Способ измерения характеристик аморфных ферромагнитных микропроводов Российский патент 2017 года по МПК G01R33/18 

Описание патента на изобретение RU2632996C1

Аморфные ферромагнитные микропровода (АФМ) в тонкой стеклянной оболочке являются новым перспективным магнитным композиционным материалом и могут найти широкое применение в устройствах измерительной техники. Для их практического использования необходимо знание таких физических характеристик АФМ, как намагниченность насыщения, константа магнитострикции, амплитуда закалочных напряжений и некоторых других. Измерение этих характеристик в силу малости диаметра АФМ является сложной технической задачей и требует разработки специальных методов регистрации. Данное изобретение направлено на развитие способа измерения магнитных характеристик АФМ, пригодных для применения в измерительной технике.

Известен способ для измерения характеристик АФМ (патент на полезную модель РФ №84587, приоритет 10.12.2008), в соответствии с которым могут быть определены перечисленные выше основные физические характеристики в случае АФМ с положительной константой магнитострикции.

В известном способе измерения проводят на выбранном участке АФМ в n точках. Координата точки измерения АФМ определяется положением миниатюрной катушки зарождения домена. В окрестности каждой точки измерения с помощью соленоида вдоль оси АФМ формируется однородное ускоряющее поле Hz, противоположно направленное намагниченности АФМ. Дополнительно, с помощью катушки зарождения домена, в каждой точке измерения формируется локальное линейно-нарастающее магнитное поле, сонаправленное с Hz. Это поле нарастает внутри катушки зарождения домена до момента появления в АФМ магнитного домена обратного знака, ограниченного двумя доменными границами. Доменные границы под действием ускоряющего поля Н2 с большой скоростью двигаются вдоль АФМ, перемагничивая его. Момент появления магнитного домена обратного знака фиксируется по появлению импульсов ЭДС, возникающих в приемных катушках при движении доменной границы.

Значение магнитного поля, создаваемого катушкой зарождения домена в момент появления домена обратного знака, носит название магнитного поля зарождения доменной границы и обозначается Hn. Величина поля зарождения доменной границы Нn измеряется при различных ускоряющих полях Hz и подвешиваемых к АФМ грузах массой m и является одной из измеряемых величин. Из совокупности измеренных параметров Hz, m и Hn, используя ряд модельных представлений, получают такие физические характеристики АФМ, как отношение намагниченности насыщения Ms к константе магнитострикции λs и амплитуду закалочных напряжений (σzzϕϕ). Указанные характеристики определяются в зависимости от координаты Xi вдоль оси АФМ.

Ограничение известного способа заключается в том, что данный метод пригоден только для исследования микропроводов с положительной константой магнитострикции, в которых перемагничивание АФМ происходит скачком. Кроме того, получаемые значения характеристик могут существенно изменяться от точки к точке из-за наличия дефектов АФМ и не могут характеризовать АФМ в целом.

Наиболее близким по технической сущности к заявляемому решению является способ измерения константы магнитострикции АФМ методом малоуглового вращения вектора намагниченности (МВВН), опубликованный в S. Konishi, S. Sugatani and Y. Sakurai, IEEE Trans. Magn. MAG 5, 14 (1969), принятый за прототип. Данный метод изначально был разработан для измерений магнитострикции насыщения аморфных сплавов в виде лент (представлен в A. Hernando, М. Vazquez, V. Madurga, Е. Ascasibar and M. Liniers, J. Magn. Magn. Mater. 61, 39 (1986). 3) и затем расширен для измерений магнитострикции АФМ (V. Zhukova, J.M. Blanco, A. Zhukov, J. Gonzalez, J. Phys. D: Appl. Phys. 34, 113 (2001)).

В данном способе исследуемый АФМ жестко закрепляют с одного конца, а к другому концу прикладывают за счет подвешиваемых грузов начальное растягивающее механическое напряжение σ0. С помощью соленоида создают некоторое начальное постоянное магнитное поле H0z, направленное вдоль оси АФМ по величине больше затравочного поля анизотропии На (намагничивающее образец до насыщения). Через АФМ пропускают синусоидальный электрический ток I амплитудой I0, частотой ƒ в пределах 5…10 кГц. Амплитуду тока I0 выбирают таким образом, чтобы его прохождение через АФМ не приводило к существенному нагреванию последнего. Обычно величина этого тока не должна превышать 10…30 мА. Протекающий по АФМ ток I частотой ƒ создает в нем переменное циркулярное магнитное поле Hx, перпендикулярное оси микропровода, которое приводит к осцилляциям вектора намагниченности Ms относительно его оси на малый угол θ. При этом компонента намагниченности Msz, совпадающая с направлением оси микропровода, изменяется во времени с удвоенной частотой 2ƒ. Из-за изменения во времени с частотой 2ƒ компоненты намагниченности насыщения Msz в навитой на АФМ измерительной катушке возникает ЭДС с частотой, равной также 2ƒ. Этот сигнал ЭДС усиливается и измеряется с помощью вольтметра.

В рассматриваемом существующем способе определения λs предполагается неизменность угла θ - угла отклонения вектора намагниченности образца Ms от оси микропровода. Зафиксировать отклонение вектора намагниченности на постоянный угол θ можно, добиваясь неизменности величины ЭДС в измерительной катушке, контролируя величину ЭДС с помощью вольтметра. Фиксация угла θ достигается совместным изменением начального поля соленоида H0z (на величину dHz) и начального напряжения σ0 (на величину dσ).

В общем случае угол θ определяется следующим выражением [2]:

которое можно переписать в более удобном для анализа виде:

Дифференцируя Hz по σ и учитывая, что в основе метода лежат условия θ=const и Hx=const, получаем:

В процессе эксперимента при заданном значении угла θ путем варьирования магнитного поля соленоида на величину dHz (относительно величины H0z) и растягивающего напряжения на величину dσ (относительно σ0) определяют функцию зависимости Hz(H0z±dHz) от σ(σ0+dσ), по наклону которой рассчитывают λs, основываясь на формуле (3). Следует отметить, что в случае положительной магнитострикции (λs>0) тангенс угла наклона прямой к оси σ будет отрицателен, а в случае λs<0 - положителен.

Недостатком указанного способа МВВН определения λs являются его ограниченные функциональные возможности, заключающиеся в необходимости измерения независимым способом намагниченности насыщения образца Ms.

Технический результат состоит в расширении функциональных возможностей способа МВВН по сравнению с прототипом, а именно, в определении намагниченности насыщения и константы магнитострикции в одном цикле измерений, а также дополнительного определения внутренних закалочных напряжений АФМ, которые являются важной характеристикой, определяющей область технических приложений АФМ.

Технический результат достигается следующим образом.

Способ измерения характеристик аморфных ферромагнитных микропроводов (АФМ), заключающийся в воздействии постоянного продольного магнитного поля Н по величине больше затравочного поля анизотропии На, воздействии растягивающих механических напряжений σ1 и σ2, за счет подвешиваемых грузов, пропускании через исследуемый АФМ переменного тока частоты ƒ амплитудой I0 и контроля амплитуды сигнала ЭДС на удвоенной частоте 2ƒ в измерительной катушке Е, возникающего при осцилляциях вектора намагниченности Ms исследуемого АФМ под воздействием циркулярного магнитного поля переменного тока и последующего вычисления константы магнитострикции λs исследуемого АФМ. Проводят измерение и построение изменения амплитуды сигнала ЭДС на удвоенной частоте 2ƒ в измерительной катушке Е в зависимости от приложенного внешнего магнитного поля Н, при этом измерения проводят для нескольких значений механических напряжений σ1…σn (где n≥2), по построенным зависимостям при выбранном фиксированном значении ЭДС E012 определяют значения величин магнитных полей H01, Н02 для пары различных механических напряжений σ1, σ2, затем при фиксированном значении поля Н034, определяют пару значений ЭДС Е03, Е04 для той же пары механических напряжений σ1, σ2, после чего проводят вычисление затравочного поля анизотропии На, закалочных напряжений Δσ, намагниченности насыщения Ms и константы магнитострикции λs по формулам:

где:

N - число витков измерительной катушки,

с - скорость света,

ω=2πƒ - круговая частота переменного тока,

σ0=100 МПа - характерное закалочное напряжение.

В предлагаемом способе используют модельное выражение для сигнала ЭДС удвоенной частоты, наводимого в измерительной катушке при осцилляции вектора намагниченности Ms относительно оси АФМ на малый угол θ под действием переменного тока I частотой ƒ и амплитудой I0, I(t)=I0sin(ωt), где ω=2πƒ - круговая частота. Исследуемый АФМ жестко закрепляют с одного конца, а к другому концу прикладывают за счет подвешиваемых грузов начальное растягивающее механическое напряжение σ0. С помощью соленоида создают некоторое начальное постоянное магнитное поле H0z, направленное вдоль оси АФМ, намагничивающее образец АФМ до насыщения. При этом величину внешнего магнитного поля Н выбирают в диапазоне от затравочного поля анизотропии На (единицы Эрстед) до значений полей, значительно превышающих На (десятки Эрстед, где еще детектируется сигнал ЭДС в измеряемой катушке).

Изобретение поясняется фигурами, где на Фиг. 1 представлены рассчитанные в соответствии с выражением (5) зависимости амплитуды ЭДС от внешнего магнитного поля (E2ω(H0z)) для АФМ на основе железа с положительной константой магнитострикции для двух приложенных механических напряжений σ1, σ2. Дополнительные построения приведены для пояснения способа определения параметров АФМ, на Фиг. 2 представлен вариант схемы измерительной системы, где 1 - АФМ, 2 - измерительная катушка, 3 - источник переменного тока частоты ƒ амплитудой I0, 4 - груз, создающий растягивающее механическое напряжение, на Фиг. 3 представлены экспериментальные кривые (шумовые кривые) малоуглового вращения вектора намагниченности для АФМ на основе железа с положительной константой магнитострикции для трех различных грузов (эквивалентных трем растягивающим механическим напряжениям) и соответствующие теоретические кривые (сплошные линии).

В работе S. Gudoshnikov, М. Churyukanova, S. Kaloshkin, A. Zhukov, V. Zhukova, and N.A. Usov, J. Magn. Magn. Mater. 387, 53 (2015) было показано, что осцилляции вектора намагниченности для АФМ с отрицательной константой магнитострикции вызывают сигнал ЭДС удвоенной частоты 2ω в измерительной катушке, в соответствии модельным с выражением:

Здесь Ms - намагниченность насыщения АФМ, N - число витков измерительной катушки, ω - круговая частота переменного тока, I0 - амплитуда переменного тока, с - скорость света, (i,j=ρ,ϕ,z) - относительные компоненты тензора закалочных напряжений, - относительная компонента внешнего растягивающего напряжения, σ0=100 МПа - характерное закалочное напряжение, Ha=2Ke/Ms - затравочное поле анизотропии АФМ и Ke - константа анизотропии АФМ, .

Из выражения (4) следует, что эффективное поле анизотропии АФМ задается как . Величина Heƒ,a пропорциональна разности приведенных компонент внутренних закалочных напряжений, Δσ=(σzzϕϕ)/σ0. Кроме того, Heƒ,a увеличивается с увеличением внешних механических напряжений, .

Выражение (4) получено для АФМ с положительной константой магнитострикции. Можно показать, что для АФМ с отрицательной константой магнитострикции в аналогичном выражении для сигнала ЭДС будет отличаться только знаком в знаменателе перед внешним магнитным полем H0z. В общем случае, для АФМ с положительной и отрицательной константой магнитострикции, амплитуда сигнала ЭДС второй гармоники в выражении (4) может быть записана в виде:

Выражение (5) описывает взаимосвязь параметров АФМ (На, Δσ, Ms), внешних воздействий (H0z, I0, ω, σzz) и приемно-измерительной части (N, E) и может быть использовано для определения искомых параметров АФМ.

1. Определение затравочного поля анизотропии АФМ На

При определении На выбирают некоторое фиксированное значение ЭДС E, (например, Е012, как показано на Фиг. 1) и для него определяют соответствующие величины магнитных полей (H01, H02) и пару различных растягивающих механических напряжений (σ1, σ2), при которых E=E01 (точки 1 и 2). Тогда в соответствии с (5) затравочное поле анизотропии может быть найдено из выражения:

Если учесть, что Ha=2Ke/Ms и , то выражение для константы магнитострикции λs совпадает с выражением (3), используемом в прототипе.

2. Определение величины приведенных закалочных напряжений Δσ

При определении Δσ выбирают некоторое фиксированное значение магнитного поля, больше поля На (например, H034, как показано на Фиг. 1), для него определяют соответствующие значения величин ЭДС E03, E04 (точки 3, 4) для той же пары механических напряжений и находят отношение Е0304. Тогда в соответствии с (5) величина приведенных закалочных напряжений АФМ может быть найдена из выражения:

3. Определение намагниченности насыщения АФМ, Ms

После определения параметров На и Δσ, величина Ms может быть определена из выражения (5) прямой подстановкой остальных параметров, известных из эксперимента. Например, для точки (1) величина Ms будет определяться как:

4. Определение константы магнитострикции АФМ λs.

После нахождения величин На и Ms, константа магнитострикции может быть определена из выражения:

где σ0=100 МПа=109 ед. СГС.

Таким образом, использование модельного выражения для сигнала ЭДС удвоенной частоты, наводимого в измерительной катушке, позволяет установить связь между основными параметрами АФМ.

Сущность предлагаемого способа, направленного на определение внутренних закалочных напряжений Δσ, намагниченности насыщения Ms и константы магнитострикции λs АФМ в одном цикле измерений, заключается в сопоставлении экспериментальных данных сигналов ЭДС в измерительной катушке с модельным выражением (5), учитывающим природу магнитной анизотропии АФМ, связанную с распределением остаточных закалочных напряжений в объеме ферромагнитной жилы и стеклянной оболочки.

Отличие предлагаемого способа от прототипа состоит в том, что измерения проводят не при фиксированном угле θ, определяющем величину отклонения вектора намагниченности образца Ms от оси микропровода, а при различных значениях углах θ в зависимости от приложенного внешнего магнитного поля Н. Для решения поставленной задачи проводят измерение и построение зависимости сигнала ЭДС в измерительной катушке на удвоенной частоте 2ƒ в зависимости от изменяющегося приложенного внешнего магнитного поля Н. При этом измерения проводят для нескольких значений механических напряжений σ1…σn (где n≥2). По построенным зависимостям при фиксированном значении ЭДС определяют значение величины магнитных полей для пары различных механических напряжений, затем при фиксированном значении поля определяют пару значений ЭДС для той же пары механических напряжений, после чего проводят вычисление затравочного поля анизотропии На, закалочных напряжений Δσ, намагниченности насыщения Ms и константы магнитострикции λs по формулам (5)-(8).

Предлагаемый способ может быть осуществлен с помощью измерительной системы, структурная схема которой приведена на фиг. 2. Как и в случае прототипа, в предлагаемом способе исследуемый АФМ жестко закрепляют с одного конца, а к другому концу с помощью груза прикладывают начальное растягивающее напряжение σ0. С помощью соленоида создают некоторое начальное магнитное поле H0z, направленное вдоль оси АФМ, намагничивающее образец АФМ до насыщения. Через АФМ пропускаются синусоидальный электрический ток I частотой ƒ в пределах 5…10 кГц. Из-за изменения во времени с частотой 2ƒ компоненты намагниченности насыщения Msz, в измерительной катушке возникает ЭДС с частотой, равной также 2ƒ. Этот сигнал ЭДС усиливают и измеряют с помощью вольтметра.

Затем проводят несколько циклов измерений. В отличие от прототипа при измерениях к образцу АФМ прикладывают фиксированное растягивающее напряжение и проводят запись величины амплитуды сигнала ЭДС на удвоенной частоте в зависимости от изменяющегося с малым шагом dH прикладываемого магнитного поля H0z в диапазоне от затравочного поля анизотропии На (единицы Эрстед) до значений полей >> На (десятки Эрстед, где еще присутствует сигнал в измерительной катушке).

Для определения основных параметров АФМ необходимо провести минимум два измерения с разными растягивающими напряжениями. Затем из экспериментальных данных в соответствии с выражениями (5)-(8) определить значения На, Δσ и Ms. В качестве примера на фиг. 3 приведены экспериментальные кривые для АФМ на основе железа для трех различных грузов и соответствующие теоретические кривые, которые хорошо согласуются с экспериментальными данными.

Таким образом показано, что полученное модельное выражение для сигнала ЭДС на удвоенной частоте, наводимого в измерительной катушке, хорошо описывает экспериментальные кривые для АФМ при воздействии внешнего продольного магнитного поля и фиксированных приложенных растягивающих механических напряжениях. Модельные кривые можно сравнить с экспериментальными зависимостями и определить область магнитных полей, соответствующую применимости данной модели. При этом полученные экспериментальные данные позволяют определить в одном цикле измерений затравочное поле анизотропии На, амплитуду закалочных напряжений Δσ, намагниченность насыщения Ms и константу магнитострикции λs, являющиеся важнейшими характеристиками АФМ.

Знание указанных характеристик позволит судить о качестве исследуемых АФМ и возможности их использования при создании высокочувствительных магнитных датчиков на основе эффекта гигантского магнитного импеданса, конструировании стресс-чувствительных сенсоров и композитных стресс-чувствительных материалов, а также разработке однобитовых и многобитовых миниатюрных идентификационных меток, характеризующихся повышенной скрытностью и низкой стоимостью.

Похожие патенты RU2632996C1

название год авторы номер документа
Датчик измерения механических деформаций 2016
  • Гудошников Сергей Александрович
  • Попова Анастасия Владимировна
  • Фатеев Владимир Михайлович
  • Игнатов Андрей Сергеевич
  • Тарасов Вадим Петрович
  • Гореликов Евгений Сергеевич
  • Криволапова Ольга Николаевна
RU2654827C1
Датчик измерения механических деформаций 2017
  • Тарасов Вадим Петрович
  • Гореликов Евгений Сергеевич
  • Криволапова Ольга Николаевна
  • Хохлова Оксана Викторовна
  • Игнатов Андрей Сергеевич
  • Гудошников Сергей Александрович
  • Попова Анастасия Владимировна
  • Фатеев Владимир Михайлович
RU2653563C1
Способ определения петель гистерезиса аморфных ферромагнитных микропроводов на основе железа 2023
  • Гудошников Сергей Александрович
  • Данилов Георгий Егорович
  • Гребенщиков Юрий Борисович
  • Одинцов Владимир Иванович
RU2814644C1
ДАТЧИК ИЗМЕРЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ 2013
  • Гудошников Сергей Александрович
  • Любимов Борис Яковлевич
  • Усов Николай Александрович
  • Игнатов Андрей Сергеевич
  • Тарасов Вадим Петрович
  • Криволапова Ольга Николаевна
RU2552124C1
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ УПРУГИХ НАПРЯЖЕНИЙ В ФЕРРИТОВЫХ ИЗДЕЛИЯХ 2000
  • Суржиков А.П.
  • Притулов А.М.
  • Никифоренко И.В.
  • Гынгазов С.А.
RU2184371C2
Датчик измерения механических напряжений на основе микропроводов с положительной магнитострикцией 2020
  • Аксенов Олег Игоревич
  • Аксенов Артем Андреевич
  • Аронин Александр Семенович
RU2746765C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СЛАБЫХ МАГНИТНЫХ ПОЛЕЙ НА ОСНОВЕ ЭФФЕКТА ГИГАНТСКОГО МАГНИТНОГО ИМПЕДАНСА 2018
  • Турков Владимир Евгеньевич
  • Жукова Светлана Александровна
  • Обижаев Денис Юрьевич
  • Баранов Александр Александрович
  • Гудошников Сергей Александрович
  • Заруцкий Александр Анатольевич
RU2680165C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СЛАБЫХ МАГНИТНЫХ ПОЛЕЙ (ВАРИАНТЫ) 1997
  • Антонов А.С.
  • Лагарьков А.Н.
  • Якубов И.Т.
  • Морозов И.Н.
RU2118834C1
СПОСОБ ИССЛЕДОВАНИЯ ДИНАМИКИ НАМАГНИЧИВАНИЯ ФЕРРОМАГНЕТИКА, БЫСТРО ВВОДИМОГО В НАСЫЩАЮЩЕЕ СВЕРХСИЛЬНОЕ МАГНИТНОЕ ПОЛЕ 2012
  • Меньших Олег Фёдорович
RU2488839C1
Индуктивно-частотный способ измерения константы магнитострикции тонких магнитных пленок с цилиндрическими доменами 1987
  • Гришин Александр Михайлович
  • Дроботько Валерий Федорович
  • Усов Николай Николаевич
  • Шаповалов Владимир Антонович
SU1501158A1

Иллюстрации к изобретению RU 2 632 996 C1

Реферат патента 2017 года Способ измерения характеристик аморфных ферромагнитных микропроводов

Изобретение относится к аморфным ферромагнитным микропроводам (АФМ) в тонкой стеклянной оболочке и используется в устройствах измерительной техники. Сущность изобретения заключается в том, что в способе измерения характеристик аморфных ферромагнитных микропроводов (АФМ) исследуемый АФМ жестко закрепляют с одного конца, а к другому концу с помощью груза прикладывают начальное растягивающее напряжение σ0. С помощью соленоида создают некоторое начальное магнитное поле H0z, направленное вдоль оси АФМ, намагничивающее образец АФМ до насыщения. Через АФМ пропускаются синусоидальный электрический ток I частотой в пределах 5…10 кГц. Проводят измерение и построение зависимости сигнала ЭДС в измерительной катушке на удвоенной частоте в зависимости от изменяющегося приложенного внешнего магнитного поля Н. При этом измерения проводят для нескольких значений механических напряжений σ1…σn (где n≥2). По построенным зависимостям при фиксированном значении ЭДС определяют значение величины магнитных полей для пары различных механических напряжений, затем при фиксированном значении поля определяют пару значений ЭДС для той же пары механических напряжений, после чего проводят вычисление затравочного поля анизотропии Ha, закалочных напряжений Δσ, намагниченности насыщения Ms и константы магнитострикции λs. Технический результат – определение намагниченности насыщения и константы магнитострикции в одном цикле измерений, а также дополнительного определения внутренних закалочных напряжений АФМ. 3 ил.

Формула изобретения RU 2 632 996 C1

Способ измерения характеристик аморфных ферромагнитных микропроводов (АФМ), заключающийся в воздействии постоянного продольного магнитного поля Н по величине больше затравочного поля анизотропии На, воздействии растягивающих механических напряжений σ1 и σ2, за счет подвешиваемых грузов, пропускании через исследуемый АФМ переменного тока частоты ƒ амплитудой I0 и контроля амплитуды сигнала ЭДС на удвоенной частоте 2ƒ в измерительной катушке Е, возникающего при осцилляциях вектора намагниченности Ms исследуемого АФМ под воздействием циркулярного магнитного поля переменного тока и последующего вычисления константы магнитострикции λs исследуемого АФМ, отличающийся тем, что проводят измерение и построение изменения амплитуды сигнала ЭДС на удвоенной частоте 2ƒ в измерительной катушке E в зависимости от приложенного внешнего магнитного поля Н, при этом измерения проводят для нескольких значений механических напряжений σ1…σn (где n≥2), по построенным зависимостям при выбранном фиксированном значении ЭДС E012 определяют значения величин магнитных полей H01, Н02 для пары различных механических напряжений σ1, σ2, затем при фиксированном значении поля Н034, определяют пару значений ЭДС Е03, Е04 для той же пары механических напряжений σ1, σ2, после чего проводят вычисление затравочного поля анизотропии На, закалочных напряжений Δσ, намагниченности насыщения Ms и константы магнитострикции λs по формулам:

где:

N - число витков измерительной катушки,

с - скорость света,

ω=2πƒ - круговая частота переменного тока,

σ0=100 МПа - характерное закалочное напряжение.

Документы, цитированные в отчете о поиске Патент 2017 года RU2632996C1

Сварочный станок для газопрессовой сварки 1946
  • Бродович Н.В.
  • Владимирский Т.А.
  • Шентяков С.П.
SU68713A1
СПОСОБ ИЗМЕРЕНИЯ ВЕЛИЧИНЫ И ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ЛОКАЛЬНЫХ МАГНИТНЫХ ПОЛЕЙ, ВОЗНИКАЮЩИХ ВСЛЕДСТВИЕ ПРОТЕКАНИЯ КОРРОЗИОННЫХ ПРОЦЕССОВ НА МЕТАЛЛИЧЕСКОЙ ПОВЕРХНОСТИ В ПРОВОДЯЩЕМ РАСТВОРЕ 2015
  • Бардин Илья Вячеславович
  • Баутин Василий Анатольевич
  • Гудошников Сергей Александрович
  • Усов Николай Александрович
  • Любимов Борис Яковлевич
RU2591027C1
WO 2007116218 A1, 18.10.2007
US 6424149 B1, 23.07.2002.

RU 2 632 996 C1

Авторы

Гудошников Сергей Александрович

Игнатов Андрей Сергеевич

Попова Анастасия Владимировна

Тарасов Вадим Петрович

Усов Николай Александрович

Даты

2017-10-11Публикация

2016-05-23Подача