Способ очистки сточных вод от растворенных органических загрязнений Российский патент 2017 года по МПК C02F9/04 

Описание патента на изобретение RU2639810C1

Изобретение относится к процессам очистки сточных вод, содержащих растворенные органические загрязнения, методом мокрого окисления, конкретно, методом сверхкритического водного окисления (СКВО), и может использоваться для очистки бытовых, технологических, поверхностных, сельскохозяйственных и др. сточных вод.

Известен способ очистки сточных вод, содержащих органические растворенные вещества, методом мокрого окисления, т.е. окисления в конденсированной водной фазе (Kim K.Н., Ihm S.K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review // Journal of hazardous materials. - 2011. - T. 186, №. 1. - C. 16-34.).

Недостатком известного способа являются неполная очистка воды, что определяется низкими температурами процесса окисления и сложностями управления процессом - подборе катализатора, выборе времени обработки, регулировании потока окислителя - при переменном составе загрязнений и значительные энергозатраты, т.к. при низкой концентрации органических загрязнений необходимо нагревание большого количества воды.

Наиболее близким по совокупности существенных признаков является способ очистки сточных вод, описанный в журнале экологических наук (Veriansyah В., Kim J.D. Supercritical water oxidation for the destruction of toxic organic wastewaters: A review // Journal of Environmental Sciences. - 2007. - T. 19, №5. - C. 513-522.). Способ очистки сточных вод от растворенных органических загрязнений, включающий обработку сточных вод в условиях сверхкритического водного окисления до полного окисления органических соединений с получением газового потока, потока очищенной воды и тепла. Этот способ очистки сточных вод по своей технической сущности наиболее близок к заявленному способу и принят за прототип.

Недостатками известного способа также является низкая энергетическая эффективность при невысокой концентрации органических загрязнений. Это объясняется высокими затратами энергии на сжатие и подогрев потоков сточной воды и окислителя выше критической точки воды, а также низким съемом тепла как продукта окисления из-за невысокой концентрации органики в сточной воде. Известно, что реакции окисления протекают с выделением тепла, однако его заметно не хватает для компенсации энергетических затрат при реализации способа.

Технической задачей изобретения является снижение энергетических затрат за счет повышения содержания органических загрязнений в обрабатываемых стоках и повышение экономической эффективности за счет сокращения времени мембранной обработки.

Поставленная техническая задача достигается тем, что способ очистки сточных вод от растворенных органических загрязнений, включающий обработку сточных вод в условиях сверхкритического водного окисления до полного окисления органических соединений с получением газового потока, потока очищенной воды и тепла согласно изобретению, перед окислением в сточную воду вводят мелкодисперсную гречневую или подсолнечную лузгу с размером частиц 50-200 мкм, подают образовавшуюся суспензию на мембранное концентрирование с получением очищенной воды и концентрата сточных вод, подаваемого в аппарат сверхкритического водного окисления.

Изобретение поясняется чертежами

На фиг. 1 представлена технологическая схема очистки сточных вод; на фиг. 2 - технологическая схема микрофильтрационной (МФ) мембранной установки.

При среднем размере частиц отходов менее 50 мкм резко увеличиваются затраты на его измельчение. При размерах более 200 мкм происходит забивание коммуникаций реактора сверхкритического водного окисления.

Линия для очистки сточных вод от растворенных органических загрязнений включает диспергатор 1, смеситель 2, мембранный аппарат 3, окислительный аппарат 4, сепаратор 5, кроме того, на схеме показаны потоки: сухих твердых отходов 6, сточной воды 7, концентратов 8, продуктов окисления 9, газовых продуктов 10, очищенной воды 11 и окислителя 12.

Для проведения экспериментов по концентрированию и разделению суспензий «сточная вода + сорбент» использовался микрофильтрационный (МФ) аппарат с керамическими мембранами производства компании «Керамикфильтр». Мембраны выполнены в виде трубок с внутренним разделительным слоем, средний диаметр пор 0,3 мкм. Это позволило полностью очистить и получить прозрачный фильтрат.

Микрофильтрационный (Мф) аппарат включает емкость 13, термостатирующую рубашку 14, ротаметр 15, дроссель 16, манометры 17, вентили 18, мембраны 19, термометр 20, насос 21.

Способ осуществляется следующим образом.

Исходные гречневая или подсолнечная лузга поступают на диспергатор 1, где они измельчаются до размера частиц в диапазоне 50-200 мкм, далее в смеситель 2, где происходит формирование суспензии с заданным соотношением «твердое-жидкое». Это соотношение определяется сорбционной емкостью выбранных сухих отходов и желаемой генерацией тепла в окислительном аппарате. Мелкодисперсные отходы обладают высокой сорбционной емкостью, что позволяет большую часть органических загрязнений перевести в качестве адсорбата в состав твердых частиц.

Полученную суспензию под необходимым давлением концентрируют с помощью полупроницаемых мембран аппарата 3 с получением потоков очищенной воды 11 и концентрата 8 сточных вод, который теперь уже с меньшим расходом, т.е. с меньшими энергетическими затратами, доводится до необходимых параметров окисления. Полученный концентрат 8 под давлением подается в окислительный аппарат 4, куда также входит и поток окислителя 12. В качестве окислителя 12 могут использоваться кислород воздуха, жидкая перекись водорода, нитратные соли и другие известные окислители. В реакторе протекает реакция окисления, тепло которой расходуется частично на нагрев входящих потоков, частично - выносится потоком продуктов окисления 9 в сепаратор 5. В сепараторе 5 происходит разделение продуктов окисления на газовый поток 10 (СО2, N2, О2) и поток очищенной воды 11, а также охлаждение потоков до нормальной температуры. Тепловой поток 10 в виде горячего вторичного теплоносителя утилизируется любым известным методом.

Экспериментальная проверка мембранного концентрирования проводилась на сточных водах производства картофельного крахмала со следующими показателями: ХПК общий - 5600 мгО2/л, сухой остаток исходного раствора - 3,0 г/л, pH 5,9. Концентрирование растворенных компонентов стоков АПК осуществлялось на измельченных отходах сельскохозяйственного производства (гречневая и подсолнечная лузга, размер частиц 50-200 мкм). После смешения сточных вод с твердыми отходами концентрирование образовавшихся комплексов проводилось на микрофильтрационных мембранах.

Мембранное разделение осуществляется следующим образом. Разделяемый раствор, находящийся в емкости 13 объемом около 10 л, насосом 21 последовательно прокачивается через два мембранных аппарата 19, оснащенных трубчатыми керамическими мембранами с внутренним разделительным слоем. Пермеат обоих аппаратов выводится из установки, но при необходимости может быть возвращен в емкость. Концентрат возвращается в емкость 13, что обеспечивает циркуляцию исходной смеси в установке с постепенным повышением концентрации задерживаемых компонентов. Насос 21 шнекового типа обеспечивает перекачивание и создание напора в мембранных аппаратах. Расход насоса измеряется ротаметром 15. Для контроля давления в установке имеются три манометра 17, установленные на входе в мембраны 19, между ними и на выходе, что позволяет измерять гидравлическое сопротивление мембран 19. Давление устанавливается дросселем 16. На нагнетательном трубопроводе насоса 21 размещен термометр 20, показания которого выведены на монитор. Емкость 13 снабжена термостатирующей рубашкой 14 и нижним вентилем 18 слива.

Способ поясняется следующими примерами.

После добавления измельченных отходов исходная концентрация твердой фазы составляла 2,9-3,1 г/л. Эксперименты проводили с разбавлением получаемого концентрата исходной дисперсией. Исходную дисперсию добавляли в объеме по 1 л после периодического вывода, соответственно 1 л пермеата. Концентрат 8 при этом продолжал циркулировать через емкость 13. В процессе работы установки концентрация органосодержащих отходов повышалась. При этом заметных изменений в параметрах мембран не было отмечено - удельная производительность мембран оставалась высокой даже при концентрации твердой фазы 42-43 г/л, скорость потока дисперсии в каналах мембран также была постоянна - 3,4 м/с, что объясняется самоочищающим эффектом суспензии при ее прокачивании по трубчатой мембране 19. Постоянство производительности свидетельствует о практически постоянном гидравлическом сопротивлении осадка. Значения оптической плотности отобранных проб пермеата остаются на уровне 0,02-0,04, что соответствует значению оптической плотности для водопроводной воды и подтверждает качественную очистку воды от органических загрязнений. В процессе концентрирования частицы отходов не блокируют поверхность мембран и не забивают поры. В результате время концентрирования сокращается в 2,5-3,0 раза.

Результаты экспериментов по микрофильтрации представлены в таблице.

Обработку в условиях СКВО проводили в реакторе периодического действия при температуре 450-550°С и давлении 25 МПа. После обработки в этих условиях значение ХПК конденсата не превышало 0,2-0,4 г О2/л, что позволяет осуществлять сброс в канализационную сеть.

Мембранное концентрирование полученной суспензии обеспечивает двойной эффект очистки. Во-первых, не возникает так называемого поляризационного слоя загрязнений у поверхности мембраны, поскольку загрязнения переходят из растворенного состояния в адсорбированное. Как известно, поляризационные слои сопровождаются переходом их в гелевые слои, что резко снижает производительность мембран. Ввод мелкодисперсных частиц снимает эту проблему, поскольку растворенные органические загрязнения уходят из раствора вглубь пористых твердых частиц, а частицы, в свою очередь, двигаясь поршневым течением вдоль поверхности мембран, производят механическую очистку мембранной поверхности. Это поддерживает производительность мембран на постоянном высоком уровне. Во-вторых, вводимые частицы тонкоизмельченной гречневой или подсолнечной лузги, сами подвергаются полному окислению в сверхкритических условиях воды, образуя СО2 и H2O, что и органические загрязнения сточной воды, но выделяющееся при этом дополнительное тепло полностью компенсирует энергетические затраты на подготовку сточных вод.

Введение мелкодисперсных отходов для концентрирования растворенных низкомолекулярных органических загрязнений (сахара, крахмала и др.) позволяет использовать микрофильтрационные мембраны. Без введения сорбента для очистки воды от низкомолекулярных загрязнений неизбежно применение технологии обратного осмоса, что увеличивает временные и финансовые затраты и в целом снижает экономическую эффективность процесса очистки.

Похожие патенты RU2639810C1

название год авторы номер документа
Способ очистки сточных вод от растворенных органических загрязнений 2016
  • Федотов Анатолий Валентинович
  • Григорьев Виктор Степанович
  • Свитцов Алексей Александрович
  • Ванчурин Виктор Илларионович
  • Романов Илья Владимирович
RU2658404C1
Способ обезвреживания полигонного фильтрата и других жидких отходов с высоким содержанием трудноокисляемых органических веществ (по показателю ХПК) на основе сверхкритического водного окисления и устройство для его реализации 2020
  • Маркелов Алексей Юрьевич
  • Ширяевский Валерий Леонардович
  • Черкасова Ольга Вячеславовна
RU2783358C2
Способ очистки концентрированных органических стоков и устройство для его осуществления 2017
  • Пашкин Николай Сергеевич
  • Пашкин Антон Сергеевич
RU2699118C2
Установка очистки стоков 2020
  • Чупраков Юрий Викторович
  • Шухтуева Елена Викторовна
  • Исхаков Ильдар Раисович
  • Улановская Юлия Викторовна
RU2747102C1
Способ переработки жидких радиоактивных отходов 2018
  • Слюнчев Олег Михайлович
  • Бобров Павел Александрович
  • Стариков Евгений Николаевич
  • Кичик Валерий Анастасьевич
RU2686074C1
СПОСОБ ОЧИСТКИ БЫТОВЫХ СТОЧНЫХ ВОД, СОДЕРЖАЩИХ ОРГАНИЧЕСКИЕ ЗАГРЯЗНЕНИЯ 2011
  • Соловьев Рудольф Юрьевич
  • Федотов Анатолий Валентинович
  • Пронская Татьяна Викторовна
RU2481273C1
КОМБИНИРОВАННЫЙ СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД, СОДЕРЖАЩИХ ОРГАНИЧЕСКИЕ ЗАГРЯЗНЕНИЯ 2011
  • Черноиванов Вячеслав Иванович
  • Федотов Анатолий Валентинович
  • Пронская Татьяна Викторовна
RU2480423C1
СПОСОБ ПОЛУЧЕНИЯ НИТРИТ-НИТРАТНЫХ СОЛЕЙ 2006
  • Янковский Николай Андреевич
  • Степанов Валерий Андреевич
  • Родионов Юрий Михайлович
  • Репухов Юрий Владимирович
RU2314256C1
Энергетический комплекс на основе газификации отходов биомассы 2017
  • Артамонов Алексей Владимирович
  • Кожевников Юрий Александрович
  • Костякова Юлия Юрьевна
RU2679330C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2004
  • Савкин Александр Евгеньевич
  • Свитцов Алексей Александрович
  • Хубецов Сослан Борисович
  • Корчагин Юрий Павлович
  • Резник Артур Аронович
  • Зинин Александр Валентинович
  • Красников Петр Владимирович
  • Прилепо Юрий Петрович
  • Арустамов Артур Эдуардович
RU2268513C1

Иллюстрации к изобретению RU 2 639 810 C1

Реферат патента 2017 года Способ очистки сточных вод от растворенных органических загрязнений

Изобретение относится к процессам очистки сточных вод, содержащих растворенные органические загрязнения, методом мокрого окисления, конкретно методом сверхкритического водного окисления, и может использоваться для очистки бытовых, технологических, поверхностных, сельскохозяйственных сточных вод. Способ очистки сточных вод от растворенных органических загрязнений включает обработку сточных вод в условиях сверхкритического водного окисления до полного окисления органических соединений с получением газового потока, потока очищенной воды и тепла. Перед окислением в сточную воду вводят мелкодисперсную гречневую или подсолнечную лузгу с размером частиц 50-200 мкм, подают образовавшуюся суспензию на мембранное концентрирование с получением очищенной воды и концентрата сточных вод, подаваемого в аппарат сверхкритического водного окисления. Технический результат - снижение энергетических затрат и повышение экономической эффективности. 2 ил., 1 табл.

Формула изобретения RU 2 639 810 C1

Способ очистки сточных вод от растворенных органических загрязнений, включающий обработку сточных вод в условиях сверхкритического водного окисления до полного окисления органических соединений с получением газового потока, потока очищенной воды и тепла, отличающийся тем, что перед окислением в сточную воду вводят мелкодисперсную гречневую или подсолнечную лузгу с размером частиц 50-200 мкм, подают образовавшуюся суспензию на мембранное концентрирование с получением очищенной воды и концентрата сточных вод, подаваемого в аппарат сверхкритического водного окисления.

Документы, цитированные в отчете о поиске Патент 2017 года RU2639810C1

US 4543190 A, 24.09.1985
КОМБИНИРОВАННЫЙ СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД, СОДЕРЖАЩИХ ОРГАНИЧЕСКИЕ ЗАГРЯЗНЕНИЯ 2011
  • Черноиванов Вячеслав Иванович
  • Федотов Анатолий Валентинович
  • Пронская Татьяна Викторовна
RU2480423C1
СПОСОБ ОЧИСТКИ БЫТОВЫХ СТОЧНЫХ ВОД, СОДЕРЖАЩИХ ОРГАНИЧЕСКИЕ ЗАГРЯЗНЕНИЯ 2011
  • Соловьев Рудольф Юрьевич
  • Федотов Анатолий Валентинович
  • Пронская Татьяна Викторовна
RU2481273C1
ПРОПЕЛЛЕР 1925
  • Карнюшин В.И.
SU6363A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1

RU 2 639 810 C1

Авторы

Федотов Анатолий Валентинович

Григорьев Виктор Степанович

Свитцов Алексей Александрович

Соловьев Сергей Александрович

Даты

2017-12-22Публикация

2016-12-23Подача