Изобретение относится к области разработки способа получения фотокатализатора на основе высокодисперсного диоксида титана с нанесенными на его поверхность наночастицами благородного металла, предназначенного преимущественно для процесса фотокаталитического окисления монооксида углерода (СО) с целью очистки воздуха от микропримесей СО и создания условий безопасного и комфортного обитания человека.
В связи с большим количеством автомобильного транспорта, предприятий промышленности и энергетики в городах остро стоит проблема загрязненности воздуха вредными соединениями, такими как летучие органические вещества, оксиды азота, серы и углерода, сероводород и др. Концентрации таких веществ зачастую невелики, но постоянный контакт с ними приносит ощутимый вред здоровью человека.
Наиболее эффективным способом очистки воздуха от малых концентраций загрязняющих веществ при комнатных температуре и влажности является фотокаталитическое окисление (RU 2259866, B01D 53/86, 10.09.2005). В ходе фотокаталитического процесса загрязнители полностью окисляются на фотокатализаторе кислородом воздуха под воздействием света видимого или ультрафиолетового диапазонов в зависимости от типа полупроводникового материала, использующегося в основе фотокатализатора. Способ фотокаталитической очистки имеет максимальную эффективность в удалении примесей органических веществ из газовой фазы и активно используется при создании бытовых и промышленных очистителей воздуха. Тем не менее, наибольшую долю среди летучих загрязняющих веществ занимает монооксид углерода. Монооксид углерода не имеет запаха и очень опасен для здоровья человека из-за того, что при его взаимодействии с гемоглобином крови образуется карбоксигемоглобин, который блокирует процессы транспортировки кислорода и клеточного дыхания. Нахождение человека в помещении с концентрацией СО в воздухе более 1250 мг/м3 в течение 1 часа приводит к летальному исходу. Поэтому необходима очистка воздуха от примесей СО.
Наиболее широко используемым фотокатализатором является диоксид титана TiO2 (RU 2408427, B01J 37/08, 10.01.2011) из-за того, что он относительно недорог, нетоксичен и проявляет максимальную фотокаталитическую активность в реакциях окисления среди изученных систем. Окислительный потенциал фотогенерированной электронной вакансии на поверхности TiO2 составляет примерно +3 В относительно нормального водородного электрода. Это означает, что с его помощью можно полностью окислить практически любые вещества. Тем не менее, монооксид углерода плохо подвергается фотокаталитическому окислению на чистом диоксиде титана, что связано со слабой адсорбцией СО на поверхности TiO2 при комнатных условиях. Поэтому необходима разработка новых типов фотокатализаторов.
Известно, что нанесение наночастиц благородных металлов на диоксид титана способствует улучшению его каталитических свойств во многих фотокаталитических процессах. В случае фотокаталитического окисления СО наночастицы благородного металла могут выступать в роли центров хемосорбции СО, а также увеличивать скорость переноса электрона к молекулам кислорода, приводя к образованию его поверхностно-активных форм (т.е. , ), которые в дальнейшем взаимодействуют с молекулами СО.
Известен способ синтеза фотокатализаторов с нанесенными частицами благородных металлов (RU 2243033, B01J 21/06, 27.12.2004), в котором исходный диоксид титана в виде порошка обрабатывают растворами минеральных кислот с последующим нанесением частиц металлов одного или нескольких видов (Pd, Pt, Au, Ag).
Недостатком данного метода является то, что в качестве предшественника металла используются растворы хлорсодержащих неорганических соединений (например, PdCl2, H2PtCl6, HAuCl4), что может приводить к загрязнению поверхности TiO2 атомами хлора из этих предшественников. Недостатком также является то, что восстановление проводится с помощью избытка боргидрида натрия или гидразина, что может приводить к частичному восстановлению поверхности диоксида титана. Оба этих фактора снижают активность фотокатализатора.
Известен способ получения наночастиц благородного металла на поверхности диоксида титана методом фотонанесения. Например, в работе (Е.А. Kozlova, Т.Р. Lyubina, М.А. Nasalevich, A.V. Vorontsov, A.V. Miller, V.V. Kaichev, V.N. Parmon Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate, Catalysis Communications 12 (2011) 597-601) платину наносят путем воздействия ультрафиолетового излучения на водную суспензию диоксида титана, содержащую добавки платинохлористоводороной (H2PtCl6) и уксусной кислот, что приводит к восстановлению ионов платины до металлического состояния за счет фотогенерированных электронов и закрепления металлических частиц на поверхности диоксида титана.
Недостатком данного способа является то, что восстановление ионов металла происходит только в местах выхода фотогенерированных электронов на поверхность диоксида титана, которыми являются дефекты поверхности и поверхностные примеси. Такой механизм восстановления приводит к образованию крупных, неравномерно распределенных агломератов частиц благородного металла, что приводит к низкой активности фотокатализатора в окислении CO.
Известен способ синтеза фотокатализаторов с нанесенными биметаллическими частицами благородных металлов (US 20130022524, B01J 29/89, B01D 23/62, 24.01.2013), которые получают путем пропитки порошка диоксида титана водным раствором предшественников платины и палладия и/или никеля, в качестве которых используются неорганические соединения (например, хлориды или хлористоводородные кислоты данных металлов) или металлоорганические соединения и комплексы, с последующим химическим восстановлением этих предшественников.
Недостатком данного способа является то, что использование хлорсодержащих неорганических предшественников может приводить к загрязнению поверхности диоксида титана атомами хлора, что снижает активность фотокатализатора. В случае металлоорганических предшественников указанные в способе соединения практически не растворяются в воде, и поэтому не могут быть использованы для приготовления водных растворов благородных металлов, предназначенных для пропитки диоксида титана.
Наиболее близким к данному изобретению является способ получения фотокатализатора (US 6365545, B01J 23/40, 02.04.2002), заключающийся в добавлении порошкового диоксида титана рутильной модификации к органическому коллоидному раствору металлоорганического комплекса благородного металла, например, C10H18SPtCl1-3. Полученную суспензию наносят на стеклянную пластину, сушат и далее прокаливают при 500°С в течение 30 мин. Указанный способ позволяет получать фотокатализатор, представляющий собой диоксид титана рутильной модификации с равномерно нанесенными частицами благородного металла размером от 1 до 5 нм.
Основным недостатком данного способа является использование дорогостоящих металлоорганических предшественников, содержащих атомы серы или хлора, которые после разложения могут отравлять поверхность фотокатализатора, и, как следствие, снижать его фотокаталитическую активность.
Недостатком является то, что в качестве носителя используется диоксид титана рутильной модификации, который обладает намного меньшей фотокаталитической активностью по сравнению с анатазом или смесью анатаза с рутилом.
Недостатком также является высокая температура прокаливания, которая может приводить к снижению удельной поверхности диоксида титана, а также фазовому переходу анатаза в рутил при использовании в качестве основы диоксида титана анатазной модификации.
Изобретение ставит своей задачей разработку способа получения высокоактивного фотокатализатора на основе высокодисперсного диоксида титана с нанесенными наночастицами благородного металла, предназначенного преимущественно для фотокаталитического способа удаления микропримесей CO из воздуха.
Для решения поставленной задачи предложен способ получения фотокатализатора путем термического разложения при невысокой температуре металлоорганического предшественника на поверхности нанокристаллического диоксида титана, обладающего высокой удельной поверхностью, с образованием наночастиц благородного металла, находящихся частично или полностью в металлическом состоянии.
Способ получения заключается в пропитке диоксида титана металлоорганическим предшественником благородного металла, предварительно растворенным в неароматическом органическом растворителе, не содержащем гетероатомы (Р, S, Cl), с последующим постоянным перемешиванием до полного высыхания суспензии. Оставшийся растворитель полностью удаляют на ротационном испарителе, и после этого осадок прокаливают при температуре не менее чем на 5°C выше температуры разложения используемого металлоорганического предшественника, но не более 250°C в течение 3 ч.
Диоксид титана, на который наносят благородный металл, характеризуется удельной поверхностью 10-400 м2/г и является 100% анатазом или смесью анатаза с рутилом с содержанием анатаза не менее 50 мас.%.
Благородным металлом является Pd или Pt. В качестве предшественника благородного металла преимущественно используется ацетилацетонат палладия (Pd(AcAc)2), ацетат палладия (Pd(OAc)2), ацетилацетонат платины (Pt(AcAc)2) или динитродиамминплатина (Pt(NH3)2(NO2)2). Содержание металла в фотокатализаторе составляет 0,05-4 мас.%.
В качестве неароматического органического растворителя, не содержащего также гетероатомы (Р, S, Cl), преимущественно используют ацетон, этанол, этилацетат или ацетилацетон.
Задача решается также способом окисления монооксида углерода в присутствии описанного выше катализатора. Концентрация монооксида углерода в реакционной смеси составляет не более 1000 млн д. атм. Тестирование фотокатализаторов проводят в статическом реакторе, термостатированном при температуре 25°С. Относительная влажность воздуха составляет 15%. Измерение концентраций веществ в реакторе проводят с помощью ИК-Фурье спектрометра Nicolet 380 фирмы Thermo Fisher Scientific (Германия).
Принцип работы получаемого предлагаемым способом фотокатализатора заключается в следующем: молекулы монооксида углерода адсорбируются на поверхности частиц благородного металла, после чего реагируют с фотосгенерированными активными формами кислорода, образующимися на поверхности частицы металла и/или TiO2 при его облучении ультрафиолетовым излучением.
Сущность изобретения иллюстрируется следующими примерами.
В примерах в качестве диоксида титана используют коммерческий диоксид титана TiO2 марки Hombifine N фирмы «Sachtleben Chemie GmbH» (Германия), являющийся 100% анатазом с характерным размером кристаллитов 10-15 нм и удельной поверхностью 347 м2/г, а также TiO2 марки Р25 фирмы «Evonik Industries AG» (Германия), содержащий 80% анатаза и 20% рутила и характеризующийся удельной поверхностью 81 м2/г. В качестве металлоорганических предшественников металлов используют: ацетилацетонат палладия (99%, (Pd(AcAc)2) или платины (97%, Pt(AcAc)2) фирмы «Sigma-Aldrich» (США), ацетат палладия (99%, Pd(OAc)2) и динитродиамминплатина (Pt(NH3)2(NO2)2) фирмы «Красцветмет» (Россия). В качестве органического растворителя используют ацетон (ОСЧ, C3H6O) фирмы «РЕАХИМ» (Россия) или этиловый спирт (70%, С2Н5ОН) фирмы «Марбиофарм» (Россия).
Для сравнительных примеров используют исходный образец диоксида титана TiO2 Hombifine N, обработанный согласно описанному выше способу, но без добавления металлорганического предшественника, а также образец диоксида титана TiO2 Hombifine N с нанесенным палладием, который синтезируют путем химического восстановления дихлорида палладия PdCl2 (Ч, «АУРАТ» (Россия)) с помощью боргидрида натрия NaBH4.
Для сравнения в качестве носителей вместо диоксида титана также используют неполупроводниковые материалы, такие как силикагель SiO2 фирмы «Sigma-Aldrich» (США) с размером частиц 10-40 мкм и удельной поверхностью 442 м2/г и гамма оксид алюминия γ-Al2O3 фирмы «Ангарский завод катализаторов и органического синтеза» (Россия) с удельной поверхностью 180 м2/г.
Примеры 1-5 иллюстрируют сущность изобретения.
Пример 1.
Синтезируют фотокатализатор на основе диоксида титана TiO2 Hombifine N с нанесенными наночастицами палладия согласно описанному выше способу. В качестве металлоорганического предшественника в данном примере используют ацетилацетонат палладия Pd(AcAc)2, растворенный в ацетоне. Осадок, полученный после удаления растворителя, прокаливают при температуре 210°C в течение 3 ч, так как температура разложения Pd(AcAc)2 составляет 205°C. Массовая доля палладия в фотокатализаторе составляет 0,05-4% от массы навески диоксида титана.
Образец помечают как ωPd1/TiO2-210, где ω - содержание Pd в мас.%.
Испытания активности синтезированных фотокатализаторов проводят в реакции фотокаталитического окисления монооксида углерода, которая протекает согласно следующему брутто-уравнению:
Испытания проводят следующим образом: в статический реактор помещают исследуемый образец, напускают 800-850 млн д. атм монооксида углерода, включают источник ультрафиолетового излучения, в качестве которого используют мощный УФ светодиод фирмы «Nichia» (Япония), и следят за изменением концентрации CO и CO2, образующегося в ходе протекания реакции под действием УФ излучения, с помощью ИК спектрометра. По начальной скорости расходования CO оценивают каталитическую активность образца в окислении CO без УФ освещения. По кинетической кривой CO также определяют время полной конверсии, за которое происходит полное удаление CO из газовой фазы.
Результаты испытаний образцов, полученных по примеру 1, представлены в таблице 1.
Из представленных в таблице 1 данных (столбец 2 и столбец 3) видно, что в диапазоне содержаний палладия от 0,05 до 4 мас.% наблюдается рост активности с увеличением количества металла. Методом просвечивающей электронной микроскопии было установлено, что палладий на поверхности диоксида титана для всех образцов представлен наночастицами размера порядка 1-2 нм.
Пример 2.
Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что осадок прокаливают при температуре 250°С.
Образец помечают как 2Pd1/TiO2-250.
Пример 3.
Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что осадок прокаливают при температуре 310°C.
Образец помечают как 2Pd1/TiO2-310.
Результаты испытаний образцов, полученных по примерам 1-3, представлены в таблице 2.
Из представленных в таблице 2 данных (столбец 3) видно, что повышение температуры прокаливания, используемой для разложения металлорганического предшественника, до 310°C приводит к сильному снижению фотокаталитической активности, что обусловлено процессами спекания и укрупнения частиц благородного металла. Поэтому температура разложения металлоорганического предшественника не должна превышать 250°C.
Пример 4.
Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве диоксида титана используют TiO2 Р25.
Образец помечают как 2Pd1/TiO2(P)-210.
Пример 5.
Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве металлорганического предшественника используется ацетат палладия Pd(OAc)2.
Образец помечают как 2Pd2/TiO2-210.
Пример 6.
Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве металлоорганического предшественника используется ацетилацетонат платины Pt(AcAc)2.
Образец помечают как 2Pt1/TiO2-210.
Пример 7.
Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве металлоорганического предшественника используется динитродиамминплатина Pt(NH3)2(NO2)2, а в качестве растворителя - этиловый спирт.
Образец помечают как 2Pt2/TiO2-210.
Пример 8 (сравнительный).
Аналогичен примеру 1 с тем исключением, что в процессе синтеза не добавляют металлоорганический предшественник. В результате, образец не содержит благородного металла.
Образец помечают как 0М/TiO2-210.
Пример 9 (сравнительный).
Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве носителя используют гамма-оксид алюминия Al2O3.
Образец помечают как 2Pd1/Al2O3-210.
Пример 10 (сравнительный).
Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве носителя используют оксид кремния SiO2.
Образец помечают как 2Pd1/SiO2-210.
Сравнение активности образцов, полученных по примерам 1 и 4-7, с образцами сравнения, полученными по примерам 8-10, представлено в таблице 3.
Из представленных в таблице 3 данных (столбец 3 и столбец 4) видно, что образцы, содержащие в своем составе благородный металл (примеры 1 и 4-7), который наносят с использованием различных предшественников, имеют существенно большую фотокаталитическую активность в окислении СО по сравнению со сравнительными образцами чистого диоксида титана (пример 8), а также с образцами на основе неполупроводниковых носителей (примеры 9 и 10), которые не обладают фотокаталитическими свойствами.
Данные в таблице 3 показывают, что образец на основе диоксида титана, имеющего смешанный (анатаз/рутил) фазовый состав (пример 4), также проявляет высокую фотокаталитическую активность в окислении СО, немного уступая образцу на основе чистого анатаза (пример 1).
Из представленных в таблице 3 (столбец 3) данных, относящихся к образцам, полученным по примерам 1, 5 и 6, 7, также видно, что нанесение наночастиц платины позволяет получить фотокатализатор с большей фотокаталитической активностью в окислении CO. Высокая активность платинированного диоксида титана обусловлена более высоким значением работы выхода электрона для платины. Это приводит к тому, что положение квази-уровня Ферми наночастиц Pt находится близко к середине запрещенной зоны TiO2. Такое положение квази-уровня Ферми может приводить к большей вероятности переноса электрона с TiO2 на металлические наночастицы, а также с металлических наночастиц на адсорбированные молекулы кислорода.
Пример 11 (сравнительный).
Наносят частицы палладия на диоксид титана TiO2 Hombifine N путем химического восстановления неорганического предшественника - хлорида палладия PdCl2. Синтез проводят путем добавления в водную суспензию диоксида титана аликвоты 0,04 М раствора PdCl2 в соляной кислоте и перемешивания в течение 1 часа. Затем проводят полное восстановление предшественника путем добавления трехкратного мольного избытка боргидрида натрия при постоянном перемешивании в течение 3 часов. На последнем этапе образец отмывают и сушат. Количество нанесенного палладия в фотокатализаторе составляет 0,5% от массы навески диоксида титана.
Образец помечают как 0,5Pd3/TiO2-X.
Пример 12 (сравнительный).
Наносят частицы палладия на диоксид титана TiO2 Hombifine N путем фотохимического восстановления неорганического предшественника - хлорида палладия PdCl2. Синтез проводят путем добавления в водно-этанольную суспензию диоксида титана аликвоты 0,04 М раствора PdCl2 в соляной кислоте и перемешивания в течение 1 часа. Для восстановления предшественника полученную суспензию облучают ультрафиолетовым излучением мощного УФ светодиода в течение 3 часов. Общая мощность ультрафиолетового излучения составляет 2,1 Вт. На последнем этапе образец отмывают и сушат. Количество нанесенного палладия в фотокатализаторе составляет 0,5% от массы навески диоксида титана.
Образец помечают как 0,5Pd3/TiO2-Φ.
Сравнение активности одного из образцов, полученного по примеру 1 с содержанием палладия 0,5 мас.%, с образцами сравнения, полученными по примерам 11 и 12, представлено в таблице 4.
Из представленных в таблице 4 данных (столбец 3) видно, что образец, полученный по примеру 1, имеет существенно большую фотокаталитическую активность в окислении СО по сравнению со сравнительными образцами, синтезированными по примерам 11 и 12. Высокая активность образца, полученного термическим разложением Pd(AcAc)2, обусловлена более равномерным распределением наночастиц (1-2 нм) палладия на поверхности диоксида титана, а также тем, что металлорганический предшественник в отличие от PdCl2 не содержит хлорид-ионов, которые снижают фотокаталитическую активность.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения фотокатализатора для окисления монооксида углерода | 2015 |
|
RU2614761C1 |
ФОТОКАТАЛИТИЧЕСКИЙ СОРБИРУЮЩИЙ ТКАНЕВЫЙ МАТЕРИАЛ | 2014 |
|
RU2562485C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА НА ОСНОВЕ ДИОКСИДА ТИТАНА (ВАРИАНТЫ) | 2003 |
|
RU2243033C1 |
СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИТИЧЕСКОГО СОРБИРУЮЩЕГО ТКАНЕВОГО МАТЕРИАЛА | 2014 |
|
RU2559506C1 |
КОМПОЗИТНЫЙ ФОТОКАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ВОДЫ И ВОЗДУХА | 2011 |
|
RU2478413C1 |
СПОСОБ ЛЕГИРОВАНИЯ ДИОКСИДА ТИТАНА АНАТАЗНОЙ АЛЛОТРОПНОЙ МОДИФИКАЦИИ НАНОЧАСТИЦАМИ БЛАГОРОДНЫХ МЕТАЛЛОВ (ВАРИАНТЫ) | 2019 |
|
RU2731277C1 |
КОМПОЗИТНЫЙ АДСОРБЦИОННО-КАТАЛИТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ФОТОКАТАЛИТИЧЕСКОГО ОКИСЛЕНИЯ | 2011 |
|
RU2465046C1 |
CПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕ-СОРБИРУЮЩЕГО МАТЕРИАЛА С ФОТОКАТАЛИТИЧЕСКИМИ СВОЙСТВАМИ | 2011 |
|
RU2482912C1 |
ФОТОКАТАЛИЗАТОР-АДСОРБЕНТ (ВАРИАНТЫ) | 2008 |
|
RU2375112C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРЕКУРСОРА НА ОСНОВЕ ГИДРАТИРОВАННОГО ДИОКСИДА ТИТАНА С НАНОРАЗМЕРНЫМИ МЕТАЛЛИЧЕСКИМИ ЧАСТИЦАМИ ПАЛЛАДИЯ ДЛЯ КАТАЛИТИЧЕСКИ АКТИВНОГО ПОКРЫТИЯ НА ИНЕРТНОМ НОСИТЕЛЕ | 2013 |
|
RU2576568C2 |
Изобретение относится к области разработки способа получения катализатора на основе высокодисперсного диоксида титана с нанесенными наночастицами благородного металла, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода при комнатной температуре. Фотокатализатор, получаемый данным способом, преимущественно предназначен для фотокаталитической очистки воздуха от микропримесей монооксида углерода, а также от монооксида углерода, образующегося в качестве побочного продукта при фотокаталитическом окислении летучих органических соединений. Описан способ приготовления металл-нанесенного катализатора для фотокаталитического окисления монооксида углерода, содержащего диоксид титана и благородный металл. Катализатор готовят пропиткой диоксида титана, который является 100% анатазом или смесью анатаза с рутилом с содержанием анатаза не менее 50 мас.%, металлоорганическим предшественником благородного металла, не содержащим атомы фосфора, серы и хлора, который растворен в органическом растворителе, с последующим удалением растворителя и прокаливанием осадка при температуре выше температуры разложения металлоорганического предшественника, но не более 250°C. Технический результат - высокая скорость окисления монооксида углерода до углекислого газа при комнатной температуре. 8 з.п. ф-лы, 12 пр., 4 табл.
1. Способ приготовления металл-нанесенного катализатора для фотокаталитического окисления монооксида углерода, содержащего диоксид титана и благородный металл, отличающийся тем, что катализатор готовят пропиткой диоксида титана, который является 100% анатазом или смесью анатаза с рутилом с содержанием анатаза не менее 50 мас.%, металлоорганическим предшественником благородного металла, не содержащим атомы фосфора, серы и хлора, который растворен в органическом растворителе, с последующим удалением растворителя и прокаливанием осадка при температуре выше температуры разложения металлоорганического предшественника, но не более 250°C.
2. Способ по п. 1, отличающийся тем, что диоксид титана имеет удельную поверхность не менее 10 м2/г.
3. Способ по п. 1, отличающийся тем, что благородным металлом является палладий или платина.
4. Способ по п. 1, отличающийся тем, что содержание благородного металла составляет 0,05-4 мас.%.
5. Способ по п. 1, отличающийся тем, что предшественником палладия является ацетилацетонат палладия (Pd(AcAc)2) или ацетат палладия (Pd(OAc)2).
6. Способ по п. 1, отличающийся тем, что предшественником платины является ацетилацетонат платины (Pt(AcAc)2) или динитродиамминплатина (Pt(NH3)2(NO2)2).
7. Способ по п. 1, отличающий тем, что органическим растворителем является неароматический растворитель, не содержащий гетероатомы P, S, Cl.
8. Способ по п. 1, отличающий тем, что растворитель удаляют на ротационном испарителе.
9. Способ по п. 1, отличающий тем, что осадок прокаливают не менее 3 ч при температуре не менее чем на 5°C выше температуры разложения используемого металлорганического предшественника, но не более 250°C.
Морозов Александр Николаевич, Синтез и каталитические свойства наноструктурированных покрытий диоксида титана | |||
Диссертация на соискание ученой степени кандидата химических наук, Москва, 2014 | |||
Способ приготовления лака | 1924 |
|
SU2011A1 |
СПОСОБ ПРИГОТОВЛЕНИЯ НАНЕСЕННЫХ ПОЛИМЕТАЛЛИЧЕСКИХ КАТАЛИЗАТОРОВ (ВАРИАНТЫ) | 2005 |
|
RU2294240C2 |
ФОТОКАТАЛИЗАТОР-АДСОРБЕНТ (ВАРИАНТЫ) | 2008 |
|
RU2375112C1 |
Устройство для контроля углового положения поворотной платформы | 1978 |
|
SU769322A1 |
Авторы
Даты
2017-11-30—Публикация
2016-11-03—Подача