Изобретение относится к способу получения композиционных полимерных материалов, которые могут быть использованы для изготовления уплотнительных деталей.
Одним из перспективных методов структурной модификации полимеров является использование слоистых силикатов в качестве наполнителей. Флогопит, используемый в материале в качестве наполнителя, относится к слоистым силикатам (слюдам). При этом значительно улучшаются механические, теплофизические, барьерные и другие функциональные свойства полимеров.
Однако известны проблемные задачи при совмещении флогопита с политетрафторэтиленом (ПТФЭ) из-за низкой адгезии ПТФЭ. В настоящее время ведутся поиски новых технологических приемов создания полимерных композиционных материалов на его основе. К числу таких приемов совмещения относится, например, предварительная механическая активация наполнителей и внешнее энергетическое воздействие, в частности ультразвуковая модификация.
Известен способ получения антифрикционной композиции на основе политетрафторэтилена и ультрадисперсных неорганических наполнителей (см. RU №2178801, кл. C08J 5/16, C08L 27/18, B29B 13/10, опубл. 27.01.2002), заключающийся в смешении компонентов композиции в лопастном смесителе. При этом ультрадисперсный наполнитель дополнительно подвергают активации в планетарной мельнице АГО-2 с частотой вращения водила 730 об/мин и частотой вращения барабанов 1780 об/мин в течение 1-3 мин.
Недостатком известного способа является получение композиций с неравномерным распределением наполнителя, наличием в композиции включений относительно крупных размеров за счет агломерации ультрадисперсных частиц наполнителя, что снижает его структурную активность по отношению к полимерной матрице и ведет к снижению прочностных характеристик материала.
Известен способ изготовления изделий из ПТФЭ и полимерного композиционного материала (ПКМ) на его основе (см. Д.Д. Чегодаев, З.К. Наумова, И.С. Дунаевская. Фторопласты. Л.: Изд-во Химической литературы, 1960), при котором порошок ПТФЭ засыпают в пресс-форму и равномерно распределяют по всему объему, прессуют при комнатной температуре под давлением 35 МПа, спекают в свободном состоянии при температуре 360-380°C и охлаждают вместе с печью.
Основной недостаток известного способа заключается в том, что получаемые изделия и заготовки имеют недостаточный уровень механической прочности, высокий и нестабильный уровень усадки.
Известен способ изготовления изделий из композиционных материалов на основе ПТФЭ (см. RU №2324708, кл. C08J 5/14, C08J 5/16, опубл. 20.05.2008), при котором прессование композиционной смеси осуществляется при непрерывном воздействии энергии ультразвуковых колебаний частотой 20±3 кГц и амплитудой колебаний в пределах 8÷12 мкм в течение 2÷3 минут. Предварительно проводят смешивание порошков смеси в смесителе с частотой вращения ножей не менее 2800 мин-1. Холодное прессование композиции производят в закрытой пресс-форме под давлением 50±5 МПа. Отпрессованную заготовку нагревают в печи до температуры 360±5°C со скоростью 1,5-2,0 град/мин. Затем выдерживают при этой температуре 8÷9 мин на 1 мм толщины стенки изделия и охлаждают до температуры 327°C со скоростью 0,3-0,4 град/мин и от 327°C до комнатной температуры вместе с печью.
К недостаткам известных решений следует отнести то, что при смешении в лопастном смесителе невозможно достичь достаточно однородного распределения компонентов в полимерной матрице. Кроме того, сложность технологического процесса, заключающаяся в использовании специально изготовленного волновода-инструмента для передачи энергии ультразвуковых колебаний прессуемой композиции, представляющего собой полуволновой стержень с заданным законом изменения площади поперечного сечения и выполненного заодно с прессующим пуансоном.
Задачей, на решение которой направлено заявленное изобретение, является получение однородного по составу и структуре полимерного композиционного материала.
Технический эффект, получаемый при решении поставленной задачи, выражается в улучшении прочностных свойств полимерного композиционного материала, что позволит использовать изделия на его основе в качестве уплотнительных деталей в машинах и оборудовании.
Для решения поставленной задачи способ получения полимерных композиций на основе политетрафторэтилена, включающий предварительное диспергирование минерального наполнителя флогопита и шпинели магния в планетарной мельнице в течение 2 мин, последующее их смешивание с полимером в лопастном смесителе при частоте оборота лопастей 3000 об/мин, холодное прессование изделий с последующим свободным спеканием при температуре 375-380°С и охлаждение до 200°С со скоростью 0,03°С/с, отличается тем, что получаемая полимерная смесь дополнительно подвергается ультразвуковой обработке в среде этилового спирта при объемной мощности ультразвука 3000 Вт в течение 15 мин.
Влияние ультразвуковой модификации на деформационно-прочностные характеристики композитов предположительно объясняется кристаллографическими свойствами самих наполнителей, имеющих минеральную природу. Ультразвуковые колебания, в первую очередь, оказывают влияние в местах дефектов кристаллической решетки и других структурных несовершенств, сообщая им акустическую энергию. В результате этого происходит локальный нагрев материала вокруг дефектных частиц и увеличивается молекулярная подвижность. Известно, что в применении ультразвуковой обработки в твердофазной технологии синтеза полимерных композитов показано повышение их прочностных характеристик после ультразвукового воздействия вследствие равномерного распределения частиц наполнителя в объеме полимера (см. Еремин Е.Н., Негров Д.А. Структурная модификация дисперсно-наполненного политетрафторэтилена ультразвуковым воздействием при синтезе композиционного материала // Физическая мезомеханика. 2013. - Т 16. - №5. - С. 95-101).
Сопоставительный анализ признаков заявленного решения с признаками аналогов свидетельствует о соответствии заявленного решения критерию «новизна».
Признаки отличительной части формулы изобретения обеспечивают улучшение характеристик относительного удлинения полимерного композиционного материала.
ПТФЭ - промышленный порошкообразный продукт марки ПН-90 (ГОСТ 10007-80) с молекулярной массой 100-500 тыс., степенью кристалличности до спекания 95-98%, после спекания 50-70%, плотностью 2150-2260 кг/м3, температурой плавления 327°С.
Наполнитель - флогопит Эмельджакского месторождения Алданского района Республики Саха (Якутия), представляет собой минерал подкласса слоистых силикатов, магнезиальную маложелезистую слюду общей формулы KMg3[Si3AlO10](F, OH)2. Флогопит относится к группе слоистых алюмосиликатов, особенностью строения которых является связность и непрерывность основных структурных элементов [AlSi3O10].
Шпинель магния (полученная механохимическим синтезом) MgO⋅Al2O3. Особенностью наполнителя являются высокая дисперсность (размер частиц порядка 70-80 нм) и развитая удельная поверхность (170 м2/г), плотность 3580 кг/м3, температура плавления 2135°С.
Для повышения структурной активности и улучшения адгезионного взаимодействия на границе раздела фаз «полимер-наполнитель» флогопит с наношпинелью магния диспергировали в планетарной мельнице типа «Активатор 2S», в течение 2 мин. Предварительная обработка дисперсного наполнителя в планетарной мельнице ведет к механической активации, повышающей его структурную активность, и усреднению дисперсного состава наполнителя. Предварительная механоактивация слоистых силикатов способствует не только диспергированию и повышению реакционной способности поверхности твердых частиц, но и разрыхлению слоев и частичному разделению частиц на отдельные силикатные пластинки, увеличению удельной поверхности для взаимодействия с макромолекулами полимера.
Совмещение ПТФЭ с механоактивированным флогопитом и с наношпинелью магния проводили в лопастном смесителе при скорости вращения лопастей 3000 об/мин: для этого поместили расчетную массу полимера и активированного наполнителя в высокооборотный смеситель, смешивали до получения однородной массы.
Ультразвуковое модифицирование проводилось воздействием ультразвукового диспергатора типа ИЛ100-6/3 на компоненты смеси в среде этилового спирта при объемной мощности ультразвука 3000 Вт в течение 15 мин. После ультразвуковой обработки полученную суспензию отфильтровали. Полученный осадок сушили при 80-100°С в течение 3 ч в сушильном шкафу. Из композиции изготавливаются заготовки требуемой формы по технологии холодного прессования с последующим свободным спеканием при температуре 375-380°С (из расчета время выдержки 0,3 ч на 10-3 м толщины образца). Полученные изделия охлаждают до 200°С со скоростью 0,03°С/с, далее охлаждают до комнатной температуры вместе с печью.
Пример
98,0 г ПТФЭ и 1,0 г механоактивированного флогопита с 1 г наношпинели магния смешивают в лопастном смесителе до получения однородной массы и проводят ультразвуковую обработку в среде этилового спирта. Затем композицию помещают в пресс-форму и прессуют изделия требуемой формы, далее спекают при 375-380°С (из расчета время выдержки 0,3 ч на 10-3 м толщины образца). Полученные изделия охлаждают в печи до 200°C со скоростью 0,03°С/с с последующим свободным охлаждением до комнатной температуры. Охлаждение спеченных изделий проводят непосредственно в печи.
Остальные примеры получения композиционного материала заявляемого состава приведены в таблице.
Из приведенных данных следует, что при изготовлении образцов по заявляемому способу с использованием УЗ-обработки предел прочности повышается до 21% в зависимости от содержания наполнителей, относительное удлинение увеличивается до 18%. При этом массовый износ повышается, но значения коэффициента трения снижаются.
Физико-механические свойства заявляемого антифрикционного материала определяли на стандартных образцах (ГОСТ 11262-80). Относительное удлинение (εр) и прочность при растяжении (σр) определяли на испытательной машине «AGS-J Autograph» (Shimadzu, Япония) при комнатной температуре и скорости перемещения подвижных захватов 100 мм/мин на лопатках (количество образцов на одно испытание - 5).
Скорость массового изнашивания и коэффициент трения определяли на машине трения UMT-2 (CETR, США), схема «палец-диск» (образец - цилиндр с диаметром 10 мм, высотой 20 мм, контртело-стальной диск из стали марки 40Х с твердостью 48-52 HRC и шероховатостью 0,06-0,07 мкм, нагрузка - 160 Н, скорость скольжения - 0,2 м/с).
Использование заявляемого изобретения, реализуемого на стандартном оборудовании, позволяет снизить скорость массового изнашивания до 370 раз и повышение относительного удлинения на 36%. Применение полимерной композиции заявляемого состава позволит повысить ресурс работы изделий в технике и оборудованиях и расширить их область применения.
Таблица примеров
активированный флогопит
без УЗ-обработки
0,5
1
2
активированный флогопит с наношпинелью магния
без УЗ-обработки
0,5
0,5
1
0,1
1
0,5
2
0,1
2
0,5
активированный флогопит с наношпинелью магния
с УЗ-обработкой
0,5
0,5
1
0,1
1
0,5
2
0,1
2
0,5
название | год | авторы | номер документа |
---|---|---|---|
Полимерный материал триботехнического назначения на основе политетрафторэтилена, механоактивированных каолина и шпинеля магния | 2019 |
|
RU2699109C1 |
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ТРИБОТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ | 2011 |
|
RU2484107C1 |
КОМПОЗИЦИОННЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ ТРИБОТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ | 2006 |
|
RU2319713C1 |
БАЗАЛЬТОФТОРОПЛАСТОВЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ТРИБОТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ | 2013 |
|
RU2552744C2 |
АНТИФРИКЦИОННАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ | 2010 |
|
RU2460742C2 |
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ТРИБОТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ | 2007 |
|
RU2354667C1 |
ПОЛИМЕРНЫЙ МАТЕРИАЛ ТРИБОТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ НА ОСНОВЕ ПОЛИТЕТРАФТОРЭТИЛЕНА | 2018 |
|
RU2675520C1 |
Полимерный материал триботехнического назначения | 2017 |
|
RU2664129C1 |
АНТИФРИКЦИОННАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ | 2005 |
|
RU2281960C1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОЙ КОМПОЗИЦИИ | 2009 |
|
RU2421480C2 |
Изобретение относится к способу получения композиционных полимерных материалов, которые могут быть использованы для изготовления уплотнительных деталей. Способ получения полимерных композиций на основе политетрафторэтилена включает предварительное диспергирование минерального наполнителя флогопита и шпинели магния в планетарной мельнице. Далее осуществляют последующую ультразвуковую обработку в среде этилового спирта при объемной мощности ультразвука 3000 Вт в течение 15 мин. Затем осуществляют изготовление изделий путем холодного прессования с последующим свободным спеканием и охлаждением. Использование изобретения позволит снизить скорость массового изнашивания композиционного материала до 370 раз и повысить относительное удлинение на 36%, а изделий на его основе -ресурс работы машин и оборудования. 1 табл., 1 пр.
Способ получения полимерного композиционного материала на основе политетрафторэтилена, включающий предварительное диспергирование в планетарной мельнице флогопита и шпинеля магния, последующее смешение указанных наполнителей с полиэтилентерефталатом в лопастном смесителе, последующую ультразвуковую обработку полученной смеси в среде этилового спирта при объемной мощности ультразвука 3000 Вт в течение 15 мин, изготовление изделий путем холодного прессования с последующим свободным спеканием и охлаждением.
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ПОЛИТЕТРАФТОРЭТИЛЕНА | 2006 |
|
RU2324708C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ПОЛИТЕТРАФТОРЭТИЛЕНА И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ | 2013 |
|
RU2546161C2 |
СПОСОБ ПОЛУЧЕНИЯ АНТИФРИКЦИОННОЙ КОМПОЗИЦИИ | 1997 |
|
RU2178801C2 |
"Способ "Бусико" изготовления антифрикционного материала" | 1990 |
|
SU1723084A1 |
Антифрикционный композиционный материал | 1991 |
|
SU1812190A1 |
Е.Н.ЕРЕМИН и др | |||
Структурная модификация дисперсно-наполненного политетрафторэтилена ультразвуковым воздействием при синтезе композиционного материала, "Физическая мезомеханика", N16, 2013 г., с.95-101. |
Авторы
Даты
2017-10-10—Публикация
2016-07-18—Подача