавка дибутилдикаприлат олова 2-3, этилсиликат 85-95, 3-аминопропилтриэтоксисилан 5-10) на 100 грамм массы теплозащитного покрытия ускоряет процесс отверждения (полимеризации) покрытия при комнатной температуре.
Увеличение или уменьшение количества вводимого катализатора - отвердителя К-68 на 100 г массы приведет к получению некачественного ТЗП и не обеспечит покрытию заданные теплофизические характеристики.
Сочетание компонентов предлагаемого ТЗП выбрано таким, чтобы были обеспечены теплофизические характеристики, представленные в таблице, и эксплуатационная надежность при заданных высоких температурах и в течение заданного срока эксплуатации.
Предлагаемое ТЗП готовится перемешиванием расчетного и взвешенного количества компонентов, исключая отвердитель катализатор К-68, до получения однородной массы в смесителе лопастного типа с частотой вращения при перемешивании от 50 до 150 об/мин. Перед применением в полученную смесь вводится расчетное количество бензина (нефраса С2-80/120) и расчетное количество отвердителя катализатора К-68 при непрерывном перемешивании.
Покрытие наносится или непосредственно на изделие, или в виде листов, приклеиваемых к нему в зависимости от конструктивных особенностей и условий эксплуатации.
После подготовки поверхности изделия и нанесения на нее адгезионного слоя на основе подслоя П-11 с помощью установки пневматического распыления, наносится предлагаемая композиция ТЗП с минимальной межслойной выдержкой до 10-15 мин до заданной толщины 2÷20 мм, в зависимости от назначения.
При этом давление подачи композиции в распылительную головку составляет 0,3÷0,4 МПа.
Выдержка покрытия производится при температуре 20°÷30°C в течение 24 часов, при температуре 50°÷60°C в течение 5 часов.
Теплофизические характеристики ТЗП в соответствии с формулой прототипа и результаты испытаний предлагаемой композиции ТЗП приведены в таблице.
Испытания с целью определения максимальной температуры эксплуатации проводились на имитаторах изделий в специальном термо-газодинамическом стенде типа СР-100.
Представленные в таблице теплофизические характеристики контролировались на типовых образцах испытанных на оборудовании, оттестированном по методикам в соответствии с ОСТ92-1404-90, ОСТ92-1403-90, ОСТ92-1459-77, ОСТ92-1459-77 и др.
Полученные результаты показывают, что предлагаемая композиция позволяет повысить максимальную температуру эксплуатации изделия до 1000°÷1100°C, снизить коэффициент температуропроводности до 0,62÷0,63 (а*103 м2/ч), увеличить теплоемкость до 0,45÷0,52 (ср, ккал/кг°C), обеспечить адгезионную прочность при заданных условиях эксплуатации.
Технология изготовления предлагаемой композиции ТЗП сокращает цикл его нанесения в 2÷3 раза, за счет уменьшения времени межслоевой выдержки и сушки, увеличивает эксплуатационную надежность изделий в условиях высоких температур.
название | год | авторы | номер документа |
---|---|---|---|
Состав для получения теплозащитного покрытия | 2017 |
|
RU2690814C2 |
Способ получения высокотемпературного теплозащитного покрытия | 2017 |
|
RU2686196C1 |
Материал "Вулкан-М" для наружной тепловой защиты летательного аппарата | 2020 |
|
RU2753760C1 |
РАДИАЦИОННО-ЗАЩИТНОЕ ПОКРЫТИЕ | 2023 |
|
RU2809332C1 |
СОСТАВ ДЛЯ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ | 2012 |
|
RU2527997C2 |
ТЕПЛОЗАЩИТНАЯ КОМПОЗИЦИЯ | 2009 |
|
RU2400506C1 |
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ И ИЗДЕЛИЕ, СОДЕРЖАЩЕЕ ПОКРЫТИЕ ИЗ НЕЕ | 2002 |
|
RU2226201C1 |
Композиционный защитный материал | 2022 |
|
RU2804285C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ВСПЕНИВАЮЩЕГО ОГНЕЗАЩИТНОГО ПОКРЫТИЯ | 2019 |
|
RU2740894C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2016 |
|
RU2628784C1 |
Изобретение относится к теплозащитному покрытию, предназначенному для защиты наружных поверхностей летательных аппаратов от аэродинамических и других видов нагрева при высоких температурах эксплуатации, и может быть использовано в ракетно-космической и авиационной промышленности. Теплозащитное покрытие включает, мас.%: полимер «Стиросил» марки А - 69,3, микросферы стеклянные марки МС-ВП-А9 группы 2÷3 - 11,9, слюду молотую СМФ-125 - 8,4, подслой П-11 - 10,4, где суммарное содержание компонентов без отвердителя-катализатора К-68 составляет 100 мас.% и отвердитель-катализатор в количестве 2 г на 100 г массы теплозащитного покрытия. Технический результат - увеличение максимальной температуры эксплуатации теплозащитного покрытия до 1000°÷1100°C, обеспечение коэффициента температупропроводности 0,62÷0,63 а*103 м2/с, увеличение адгезионной прочности между компонентами и ТЗП к поверхности изделия, увеличение теплоемкости до 0,45÷0,52 ккал/кг°с, повышение технологичности изготовления покрытия. 1 табл.
Теплозащитное покрытие, включающее в свой состав полимер, наполнитель и отвердитель, отличающееся тем, что в качестве полимера оно содержит низкомолекулярный полимер «Стиросил», представляющий собой вязкотекущую жидкость белого цвета, отверждающуюся при комнатной температуре, наполнители - в виде слюды молотой с массовой долей посторонних частиц - примесей не более 0,5% и микросфер стеклянных полых натриевых борсиликатного состава, отвердитель - катализатор холодного отверждения К-68 и разбавитель - компенсатор состава подслой П-11, при следующем соотношении компонентов, мас. %:
микросферы стеклянные марки
Суммарное содержание компонентов
ТЕПЛОЗАЩИТНЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2001 |
|
RU2220169C2 |
ТЕПЛОИЗОЛЯЦИОННЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2012 |
|
RU2558103C2 |
ТЕРМОСТОЙКАЯ ЭЛЕКТРОИЗОЛЯЦИОННАЯ КОМПОЗИЦИЯ НА ОСНОВЕ ПОЛИДИМЕТИЛВИНИЛСИЛОКСАНОВОГО КАУЧУКА | 2010 |
|
RU2445329C1 |
RU 2013134442 А, 27.01.2015 | |||
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ТЕРМОЗАЩИТНОГО ПОКРЫТИЯ | 2013 |
|
RU2536505C2 |
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
JP 59071362 A, 23.04.1984. |
Авторы
Даты
2017-09-20—Публикация
2015-02-18—Подача