УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СЛАБЫХ МАГНИТНЫХ ПОЛЕЙ НА ОСНОВЕ ЭФФЕКТА ГИГАНТСКОГО МАГНИТНОГО ИМПЕДАНСА Российский патент 2019 года по МПК G01R33/02 

Описание патента на изобретение RU2680165C1

Устройство для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса относится к области измерительной техники и может найти применение для измерения слабых магнитных полей, например, при обнаружении природных магнитных аномалий, разведки месторождений, а также в биомедицинских и технических приложениях.

Известно устройство для измерения слабых магнитных полей (Патент RU №2118834. Устройство для измерения слабых магнитных полей (варианты) / А.С. Антонов и др. - опубл. 10.09.1998), которое содержит магниточувствительный элемент (МЧЭ), выполненный в виде проводника из аморфного ферромагнитного микропровода (АФМ), катушку индуктивности, источник переменного тока и измеритель напряжения на концах катушки индуктивности. При этом проводник имеет магнитную анизотропию с легкой осью, направленной перпендикулярно к продольной оси провода (циркулярная анизотропия). Поэтому при отсутствии внешнего магнитного поля результирующий магнитный момент вблизи поверхности провода направлен циркулярно, то есть перпендикулярно к его продольной оси. Особенностью такого устройства являются, с одной стороны, жесткие требования к характеристикам используемого АФМ (т.е. наличие строгой циркулярной анизотропии и отсутствие структурных дефектов), а с другой - упрощенный вариант схемы регистрации полезного сигнала, который не позволяет учитывать, например, знак регистрируемого магнитного поля.

Также известно устройство для измерения компоненты индукции магнитного поля вдоль продольной оси микропровода (Патент ЕР №1343019. Magnetic field detection device / Sumi Kasumasa et al. - publ. data 10.09.2003.). В этом устройстве, содержащем МЧЭ, выполненный из АФМ в стеклянной оболочке, используют токовое возбуждение от импульсного генератора. При этом АФМ размещен внутри приемной многовитковой катушки, выход которой подключен к входу ключевого фазового детектора, управляемого импульсами от импульсного генератора возбуждения. Выход ключевого фазового детектора подключен к накопительному конденсатору и соединен с входом усилителя постоянного тока. Выход усилителя постоянного тока соединен с регистратором и через цепь отрицательной обратной связи связан с дополнительной катушкой, намотанной вокруг приемной катушки.

Недостатком последнего является сложность оптимизации параметров импульсов возбуждения генератора, необходимых для получения передаточной характеристики с максимальной линейностью и крутизной в процессе настройки. Это связано с тем, что постоянная и переменная составляющие возбуждающих импульсов взаимосвязаны. Также к недостаткам рассматриваемого устройства следует отнести возможное прямое воздействие электромагнитных помех в широкой полосе частот на приемную катушку от внешних источников и порождение нежелательных переходных процессов в приемной катушке за счет импульсного характера возбуждения АФМ с относительно высокой скважностью следования импульсов.

Наиболее близким по технической сущности к предлагаемому техническому решению, т.е. прототипом, является магнитометр на эффекте гигантского магнитного импеданса (Патент RU №130409 U1 Магнитометр на эффекте гигантского магнитного импеданса / Гудошников С.А. и др., опубл. 20.07.2013), который содержит МЧЭ, выполненный из АФМ в стеклянной оболочке, источник постоянного тока смещения с ограничительным резистором, два разделительных конденсатора, генератор возбуждения, узкополосный усилитель, фазовращатель, фазовый детектор, усилитель постоянного тока, цепь отрицательной обратной связи и регистратор. При этом АФМ размещен внутри приемной многовитковой катушки, источник постоянного тока смещения подключен к АФМ через ограничительный резистор. Генератор возбуждения представляет собой генератор синусоидального сигнала, первый выход которого через первый разделительный конденсатор соединен с АФМ, а второй выход через фазовращатель соединен со вторым входом фазового детектора, первый вход которого подключен к выходу узкополосного усилителя, вход которого через второй разделительный конденсатор соединен с выходом приемной многовитковой катушки. Выход фазового детектора через усилитель постоянного тока подключен к регистратору и через резистор отрицательной обратной связи к выходу приемной многовитковой катушки.

Недостаток прототипа заключается в том, что вследствие наличия геликоидальной магнитной структуры АФМ, передаточная центрально-симметричная характеристика магнитометра смещена относительно нулевого значения магнитного поля. Это приводит к появлению смещения выходного напряжения магнитометра и соответствующей систематической ошибки в показаниях значения магнитного поля.

Решаемая техническая задача заключается в минимизации смещения передаточной характеристики магниточувствительного элемента, увеличению крутизны преобразования его передаточной характеристики в два раза и увеличению помехозащищенности, что приводит к повышению точности измерений и уменьшению систематической ошибки выходного сигнала магнитометра в целом. Предлагаемый подход состоит в модернизации конструкции МЧЭ и условий его возбуждения, которые приводят к решению поставленной задачи.

Технически поставленная задача решается следующим образом.

Конструктивно в МЧЭ добавляют второй АФМ, идентичный первому (по составу и геометрическим размерам) и располагают его параллельно, рядом с первым АФМ внутри катушки. При этом возбуждающий токовый сигнал проходит через катушку, создающую возбуждающее переменное магнитное поле, а измерение полезного сигнала осуществляют с двух АФМ с помощью дифференциального усилителя.

В отличие от прототипа, в котором высокочастотный токовый сигнал проходит через АФМ, расположенный внутри приемной катушки, в предлагаемом устройстве высокочастотный токовый сигнал поступает в катушку, аналогичную по исполнению используемой в прототипе, но выполняющую роль возбуждающей, внутри которой располагаются два АФМ, выполняющих роль приемных элементов. За счет использования двух АФМ, соединенных последовательно и помещенных внутрь возбуждающей катушки, осуществляется удвоение полезного сигнала и компенсация несимметричности характеристики АФМ.

В предлагаемое устройство, содержащее МЧЭ, источник постоянного тока смещения, генератор возбуждения, второй выход которого соединен через фазовращатель с одним из входов детектора, а его выход через усилитель постоянного тока подключен к регистратору и цепи отрицательной обратной связи, дополнительно введены, разделительный конденсатор и ограничительный резистор. При этом, МЧЭ выполнен из двух идентичных АФМ в стеклянной оболочке или с удаленной стеклянной оболочкой, соединенных последовательно между собой и параллельно размещенных внутри многовитковой катушки возбуждения. Источник постоянного тока смещения через два (первый и дополнительный) ограничительных резистора подключен к двум последовательно соединенным АФМ, другой вход фазового детектора соединен с выходом дифференциального усилителя, имеющего два входа, которые через разделительные конденсаторы соединены с соответствующими концами двух АФМ. Выход усилителя постоянного тока через резистор цепи отрицательной обратной связи соединен с возбуждающей многовитковой катушкой.

Предлагаемое решение иллюстрируется следующим графическим материалом:

На рис. 1 представлена блок-схема устройства для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса;

На рис. 2 представлены графики зависимостей выходного сигнала устройства от приложенного внешнего магнитного поля для схемы с высокочастотным возбуждением от многовитковой катушки, при регистрации сигнала от АФМ 1 (кривая 1), при регистрации сигнала от АФМ 1* (кривая 2) и при регистрации сигнала от двух АФМ (предлагаемое решение, кривая 3).

На рис.1 два АФМ 1 и 1*, подсоединены через ограничительные резисторы R1 и R1* к источнику постоянного тока смещения 3. При этом оба АФМ 1 и 1* размещены внутри (на рис. 1 не показано) возбуждающей многовитковой катушки 4, соединенной через разделительный конденсатор С1 с генератором возбуждения 2. При этом оба АФМ 1 и 1* соединены также через разделительные конденсаторы С2 и С2* с соответствующими входами дифференциального усилителя 5, выход которого соединен с первым входом фазового детектора 6, а второй вход фазового детектора 6 соединен с генератором возбуждения 2 через фазовращатель 7. Выход фазового детектора 6 соединен с входом усилителя постоянного тока 8, выход которого соединен через резистор цепи отрицательной обратной связи R2 с возбуждающей многовитковой катушкой 4, а также со входом регистратора 9.

Работает устройство следующим образом.

Находящиеся во внешнем магнитном поле АФМ 1 и 1*, через которые пропускается постоянный ток через резисторы R1 и R1* от источника постоянного тока смещения 3, возбуждаются от высокочастотного сигнала возбуждающей многовитковой катушки 4, по которой через конденсатор С1 протекает переменный ток от генератора возбуждения 2 с частотой ƒ.

Высокочастотные сигналы АФМ 1 и 1* частоты ƒ через конденсаторы С2 и С2* поступают на вход дифференциального усилителя 5, выходной сигнал которого поступает на первый вход фазового детектора 6, а на второй вход фазового детектора 6 подводится опорное напряжение частоты ƒ от генератора возбуждения 2 через фазовращатель 7 для получения максимального коэффициента передачи. Выходное напряжение фазового детектора 6 усиливается усилителем постоянного тока 8. Это напряжение пропорционально величине компоненты внешнего магнитного поля, действующей на оба АФМ 1 и 1* вдоль их продольной оси. Выходное напряжение усилителя постоянного тока 8 поступает через резистор цепи отрицательной обратной связи R2 в возбуждающую многовитковую катушку 4 в виде тока обратной связи и на вход регистратора 9.

Частота ƒ генератора возбуждения 2 обычно выбирается в пределах от 1 до 20 МГц. Следует отметить, что с ростом частоты ƒ сигнал с двух АФМ 1 и 1* возрастает, однако применение более высоких частот возбуждения, по сравнению с указанными выше, может приводить к усложнению конструкции электронных узлов.

В изготовленном макете устройства для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса в качестве двух АФМ использовались два отрезка микропровода длиной 6 мм с ферромагнитной жилой диаметром 21,4 мкм состава Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 в стеклянной оболочке диаметром 26,4 мкм. Оба отрезка АФМ были помещены внутрь возбуждающей катушки диаметром 0,5 мм, внутренний диаметр которой составляет ~ 0,2 мм и содержащей 80 витков.

В режиме настройки устройства для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса обратную связь отключают (разрывают цепь между выходом фазового детектора и резистором R2), а в области расположения АФМ создают тестовое низкочастотное магнитное поле амплитудой ±12 Э, направленное вдоль оси АФМ. Тестовое низкочастотное поле создают с помощью внешней системы колец Гельмгольца. Возбуждение осуществляют через возбуждающую многовитковую катушку 4 синусоидальным током частотой 4 МГц и амплитудой порядка 2 мА. Выходной сигнал устройства для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса, изменяющийся под действием прикладываемого тестового низкочастотного магнитного поля, записывают с помощью регистратора. На рис. 2 приведены графики зависимостей выходного сигнала устройства от приложенного внешнего магнитного поля для схемы с возбуждением от многовитковой катушки, при регистрации сигнала от АФМ 1 (кривая 1), при регистрации сигнала от АФМ 1* (кривая 2) и при регистрации сигнала от двух АФМ (предлагаемое решение, кривая 3).

Как следует из представленных на рис.2 данных, использование предложенной схемы МЧЭ и его возбуждения приводит к значительному уменьшению смещения передаточной характеристики МЧЭ, удвоению крутизны преобразования передаточной характеристики, достижению ее линейности во внешнем магнитном поле в пределах ±Hs=±1 Э. На рис. 2 показано, что величина смещения ΔН, в предлагаемом решении (кривая 3) приближается к нулевому значению.

После окончания настройки устройства для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса, связанной с выбором оптимального постоянного тока смещения, восстанавливают обратную связь (связь между выходом фазового детектора 6 и резистором R2), а тестовое низкочастотное магнитное поле отключают. Включение обратной связи расширяет пределы измерений и дополнительно линеаризует передаточную характеристику устройства для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса, уменьшая тем самым погрешность измерений магнитного поля.

Таким образом, модернизация конструкции МЧЭ и условий его возбуждения позволяет минимизировать смещение передаточной характеристики МЧЭ, увеличить ее крутизну в два раза, снизить проникновение электромагнитных помех в тракт усиления сигнала за счет вычитания синфазной помехи, что приводит к уменьшению систематической ошибки выходного сигнала устройства и повышению в целом точности измерения слабых магнитных полей.

Литература.

1. Патент RU №2118834. Устройство для измерения слабых магнитных полей (варианты) / А.С.Антонов и др. - опубл. 10.09.1998.

2. Патент ЕР №1343019. Magnetic field detection device / Sumi Kasumasa et al. - publ. data 10.09.2003.

3. Патент RU №130409 Ul Магнитометр на эффекте гигантского магнитного импеданса / Гудошников С.А. и др., опубл. 20.07.201

Похожие патенты RU2680165C1

название год авторы номер документа
Датчик измерения механических деформаций 2017
  • Тарасов Вадим Петрович
  • Гореликов Евгений Сергеевич
  • Криволапова Ольга Николаевна
  • Хохлова Оксана Викторовна
  • Игнатов Андрей Сергеевич
  • Гудошников Сергей Александрович
  • Попова Анастасия Владимировна
  • Фатеев Владимир Михайлович
RU2653563C1
Датчик измерения механических деформаций 2016
  • Гудошников Сергей Александрович
  • Попова Анастасия Владимировна
  • Фатеев Владимир Михайлович
  • Игнатов Андрей Сергеевич
  • Тарасов Вадим Петрович
  • Гореликов Евгений Сергеевич
  • Криволапова Ольга Николаевна
RU2654827C1
ТОНКОПЛЕНОЧНАЯ МАГНИТНАЯ АНТЕННА 2019
  • Бабицкий Александр Николаевич
  • Беляев Борис Афанасьевич
  • Боев Никита Михайлович
  • Изотов Андрей Викторович
  • Сушков Артем Александрович
  • Батурин Тимур Нугзарович
  • Шабанов Дмитрий Александрович
RU2712922C1
ДАТЧИК ИЗМЕРЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ 2013
  • Гудошников Сергей Александрович
  • Любимов Борис Яковлевич
  • Усов Николай Александрович
  • Игнатов Андрей Сергеевич
  • Тарасов Вадим Петрович
  • Криволапова Ольга Николаевна
RU2552124C1
Цифровой магнитовариационный преобразователь 1978
  • Бирюков Александр Прокопьевич
  • Бурцев Юрий Александрович
  • Перунов Борис Степанович
  • Тимофеев Геннадий Александрович
  • Фастовский Уллен Владимирович
  • Филатов Олег Васильевич
SU802893A1
Устройство для стабилизации магнитных полей 1978
  • Ломаный Владимир Дмитриевич
SU789958A1
Устройство для измерения низкочастотных магнитных полей 1978
  • Волобуев Герман Борисович
  • Заец Владимир Иванович
  • Нартов Александр Юрьевич
  • Саламахин Борис Павлович
  • Сбоев Сергей Александрович
SU742834A1
Устройство для измерения амплитуды переменного магнитного поля 1978
  • Ивойлов Геннадий Александрович
  • Польской Василий Васильевич
SU781724A1
ЭЛЕКТРОННЫЙ КОМПАС 1995
  • Волосский Леонид Яковлевич
RU2097699C1
Высокочувствительный магнитоимпедансный датчик градиентных магнитных полей 2022
  • Юданов Николай Анатольевич
  • Немирович Марк Анатольевич
  • Панина Лариса Владимировна
  • Морченко Александр Тимофеевич
  • Костишин Владимир Григорьевич
  • Евстигнеева Светлана Алексеевна
RU2784211C1

Иллюстрации к изобретению RU 2 680 165 C1

Реферат патента 2019 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СЛАБЫХ МАГНИТНЫХ ПОЛЕЙ НА ОСНОВЕ ЭФФЕКТА ГИГАНТСКОГО МАГНИТНОГО ИМПЕДАНСА

Изобретение относится к области измерительной техники и может найти применение для измерения слабых магнитных полей. Устройство для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса содержит магниточувствительный элемент, выполненный из двух идентичных аморфных ферромагнитных микропроводов в стеклянной оболочке или с удаленной стеклянной оболочкой, размещенных внутри одной многовитковой катушки, причем высокочастотное возбуждение микропроводов осуществляется от многовитковой катушки, а регистрация сигналов с двух микропроводов осуществляется с помощью дифференциального усилителя. Технический результат – повышение точности измерений, уменьшение систематической ошибки выходного сигнала магнитометра в целом. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 680 165 C1

1. Устройство для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса, содержащее магниточувствительный элемент, источник постоянного тока смещения с первым ограничительным резистором, два разделительных конденсатора, генератор возбуждения, один из выходов которого соединен через фазовращатель с одним из входов фазового детектора, выход которого через усилитель постоянного тока соединен с регистратором и через резистор цепи отрицательной обратной связи - с многовитковой катушкой, отличающийся тем, что магниточувствительный элемент выполнен из двух идентичных аморфных ферромагнитных микропроводов в стеклянной оболочке, соединенных последовательно между собой, при этом второй аморфный ферромагнитный микропровод через дополнительно введенный ограничительный резистор подключен к источнику постоянного тока смещения, и оба аморфных ферромагнитных микропровода параллельно размещены внутри многовитковой катушки возбуждения, подключенной через дополнительно введенный разделительный конденсатор к другому выходу генератора возбуждения, а концы каждого аморфного ферромагнитного микропровода соединены через разделительные конденсаторы со входами дифференциального усилителя, выход которого подключен к другому входу фазового детектора.

2. Устройство для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса по п. 1, отличающееся тем, что магниточувствительный элемент выполнен из двух идентичных ферромагнитных микропроводов с удаленной стеклянной оболочкой.

Документы, цитированные в отчете о поиске Патент 2019 года RU2680165C1

Устройство для перегрузки холстов из волокнистых материалов с цепного лифта на люльки монорельсового конвейера 1959
  • Подопригора В.К.
SU130409A1
Магнитометр 1980
  • Бондаревский Юрий Валерьевич
  • Каразеев Вадим Николаевич
  • Теряев Вадим Александрович
SU945835A1
FR 2930042 A1, 16.10.2009
JP 7280903 A, 27.10.1995.

RU 2 680 165 C1

Авторы

Турков Владимир Евгеньевич

Жукова Светлана Александровна

Обижаев Денис Юрьевич

Баранов Александр Александрович

Гудошников Сергей Александрович

Заруцкий Александр Анатольевич

Даты

2019-02-18Публикация

2018-04-04Подача