СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА ВАНАДИЯ Российский патент 2017 года по МПК C01B35/04 C01G31/00 

Описание патента на изобретение RU2638396C2

Предлагаемое изобретение относится к порошковой металлургии, в частности к синтезу диборида ванадия, и может быть использовано для изготовления диффузионных износостойких покрытий на сталях, электролита воздушно-расплавных аккумуляторов.

Известен способ получения диборида ванадия VB2 взаимодействием металлических ванадия и бора в присутствии алюминия при температуре 1550°C в среде инертного газа в течение 24 часов с последующим охлаждением и дальнейшей обработкой продуктов реакции кислотой, например соляной (заявка JP 55051797 А, кл. С01В 35/04, 1980).

Однако указанный способ имеет следующие недостатки. Это применение при синтезе диборида ванадия дорогого металлического ванадия, длительность процесса синтеза и необходимость обработки продуктов реакции кислотой, например соляной.

Кроме того, известен способ получения диборида ванадия (Крутский Ю.Л. и др. Синтез тонкодисперсных порошков карбида и борида ванадия и исследование их характеристик. Молодежный научный форум: технические и математические науки, Электронный сборник статей по материалам IV студенческой международной заочной научно-практической конференции, октябрь 2013 г., №4, с. 45-50), являющийся прототипом предлагаемого изобретения и заключающийся в проведении процесса синтеза диборида ванадия путем нагрева в газовой среде из аргона в углеродном тигле смеси оксида ванадия V2O3, карбида бора и нановолокнистого углерода, приготовленной по стехиометрии на получение диборида ванадия в соответствии с реакцией V2O34С+2С=2VB2+3СО, при температуре 1500°C в течение 30 минут.

Однако указанный способ имеет недостаток. Это необходимость подачи в реакционное пространство печи дорогостоящего инертного газа (аргона), что усложняет процесс и приводит к увеличению стоимости диборида ванадия.

Задачей (техническим результатом) предлагаемого изобретения является упрощение процесса и снижение стоимости диборида ванадия.

Поставленная задача достигается тем, что в известном способе получения диборида ванадия, заключающемся в нагреве в газовой среде в углеродном тигле смеси оксида ванадия V2O3, карбида бора и нановолокнистого углерода, приготовленной по стехиометрии на получение диборида ванадия в соответствии с реакцией V2O34С+2С=2VB2+3СО, процесс ведут при температуре 1300-1500°C в течение 20-30 минут в газовой среде из оксида углерода (II) и азота, образующейся при окислении углерода тигля кислородом воздуха, в объемном отношении СО:N2=99,96:0,04.

Способ осуществляется следующим образом. Навески порошков оксида ванадия V2O3, карбида бора и нановолокнистого углерода берутся в мольном отношении V2O34С:С=1:1:2, то есть по стехиометрии на получение диборида ванадия в соответствии с реакцией:

V2O3+B4C+2C=2VB2+3СО

Далее смесь просеивается через сито с размером ячейки 100 мкм. При просеивании происходит перемешивание компонентов смеси. Затем смесь загружается в тигель из углерода внутренним диаметром 25 мм и высотой внутреннего пространства 60 мм. Тогда внутренний объем тигля из углерода 29,452 см3. При плотности смеси 2,8 г/см3 масса ее примерно равна 82 граммам. Тигель из углерода закрывается графитовой крышкой и помещается в кварцевый реактор, который в свою очередь вставляется в индуктор индукционной печи. Нагрев смеси производят при температуре 1300-1500°C в течение 20-30 минут в газовой среде из оксида углерода (II) и азота, образующейся при окислении углерода тигля кислородом воздуха, в объемном отношении СО:N2=99,96:0,04.

При подаче электроэнергии на индуктор печи во внутреннем пространстве тигля из углерода происходит следующее. Поскольку в кварцевый реактор не подается защитный инертный газ (аргон), в нем первоначально находится воздух при атмосферном давлении. От индуктора энергия передается тиглю из углерода, а от него - шихте. Естественно, кислородом воздуха первоначально окисляется углерод нагревающегося тигля. Поэтому в кварцевом реакторе и во внутреннем пространстве тигля из углерода при температурах процесса (1300-1500°C) образуется газовая смесь из оставшегося азота и получившегося оксида углерода (II). Дополнительно при протекании реакции образования диборида ванадия из 82 граммов шихты выделяется примерно 30 граммов (или примерно 24000 см3) оксида углерода (II), что многократно (в предположении того, что свободный объем тигля из углерода составляет 40%) превышает объем тигля из углерода (примерно в 2000 раз). Таким образом, образующийся оксид углерода (II) довольно быстро вытесняет азот воздуха из внутреннего пространства тигля через неплотности между углеродным тиглем и крышкой. В результате содержание азота в газовой смеси уменьшается примерно в 2000 раз (с 80% об. до приблизительно 0,04% об.). Следовательно, газовая среда в углеродном тигле в ходе реакции образования диборида ванадия содержит азот в очень незначительных количествах, что предотвращает нежелательный процесс образования нитридов ванадия V3N и VN. Температура в реакторе контролируется оптическим пирометром. После остывания реактора из него извлекается тигель из углерода, из тигля высыпается продукт реакции (порошок диборида ванадия).

При температурах ниже 1300°C диборид ванадия не образуется, о чем свидетельствует отсутствие его рефлексов на дифрактограммах. При температурах, превышающих 1500°C, имеют место ненужные энергозатраты. При времени процесса менее 20 минут диборид ванадия не образуется, о чем свидетельствует отсутствие его рефлексов на дифрактограммах. При времени процесса более 30 минут имеют место ненужные энергозатраты.

Пример реализации изобретения

Порошки оксида ванадия V2O3, карбида бора и нановолокнистого углерода, взятые в мольном отношении V2O34С:С=1:1:2, совместно просеиваются через сито с размером ячейки 100 мкм. Таким образом, размер частиц всех реагентов не превышает 100 мкм. Далее готовая смесь засыпается в тигель из углерода. Тигель из углерода закрывается графитовой крышкой и помещается в кварцевый реактор, который в свою очередь вставляется в индуктор индукционной печи. Температура процесса 1400°C, время выдержки при этой температуре 22 минуты. Рентгенофазовым анализом установлено наличие в продуктах реакции (термообработанной смеси) только одной фазы - диборида ванадия.

Упрощение процесса получения диборида ванадия и снижение его стоимости достигается за счет проведения процесса в газовой среде из оксида углерода (II) и азота, образующейся при окислении углерода тигля кислородом воздуха, в объемном отношении СО:N2=99,96:0,04 без использования аргона, который является дорогостоящим и который обеспечивает создание специальной защитной газовой среды.

Таким образом, предлагаемый способ позволяет упростить процесс и снизить стоимость диборида ванадия.

Похожие патенты RU2638396C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КАРБИДА ВАНАДИЯ 2014
  • Крутский Юрий Леонидович
  • Дюкова Ксения Дмитриевна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Соколов Владимир Васильевич
  • Пичугин Андрей Юрьевич
  • Вязьмина Юлия Александровна
RU2599757C2
Способ получения смесей высокодисперсных гетерофазных порошков на основе карбида бора 2018
  • Коцарь Татьяна Викторовна
  • Данилович Дмитрий Петрович
  • Зайцев Геннадий Петрович
  • Орданьян Сукяс Семенович
RU2683107C1
СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА ХРОМА 2013
  • Крутский Юрий Леонидович
  • Дюкова Ксения Дмитриевна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Соколов Владимир Васильевич
  • Пичугин Андрей Юрьевич
RU2549440C1
СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА ТИТАНА 2013
  • Крутский Юрий Леонидович
  • Антонова Елена Владимировна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Соколов Владимир Васильевич
  • Пичугин Андрей Юрьевич
RU2559482C2
Способ получения шихты для изготовления композиционной керамики карбид бора - диборид хрома 2022
  • Гудыма Татьяна Сергеевна
  • Крутский Юрий Леонидович
  • Сотников Александр Вадимович
  • Уткин Алексей Владимирович
RU2789828C1
СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА ЦИРКОНИЯ 2014
  • Крутский Юрий Леонидович
  • Дюкова Ксения Дмитриевна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Соколов Владимир Васильевич
  • Пичугин Андрей Юрьевич
  • Кузнецова Валентина Викторовна
RU2559485C1
СПОСОБ ПОЛУЧЕНИЯ КАРБИДА БОРА 2013
  • Крутский Юрий Леонидович
  • Дюкова Ксения Дмитриевна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Соколов Владимир Васильевич
  • Пичугин Андрей Юрьевич
RU2550848C2
Способ получения шихты для изготовления композиционной керамики карбид бора - диборид циркония 2021
  • Гудыма Татьяна Сергеевна
  • Крутский Юрий Леонидович
  • Непочатов Юрий Кондратьевич
  • Черкасова Нина Юрьевна
  • Кучумова Иванна Денисовна
  • Хабиров Роман Рафаэлович
RU2770773C1
СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА ЦИРКОНИЯ 2006
  • Андриец Сергей Петрович
  • Гаврилов Петр Михайлович
  • Дедов Николай Владимирович
  • Короткевич Владимир Михайлович
  • Соловьев Александр Иванович
  • Селиховкин Александр Михайлович
  • Кутявин Эдуард Михайлович
  • Степанов Игорь Анатольевич
RU2316470C1
СПОСОБ ПОЛУЧЕНИЯ КАРБИДА ЦИРКОНИЯ 2014
  • Крутский Юрий Леонидович
  • Дюкова Ксения Дмитриевна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Кузнецова Валентина Викторовна
RU2566420C1

Реферат патента 2017 года СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА ВАНАДИЯ

Изобретение может быть использовано для изготовления диффузионных износостойких покрытий на сталях, электролитов аккумуляторов. Способ получения диборида ванадия включает нагрев в газовой среде в углеродном тигле смеси оксида ванадия V2O3, карбида бора и нановолокнистого углерода. Указанную смесь готовят в соответствии со стехиометрией на получение диборида ванадия по реакции V2O34С+2С=2VB2+3СО. Нагрев проводят при температуре 1300-1500°C в течение 20-30 минут. Газовая среда включает оксид углерода(II) и азот и образуется при окислении углерода тигля кислородом воздуха. Объемное отношение СО:N2 равно 99,96:0,04. Изобретение позволяет упростить получение диборида ванадия за счет исключения использования аргона в качестве газовой среды. 1 пр.

Формула изобретения RU 2 638 396 C2

Способ получения диборида ванадия, состоящий в нагреве в газовой среде в углеродном тигле смеси оксида ванадия V2O3, карбида бора и нановолокнистого углерода, приготовленной по стехиометрии на получение диборида ванадия в соответствии с реакцией V2O34С+2С=2VB2+3СО, при температуре 1300-1500°C в течение 20-30 минут, отличающийся тем, что процесс ведут в газовой среде из оксида углерода(II) и азота, образующейся при окислении углерода тигля кислородом воздуха, при объемном отношении СО:N2=99,96:0,04.

Документы, цитированные в отчете о поиске Патент 2017 года RU2638396C2

КРУТСКИЙ Ю.Л., ВЯЗЬМИНА Ю.А
и др
Синтез тонкодисперсных порошков карбида и борида ванадия и исследование их характеристик
Молодежный научный форум: технические и математические науки
Электронный сборник статей по материалам IV студенческой международной заочной научно-практической конференции, Москва, 2013, N 4, сс
Железобетонный фасонный камень для кладки стен 1920
  • Кутузов И.Н.
SU45A1
RU 2014125383 A, 27.12.2015
US 7541013 B2, 02.06.2009
US 3032399 A1, 01.05.1962
WO 2014140700 A1, 18.09.2014
CN 103979566 A, 13.08.2014
JP 55051797 A, 15.04.1980.

RU 2 638 396 C2

Авторы

Крутский Юрий Леонидович

Дюкова Ксения Дмитриевна

Баннов Александр Георгиевич

Курмашов Павел Борисович

Крутская Татьяна Михайловна

Даты

2017-12-13Публикация

2016-05-16Подача