Способ получения бензола Российский патент 2017 года по МПК C07C15/04 C07C7/08 C07C4/16 

Описание патента на изобретение RU2638173C1

Изобретение относится к процессам получения бензола из жидких углеводородных продуктов, содержащих ароматические соединения, и может быть использовано в нефтеперерабатывающей, нефтехимической и химической промышленности.

Основным процессом производства бензола является его выделение из продуктов каталитического риформинга, который предназначен для ароматизации бензиновых фракций нефти с целью получения высокооктановых компонентов или ароматических углеводородов. Процесс проводят с помощью алюмоплатиновых катализаторов в присутствии водорода. Выделение ароматических углеводородов из продуктов каталитического риформинга осуществляют методом экстрактивной ректификации в колонне или в системе колонн с получением фракции неароматических углеводородов и фракции ароматических углеводородов с числом углеродных атомов С6-C8, которые разделяют методом обычной ректификации с получением бензола, толуола и ксилолов (Гайле А.А., Сомов В.Е. Процессы разделения и очистки продуктов переработки нефти и газа. СПб.: Химиздат, 2012.).

Известно, что в связи с ужесточением содержания бензола в автомобильных бензинах предлагаются различные способы выделения и получения бензола высокой чистоты из компонентов моторных топлив, полученных каталитическим риформингом. Так, описан способ, защищенный патентом РФ №2287514, МПК С07С 7/08, C10G 7/08, С07С 15/04, опубл. 20.11.2006, который заключается в ректификации катализата риформинга на три фракции: легкокипящую фракцию, содержащую в основном неароматические углеводороды С46 и не более 1%, предпочтительно не более 0,5 масс. % бензола, тяжелокипящую фракцию, содержащую в основном ароматические и неароматические углеводороды С7 и выше и не более 1%, предпочтительно не более 0,5 масс. % бензола, и бензольную фракцию, выкипающую в пределах 70-95°С и содержащую толуола - не более 0,1 масс. %, предпочтительно не более 0,02 масс. %, неароматических углеводородов с температурой кипения более 110°С - не более 0,02 масс. %, которую направляют на выделение бензола экстрактивной ректификацией с полярным растворителем. В связи с тем, что процесс предназначен для производства автомобильных бензинов выход бензола с продуктов каталитического риформинга минимален.

Известен способ получения бензола из продуктов ароматизации пропана и бутана процесса Cyclar (Гайле А.А., Сомов В.Е., Варшавский О.М. Ароматические углеводороды: Выделение, применение, рынок: Справочник. СПб.: Химиздат, 2000. с. 324-326). Процесс не получил широкого промышленного распространения из-за высоких расходных норм на сырье и очень высокой энергоемкости процесса.

Наиболее близким к заявленному техническому решению является способ получения бензола из жидких продуктов пиролиза по технологической схеме, которая включает в себя выделение ароматической фракции C6-C8, предварительную двухстадийную каталитическую гидроочистку, термическое гидродеалкилирование и дальнейшее разделение продуктов гидродеалкилирования в системе ректификационных колонн (Черный И.Р. Производство сырья для нефтехимических синтезов. М: Химия, 1983, с. 193-203). Согласно способу перед получением бензола жидкие продукты пиролиза направляют на разделение с целью удаления легкой фракции С5, высококипящих углеводородов С9 и выделения фракции углеводородов С68, содержащих бензол-толуол-ксилолы. Фракция углеводородов С6-C8 направляется на двухступенчатое гидрирование для удаления непредельных углеводородов и соединений серы. Гидрированная фракция углеводородов С6-C8 после смешения с водородом при температуре 593-760°С и давлении 3,4-7,0 МПа направляется в реактор термического гидродеалкилирования, где протекают реакции деалкилирования толуола, этилбензола и ксилолов, а также - крекинг парафиновых и нафтеновых углеводородов до легких газов : метана и этана. Полученный бензол выделяется методом ректификации.

Недостатком этого способа является ограниченность сырьевой базы этого процесса, для получения бензола методом гидродеалкилирования используются только ароматические фракции продуктов пиролиза. Кроме того, в процесс гидродеалкилирования направляется бензол, который не требует гидродеалкилирования, но при этом дополнительно загружает реактор, а также в процесс направляются ценные неароматические углеводороды, которые разлагаются до легких газов - метана и этана.

В то же время на нефтехимических заводах на установках дегидрирования, изомеризации, экстрактивной ректификации и др. образуются побочные жидкие углеводородные фракции. Эти продукты содержат ароматические, парафиновые и непредельные углеводороды с примесями воды, сернистых азотистых и других примесей. Вследствие нестабильной производительности этих продуктов, сложного состава, наличия примесей сложно организовать дальнейшую оптимальную переработку углеводородных фракций. Кроме того, выработка побочных углеводородных фракций на одной установке крайне незначительна, что делает нерациональным на каждом заводе формировать свою оригинальную систему переработки побочных продуктов. В результате подобные углеводородные фракции отгружаются потребителям в качестве низкокачественных растворителей и сырья для получения низкосортных топлив. Однако наиболее эффективно разработать специализированный процесс переработки подобных отходов с группы заводов.

Задачей, на решение которой направлено заявляемое изобретение, является разработка эффективного способа получения бензола с расширением сырьевой базы процесса гидродеалкилирования углеводородов за счет вовлечения в переработку побочных ароматических фракций нефтехимических заводов при сохранении качества получаемого бензола. В качестве таких продуктов могут быть использованы высококипящие фракции продуктов дегидрирования изопентана, н-бутана, изобутана, этилбензола, продуктов изомеризации бутиленов, смолы регенерации экстрагентов процессов выделения диеновых углеводородов, остатки от осветления ароматических растворителей, тяжелые фракции эпоксидата процесса совместного получения стирола и окиси пропилена.

Техническим результатом заявляемого изобретения является увеличение выработки бензола, снижение расходной нормы по жидким продуктам пиролиза, утилизация побочных продуктов нефтехимии, снижение себестоимости продукции.

Технический результат заявляемого изобретения достигается тем, что:

1) проводится смешение высококипящих побочных углеводородных фракций нефтехимических производств;

2) в жидкие продукты пиролиза осуществляется добавка высококипящих побочных продуктов;

3) проводят ректификацию смеси с удалением легкокипящих углеводородов с температурой кипения ниже, чем температура кипения бензола;

4) проводят ректификацию с удалением высококипящих углеводородов с температурой кипения выше температуры кипения ксилолов с получением фракции углеводородов С6-C8;

5) осуществляют двухстадийную гидроочистку полученной фракции углеводородов С68 для удаления непредельных углеводородов, сернистых, азотистых и кислородсодержащих соединений;

6) проводят экстрактивную ректификацию с разделением продукта на неароматические и ароматические углеводороды С68, последние разделяют методом ректификации с выделением бензола и получением алкилароматических углеводородов С78;

7) проводят гидродеалкилирование алкилароматической фракции C7-C8;

8) осуществляют выделение бензола из продуктов гидродеалкилирования известным методом;

9) для снижения нагрузки по примесям на узлы гидроочистки высококипящие побочные продукты нефтехимических производств перед подмешиванием в жидкие продукты пиролиза могут быть промыты водой в системе смеситель-отстойник или в насадочных, или тарельчатых колоннах.

Способ получения ароматических углеводородов по заявленному изобретению осуществляют следующим образом.

Побочные продукты с различных производств дегидрирования и изомеризации углеводородов, смол регенерации экстрагентов, остатки от осветления ароматических растворителей, тяжелой фракции эпоксидата смешивают в усреднительной емкости таким образом, чтобы в полученной смеси массовое содержание ароматических углеводородов составляет 50-95 масс. % от общего количества углеводородов с углеродным числом С68. Полученная смесь подмешивается в жидкое сырье пиролиза с концентрацией 1-40 масс. % от количества жидкого сырья пиролиза. Полученную смесь направляют в ректификационную колонну для выделения углеводородов с температурой кипения ниже температуры кипения бензола. После отделения низкокипящих углеводородов смесь направляют на ректификационную колонну для выделения углеводородов с температурой кипения выше температуры кипения ксилолов. Оставшуюся ароматическую фракцию направляют последовательно на первую стадию жидкофазного гидрирования и на вторую стадию газофазного гидрирования непредельных углеводородов, серо-, азот- и кислородсодержащих соединений. Гидрированную фракцию ароматических углеводородов полностью направляют на экстрактивную ректификацию для выделения неароматических углеводородов, содержащую не более 1 масс. % бензола, и получения ароматических углеводородов с углеродным числом С68, содержащую не более 0,1 масс. % неароматических углеводородов. Ароматические углеводороды с числом углеродных атомов С68 направляются в ректификационную колонну для их разделения на бензол и ароматические углеводороды с числом углеродных атомов C7-C8. Последнюю фракцию направляют в реакторы термического гидродеалкилирования. Продукты деалкилирования с реакторов направляют на разделение известным способом. Для снижения влияния примесей в смеси на работу реакторов гидрирования высококипящие побочные продукты перед подмешиванием в жидкие продукты пиролиза могут направляться на водную промывку, которую можно проводить в насадочной или тарельчатой колонне или в смесителях с дальнейшим отстоем в емкости для разделения водного и органического слоя. Вода для промывки высококипящих побочных продуктов подается в массовом соотношении 0,1÷1,0:1,0 соответственно.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1 (сравнительный). Исходное сырье для получения бензола -жидкие продукты пиролиза в количестве 200 г подают на лабораторную установку ректификации, где от продукта отделяют фракции углеводородов С5 и С9 и выделяют 156 г фракции углеводородов С6-C8, которые включают в основном бензол, толуол и ксилолы. Ректификацию жидких продуктов пиролиза проводят на лабораторной колонке, характеризующейся 40 теоретическими тарелками. Выделение С5 из жидких продуктов пиролиза проводится при атмосферном давлении и флегмовом числе 3,5. Кубовый остаток жидких продуктов пиролиза подвергают ректификации при вакуумном давлении минус 0,07 МПа - минус 0,06 МПа и флегмовом числе 4 для отделения фракции углеводородов С9 и выделения фракции углеводородов С68.

Выделенную фракцию углеводородов С6-C8 направляют сначала на жидкофазное гидрирование, далее на газофазную гидроочистку для насыщения непредельных углеводородов и удаления серосодержащих соединений. Процесс жидкофазного гидрирования проводят при температуре 70°С на входе и 170°С на выходе из реактора и давлении 4,5 МПа в присутствии палладиевого катализатора, процесс газофазного гидрирования проводят при температуре 300-320°С и давлении 4,0 МПа в присутствии кобальт-молибденового катализатора. Гидрирование проводят в реакторах со стационарным слоем катализатора при соотношении фракция углеводородов С68 : водород - 98,5:1,5 масс. %.

Гидрированную фракцию углеводородов С68 подают в реактор термического гидродеалкилирования, куда под давлением подается водород. Условия эксперимента и режим гидродеалкилирования приведен в таблице 1. Продукты гидродеалкилирования разделяют известным способом. Масса полученного бензола составляет 122 г.

Пример 2. Проводят смешение высококипящих побочных фракций процессов дегидрирования изопентана и изобутана с получением 2 г смеси (смесь №1), содержащей углеводороды С5 - 5,1 масс. %, бензол - 4,6 масс. %, толуол - 14,8 масс. %, ксилолы - 48,2 масс. %, стирол - 1,0 масс. %, этилбензол - 1,1 масс. %, неароматические углеводороды С68 - 3,7 масс. %, ароматические углеводороды С9+ - 20,2 масс. %, неароматические углеводороды С9+ - 1,3 масс. %. После смешения двух продуктов в полученной смеси содержание ароматических углеводородов составляет 95 масс. % от общего количества углеводородов с углеродным числом С68. Полученную смесь подмешивают в жидкие продукты пиролиза в количестве 1 масс. % с получением 199 г смеси, из которой на лабораторной установке отделяют фракции углеводородов С5 и С9. Полученную в количестве 156 г фракцию углеводородов С68 направляют на жидкофазное гидрирование и газофазную гидроочистку, которые ведут аналогично описанному в примере 1.

Гидрированную фракцию углеводородов С68 подают на экстрактивную ректификацию с использованием сульфолана в качестве растворителя. Процесс экстрактивной ректификации проводят на лабораторной установке, состоящей из колонки, имеющей 70 теоретических тарелок для экстракции ароматических углеводородов, и колонки, имеющей 70 теоретических тарелок для десорбции ароматических углеводородов из растворителя. Экстрактивную ректификацию проводят при массовом соотношении расхода растворителя и питания колонны 3:1. Верхом колонки выделяется дистиллят, состоящий из неароматических углеводородов и бензола с концентрацией не более 1 масс. %. В кубе колонки остается смесь растворителя и ароматических углеводородов С68, которую направляют в колонку-десорбер, где верхом выделяют ароматические углеводороды С68, в которых содержание неароматических углеводородов не превышает 0,1 масс. %.

Ароматические углеводороды С6-C8 направляют на выделение бензола обычной ректификацией, которую проводят на лабораторной колонке, характеризующейся 40 теоретическими тарелками. Выделение бензола из ароматических углеводородов С6-C8 ректификацией проводят при атмосферном давлении и флегмовом числе 3,5 в виде дистиллята. Кубовый остаток после выделения бензола, состоящий из толуола, ксилолов и этилбензола, направляют на гидродеалкилирование, которое ведут аналогично примеру 1, но при более низкой температуре и высоком давлении, меньшей подаче водорода, как показано в таблице 1. Общая масса полученного бензола составляет 123 г.

Пример 3. Проводят смешение высококипящих фракций продуктов дегидрирования изопентана, изобутана, н-бутана и этилбензола с получением 44 г смеси (смесь №2), содержащей углеводороды С5 - 3,2 масс. %, бензол - 3,8 масс. %, толуол - 12,3 масс. %, ксилолы - 41,3 масс. %, стирол - 4,5 масс. %, этилбензол - 6,9 масс. %, неароматические углеводороды С6-C8 - 7,7 масс. %, ароматические углеводороды С9+ - 18,8 масс. %, неароматические углеводороды С9+ - 1,5 масс. % (смесь 2). После смешения четырех продуктов в полученной смеси содержание ароматических углеводородов составляет 90 масс. % от общего количества углеводородов с углеродным числом С6-C8. Полученную смесь подмешивают в жидкие продукты пиролиза в количестве 20 масс. %. с получением 221 г смеси, переработку которой ведут аналогично примеру 2, но при более высокой температуре и низком давлении гидродеалкилирования, меньшей подаче водорода, как показано в таблице 1. Общая масса полученного бензола составляет 135 г.

Пример 4. Проводят смешение высококипящих фракций продуктов дегидрирования изобутана и изомеризации н-бутиленов с получением 19 г смеси (смесь №3), содержащей углеводороды С5 - 15,4 масс. %, бензол - 2,4 масс. %, толуол - 8,7 масс. %, ксилолы - 32,5 масс. %, стирол - 0,5 масс. %, этилбензол - 0,9 масс. %, неароматические углеводороды С6-C8 - 24,3 масс. %, ароматические углеводороды С9+ - 14,5 масс. %, неароматические углеводороды С9+ - 0,8 масс. %. После смешения четырех продуктов в полученной смеси содержание ароматических углеводородов составляет 65 масс. % от общего количества углеводородов с углеродным числом С6-C8. Полученную смесь подмешивают в жидкие продукты пиролиза в количестве 10 масс. % с получением 203 г смеси, переработку которой ведут аналогично примеру 2, но при более высокой температуре и низком давлении гидродеалкилирования, большей подачи водорода, как показано в таблице 1. Общая масса полученного бензола составляет 117 г.

Пример 5. Проводят смешение высококипящих фракций продуктов изомеризации бутиленов, смолы регенерации экстрагентов, остатков от осветления ароматических растворителей с получением 62 г смеси (смесь №4), содержащей углеводороды С5 - 16,8 масс. %, бензол - 3,1 масс. %, толуол - 10,4 масс. %, ксилолы - 13,9 масс. %, стирол - 0,4 масс. %, этилбензол - 0,7 масс. %, неароматические углеводороды С6-C8 - 28,6 масс. %, ароматические углеводороды С9+ - 21,7 масс. %, неароматические углеводороды С9+ - 2,4 масс. %, смолы - 2,0 масс. %. После смешения трех продуктов в полученной смеси содержание ароматических углеводородов составляет 50 масс. % от общего количества углеводородов с углеродным числом С68. Полученную смесь подмешивают в жидкие продукты пиролиза в количестве 30 масс. % с получением 205 г смеси, переработку которой ведут аналогично примеру 2, но при более высокой температуре и давлении гидродеалкилирования, большей подаче водорода, как показано в таблице 1. Общая масса полученного бензола составляет 112 г.

Пример 6. Проводят смешение высококипящих фракций дегидрирования изопентана, н-бутана, изобутана, этилбензола, продуктов изомеризации бутиленов, смолы регенерации экстрагентов, остатков от осветления ароматических растворителей, тяжелой фракции эпоксидата с получением 84 г смеси (смесь №5), содержащей углеводороды С5 - 9,7 масс. %, бензол - 5,8 масс. %, толуол - 18,7 масс. %, ксилолы - 20,9 масс. %, стирол -0,7 масс. %, этилбензол - 1,8 масс. %, неароматические углеводороды С6-C8 - 16,0 масс. %, ароматические углеводороды С9+ - 18,6 масс. %, неароматические углеводороды С9+ - 1,5 масс. %, кислородсодержащие органические соединения - 4,8 масс. %, смолы - 1,5 масс. %. После смешения трех продуктов в полученной смеси содержание ароматических углеводородов составляет 75 масс. % от общего количества углеводородов с углеродным числом С6-C8. Полученную смесь подмешивают в жидкие продукты пиролиза в количестве 40 масс. % с получением 210 г смеси, переработку которой ведут аналогично примеру 2, но при более высокой температуре, как показано в таблице 1. Общая масса полученного бензола составляет 121 г.

Пример 7. Аналогичен примеру 5, но перед подмешиванием смеси №5 в жидкие продукты пиролиза осуществляют промывку смеси №5 путем смешения с водой в массовом соотношении вода: смесь №5 - 0,1:1,0. После отстоя и разделения смеси на водный и углеводородный слой последний перерабатывают аналогично примеру 5. Общая масса полученного бензола составляет 120 г.

Таким образом, использование изобретения позволяет увеличить сырьевую базу производства бензола, снизить расходную норму на жидкие продукты пиролиза и квалифицированно утилизировать побочные продукты нефтехимических процессов, что в целом позволяет снизить себестоимость продукции.

Примечание: ВПБ - высококипящие побочные продукты нефтехимических производств; у/в - углеводороды; ГДА - гидродеалкилирование, ЖПП - жидкие продукты пиролиза.

Похожие патенты RU2638173C1

название год авторы номер документа
СПОСОБ АРОМАТИЗАЦИИ НЕАРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ 2010
  • Иванова Ирина Игоревна
  • Солопов Борис Алексеевич
  • Пономарева Ольга Александровна
RU2449978C1
СПОСОБ ПОЛУЧЕНИЯ БЕНЗОЛА 2005
  • Бусыгин Владимир Михайлович
  • Беспалов Владимир Павлович
  • Гильманов Хамит Хамисович
  • Мальцев Леонид Вениаминович
  • Чуркин Владимир Николаевич
  • Зиятдинов Азат Шаймуллович
  • Бикмурзин Азат Шаукатович
  • Шатилов Владимир Михайлович
  • Карпов Игорь Павлович
  • Екимова Алсу Мухаметзяновна
  • Ахмадуллин Разим Хабибуллович
  • Бубенков Владимир Петрович
  • Чуркин Максим Владимирович
  • Сахипов Лаззат Саитович
RU2291892C1
Способ получения бензола из ароматических углеводородов C-C 2017
  • Гильмуллин Ринат Раисович
  • Сосновская Лариса Борисовна
  • Березкина Марина Васильевна
RU2640207C1
Способ получения сырья для производства технического углерода 2020
  • Яруллин Ильгиз Миннесалихович
  • Пономарев Сергей Иванович
  • Якупов Алмас Айратович
RU2759378C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ ПРОДУКТОВ ПИРОЛИЗА В АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ 2004
  • Амитин А.В.
  • Елин О.Л.
  • Крылова Е.К.
  • Лахман Л.И.
  • Мячин С.И.
  • Прокопенко А.В.
RU2266944C1
Способ переработки фракции С @ -С @ пиробензина 1987
  • Григорович Борис Аркадьевич
  • Зиятдинов Азат Шаймуллович
  • Аблякимов Энвер Иззетович
  • Чечин Сергей Евгеньевич
  • Митрофанов Анатолий Иванович
  • Черкасов Николай Григорьевич
  • Садыков Рамиль Гарифуллович
  • Гильманов Хамит Хамисович
  • Курбатов Владимир Анатольевич
  • Лиакумович Александр Григорьевич
SU1541238A1
СПОСОБ ВЫДЕЛЕНИЯ АРОМАТИЧЕСКОГО СОЛЬВЕНТА, БЕНЗОЛА, ТОЛУОЛА И ВЫСОКООКТАНОВОГО КОМПОНЕНТА БЕНЗИНА С УЛУЧШЕННЫМИ ЭКОЛОГИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ ИЗ КАТАЛИЗАТОВ БЕНЗИНОВОГО И БЕНЗОЛЬНО-ТОЛУОЛЬНОГО РИФОРМИНГА 2004
  • Рахимов Х.Х.
  • Рогов М.Н.
  • Зидиханов М.Р.
  • Жиляев Н.П.
  • Ишмияров М.Х.
  • Елин О.Л.
  • Кошелев Ю.А.
  • Хворов А.П.
  • Сабылин И.И.
RU2254356C1
СПОСОБ ПОЛУЧЕНИЯ НАФТАЛИНА 2014
  • Нестеров Олег Николаевич
  • Гильманов Хамит Хамисович
  • Сахабутдинов Анас Гаптынурович
  • Шепелин Владимир Александрович
  • Якупов Алмас Айратович
  • Силитрина Надежда Алексеевна
  • Шарифуллин Ильфат Габдулвахитович
  • Шатилов Владимир Михайлович
  • Пономарев Сергей Иванович
  • Амирханов Ахтям Талипович
  • Сабиров Айрат Ринатович
  • Чураков Юрий Николаевич
RU2557000C1
СПОСОБ ПОЛУЧЕНИЯ БЕНЗОЛА ИЗ СМЕСЕЙ, СОДЕРЖАЩИХ БЕНЗОЛ И/ИЛИ АЛКИЛБЕНЗОЛЫ С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ СЕРОСОДЕРЖАЩИХ ВЕЩЕСТВ 2001
RU2193548C1
СПОСОБ ВЫДЕЛЕНИЯ О-КСИЛОЛЬНОГО КОНЦЕНТРАТА, БЕНЗОЛА, ТОЛУОЛА И ВЫСОКООКТАНОВОГО КОМПОНЕНТА БЕНЗИНА С УЛУЧШЕННЫМИ ЭКОЛОГИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ ИЗ КАТАЛИЗАТОВ БЕНЗИНОВОГО И БЕНЗОЛЬНО-ТОЛУОЛЬНОГО РИФОРМИНГА 2004
  • Рахимов Х.Х.
  • Рогов М.Н.
  • Зидиханов М.Р.
  • Жиляев Н.П.
  • Ишмияров М.Х.
  • Елин О.Л.
  • Галиев Р.Ф.
  • Хворов А.П.
  • Сабылин И.И.
RU2255957C1

Реферат патента 2017 года Способ получения бензола

Изобретение относится к способу получения бензола из углеводородных продуктов, включающий выделение из жидких продуктов пиролиза фракции углеводородов С6-C8, последующее ее гидрирование и гидродеалкилирование. Способ характеризуется тем, что к исходным жидким продуктам пиролиза добавляют высококипящие побочные фракции нефтехимических производств с массовым содержанием ароматических углеводородов 50-95 масс. % от общего количества углеводородов с углеродным числом С68, при этом соотношение жидких продуктов пиролиза и высококипящих побочных фракций нефтехимических производств составляет 99-60:1-40 масс. %, при этом после гидрирования фракцию углеводородов С6-C8, выделенную из смеси жидких продуктов пиролиза и высококипящих побочных фракций нефтехимических производств, полностью направляют на экстрактивную ректификацию для выделения неароматических углеводородов, содержащую не более 1 масс. % бензола, и получения ароматических углеводородов с углеродным числом С6-C8, содержащую не более 0,1 масс. % неароматических углеводородов, с последующим выделением бензола обычной ректификацией и направлением остальных ароматических углеводородов с числом углеродных атомов C7-C8 на гидродеалкилирование. Использование изобретения позволяет увеличить сырьевую базу производства бензола, снизить расходную норму на жидкие продукты пиролиза и квалифицированно утилизировать побочные продукты нефтехимических процессов, что в целом позволяет снизить себестоимость продукции. 3 н.п. ф-лы, 7 пр., 1 табл.

Формула изобретения RU 2 638 173 C1

1. Способ получения бензола из углеводородных продуктов, включающий выделение из жидких продуктов пиролиза фракции углеводородов С6-C8, последующее ее гидрирование и гидродеалкилирование, отличающийся тем, что к исходным жидким продуктам пиролиза добавляют высококипящие побочные фракции нефтехимических производств с массовым содержанием ароматических углеводородов 50-95 масс. % от общего количества углеводородов с углеродным числом С68, при этом соотношение жидких продуктов пиролиза и высококипящих побочных фракций нефтехимических производств составляет 99-60:1-40 масс. %, при этом после гидрирования фракцию углеводородов С6-C8, выделенную из смеси жидких продуктов пиролиза и высококипящих побочных фракций нефтехимических производств, полностью направляют на экстрактивную ректификацию для выделения неароматических углеводородов, содержащую не более 1 масс. % бензола, и получения ароматических углеводородов с углеродным числом С6-C8, содержащую не более 0,1 масс. % неароматических углеводородов, с последующим выделением бензола обычной ректификацией и направлением остальных ароматических углеводородов с числом углеродных атомов C7-C8 на гидродеалкилирование.

2. Способ по п. 1, отличающийся тем, что высококипящие побочные фракции нефтехимических производств представляют собой высококипящие фракции продуктов дегидрирования изобутана, н-бутана, изопентана, этилбензола, изомеризации бутиленов, смолы регенерации экстрагентов процессов выделения диеновых углеводородов, остатки от осветления ароматических растворителей, тяжелые фракции эпоксидата процесса совместного получения стирола и окиси пропилена.

3. Способ по п. 1, отличающийся тем, что высококипящие побочные фракции нефтехимических производств перед подмешиванием в жидкие продукты пиролиза промывают водой в массовом соотношении 0,1÷1,0:1,0 - вода : высококипящие побочные фракции.

4. Способ по п. 1, отличающийся тем, что процесс гидродеалкилирования проводят при температуре 580-680°С на входе в реактор, давлении 2,0-5,0 МПа, мольном соотношении водород : сырье 2,0-5:1.

Документы, цитированные в отчете о поиске Патент 2017 года RU2638173C1

СПОСОБ ПОЛУЧЕНИЯ БЕНЗОЛА ИЗ СМЕСЕЙ, СОДЕРЖАЩИХ БЕНЗОЛ И/ИЛИ АЛКИЛБЕНЗОЛЫ С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ СЕРОСОДЕРЖАЩИХ ВЕЩЕСТВ 2001
RU2193548C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ ПРОДУКТОВ ПИРОЛИЗА В АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ 2004
  • Амитин А.В.
  • Елин О.Л.
  • Крылова Е.К.
  • Лахман Л.И.
  • Мячин С.И.
  • Прокопенко А.В.
RU2266944C1
СПОСОБ ПОЛУЧЕНИЯ ЧИСТОГО БЕНЗОЛА И ЧИСТОГО ТОЛУОЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Мартин Лайссе
  • Ханс-Юрген Фолльмер
  • Уве Ранке
RU2141936C1
CN 103086823 A, 08.05.2013.

RU 2 638 173 C1

Авторы

Шарифуллин Ильфат Габдулвахитович

Нестеров Олег Николаевич

Сахабутдинов Анас Гаптынурович

Яруллин Ильгиз Миннесалихович

Пономарев Сергей Иванович

Шатилов Владимир Михайлович

Якупов Алмас Айратович

Шарифуллин Рафаэль Ривхатович

Дынина Виктория Александровна

Нырков Андрей Иванович

Муллануров Марат Мулламухаметович

Даты

2017-12-12Публикация

2017-05-19Подача