КОНСТРУКЦИОННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ Российский патент 2004 года по МПК C22C21/08 

Описание патента на изобретение RU2233345C1

Предлагаемое изобретение относится к металлургии сплавов, в частности деформируемых термически неупрочняемых сплавов, предназначенных для использования в виде деформированных полуфабрикатов в качестве конструкционного материала.

Известны в металлургии конструкционные деформируемые термически неупрочняемые сплавы на основе алюминия (см. ГОСТ 4784-74), в частности сплав АМг6 следующего химического состава, мас.%:

Магний 5,8-6,8

Марганец 0,5-0,8

Титан 0,02-0,1

Бериллий 0,0002-0,005

Алюминий Остальное

Однако существующий сплав имеет низкие прочностные характеристики, в частности низкий предел текучести деформированных полуфабрикатов в отожженном и в горячедеформированном состояниях.

Известен деформируемый термически неупрочняемый сплав на основе алюминия, предназначенный для использования в виде деформированных полуфабрикатов в качестве конструкционного материала (см. патент RU №2085607, М.кл. С 22 С 21/06 - прототип), следующего химического состава, мас.%:

Магний 3,9-4,9

Титан 0,01-0,1

Бериллий 0,0001-0,005

Цирконий 0,05-0,15

Скандий 0,20-0,50

Церий 0,001-0,004

Алюминий Остальное

Известный сплав имеет недостаточно высокие характеристики статической прочности, вязкости разрушения и циклической трещиностойкости при высокой технологичности в металлургическом производстве, высокой коррозионной стойкости, хорошей свариваемости и высокой работоспособности при криогенных температурах.

Предлагается конструкционный деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, титан, бериллий, цирконий, скандий и церий, который дополнительно содержит марганец и группу элементов, включающую железо и кремний, и компоненты взяты в следующем соотношении, мас.%:

Магний 5,0-5,6

Титан 0,01-0,03

Бериллий 0,0002-0,005

Цирконий 0,05-0,12

Скандий 0,16-0,26

Церий 0,0002-0,0009

Марганец 0,15-0,5

Группа элементов, включающая

железо и кремний 0,05-0,12

Алюминий Остальное

при этом величина отношения содержания железа к содержанию кремния должна быть равна или больше единицы.

Предлагаемый сплав отличается от известного тем, что он дополнительно содержит марганец и группу элементов, включающую железо и кремний, при следующем соотношении компонентов, мас.%:

Магний 5,0-5,6

Титан 0,01-0,03

Бериллий 0,0002-0,005

Цирконий 0,05-0,12

Скандий 0,16-0,26

Церий 0,0002-0,0009

Марганец 0,15-0,5

Группа элементов, включающая

железо и кремний 0,05-0,12

Алюминий Остальное

при этом величина отношения содержания железа к содержанию кремния должна быть равна или больше единицы.

Технический результат – повышение характеристик статической и динамической прочности сплава, что позволяет повысить ресурс, надежность и характеристики весовой отдачи конструкций, работающих в условиях статических и динамических нагрузок, в частности конструкций летательных аппаратов, в том числе работающих на криогенном топливе.

При предлагаемом содержании и соотношении компонентов в предлагаемом сплаве за счет вторичных выделений мелкодисперсных интерметаллидов, содержащих в своем составе алюминий, скандий, цирконий и другие переходные металлы, входящие в состав сплава, обеспечивается высокий уровень статической прочности. В то же время достаточно пластичная матрица, представляющая собой, в основном, твердый раствор магния и марганца в алюминии, за счет высокого запаса пластичности обеспечивает высокую сопротивляемость сплава развитию трещины при статическом и циклическом нагружении. Регламентируемая величина отношения содержания железа к содержанию кремния при их достаточно низком суммарном содержании оптимизирует морфологию первичных интерметаллидов кристаллизационного происхождения, содержащих, в основном, алюминий, железо и кремний, способствующих некоторому повышению статической прочности сплава при сохранении пластичности.

Пример.

С использованием в качестве шихты алюминия марки А99, магния Mг90, двойных лигатур алюминий–титан, алюминий–бериллий, алюминий–цирконий, алюминий–скандий, алюминий–церий, алюминий–марганец, алюминий–железо и силумина в электропечи готовили расплав и методом полунепрерывного литья отливали плоские слитки сечением 165×550 мм из сплава предлагаемого состава с минимальным (состав 1), оптимальным (состав 2), максимальным (состав 3) содержанием компонентов, запредельным содержанием компонентов (составы 4, 5), а также из известного (состав 6) сплава (табл. 1).

При изготовлении сплава в промышленных условиях металлургического производства в качестве шихтовых материалов возможно использование отходов стандартных алюминиево-магниевых сплавов.

Слитки гомогенизировали, обрабатывали механически до толщины 140 мм, после чего на стане горячей прокатки при 400°С прокатывали до толщины 7 мм, а затем на стане холодной прокатки – до толщины 2 мм. Полученные холоднокатаные листы подвергали отжигу в электропечи с воздушной циркуляцией. Отожженные листы служили материалом для испытаний. Испытания проводили при комнатной температуре.

В направлении поперек прокатки вырезали стандартные плоские образцы и определяли механические свойства при статическом растяжении: предел прочности σВ, предел текучести σ0,2, относительное удлинение δ.

Испытания на вязкость разрушения (статическую трещиностойкость) проводили на сервогидравлической испытательной машине MTS-100. Определяли критическое значение условного коэффициента интенсивности напряжений на поперечных образцах шириной В=200 мм.

Испытания на циклическую трещиностойкость проводили на сервогидравлической машине РSА-10. Нагружение поперечных образцов

шириной В=200 мм осуществляли по синусоидальному циклу с частотой f=10 Гц, асимметрия цикла R=0,1. Определяли скорость роста трещины усталости (СРТУ), dа/dN, при величине размаха коэффициента интенсивности напряжений ΔК=31,2 .

Результаты испытаний приведены в табл. 2.

Как видно из табл. 2, предлагаемый сплав обладает более высокими характеристиками статической прочности, вязкости разрушения и циклической трещиностойкости по сравнению с известным. Применение предлагаемого сплава в качестве конструкционного материала позволит на 10-15% снизить вес конструкций, повысить их надежность и долговечность, что особенно важно для самолетостроения. Хорошая свариваемость и высокая коррозионная стойкость предлагаемого сплава, свойственные термически неупрочняемым сплавам на основе алюминия, позволит использовать его при создании новых видов летательных аппаратов с использованием сварки как основного вида соединений. Предлагаемый сплав может использоваться в сварных конструкциях как в качестве основного металла, так и в качестве присадочного материала при сварке плавлением.

Похожие патенты RU2233345C1

название год авторы номер документа
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2008
  • Овсянников Борис Владимирович
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
  • Чертовиков Владимир Михайлович
RU2387725C2
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2013
  • Задерей Александр Геннадьевич
  • Ковалев Геннадий Дмитриевич
  • Филатов Юрий Аркадьевич
  • Захаров Валерий Владимирович
  • Байдин Николай Григорьевич
  • Дегтярь Владимир Григорьевич
  • Чернов Сергей Сергеевич
  • Звонков Александр Анатольевич
  • Махов Сергей Владимирович
  • Доброжинская Руслана Ивановна
  • Овсянников Борис Владимирович
  • Семовских Станислав Валерьевич
RU2513492C1
КОНСТРУКЦИОННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2015
  • Филатов Юрий Аркадьевич
  • Захаров Валерий Владимирович
  • Панасюгина Людмила Ивановна
  • Байдин Николай Григорьевич
  • Лапин Петр Георгиевич
  • Доброжинская Руслана Ивановна
  • Звонков Александр Анатольевич
  • Молочев Валерий Петрович
  • Овсянников Борис Владимирович
  • Хамнагдаева Евгения Александровна
RU2599590C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2022
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Иванова Анна Олеговна
  • Никитина Маргарита Александровна
RU2800435C1
АЛЮМИНИЕВЫЙ СПЛАВ 1994
  • Фридляндер И.Н.
  • Ельцов В.Н.
  • Данилов С.Ф.
RU2081933C1
Деформируемый термически неупрочняемый сплав на основе алюминия 2016
  • Захаров Валерий Владимирович
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
  • Бочвар Сергей Георгиевич
  • Доброжинская Руслана Ивановна
RU2639903C2
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1995
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
  • Конкевич Валентин Юрьевич
  • Ильенок Андрей Алексеевич
  • Сухомлин Виктор Степанович
RU2082807C1
КРИОГЕННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2007
  • Филатов Юрий Аркадьевич
  • Елагин Виктор Игнатович
  • Захаров Валерий Владимирович
  • Панасюгина Людмила Ивановна
  • Доброжинская Руслана Ивановна
  • Елисеев Александр Александрович
  • Додин Геннадий Васильевич
  • Звонков Александр Анатольевич
  • Петроковский Сергей Александрович
  • Молочев Валерий Петрович
RU2343218C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2010
  • Дриц Александр Михайлович
  • Орыщенко Алексей Сергеевич
  • Григорян Валерий Арменакович
  • Осокин Евгений Петрович
  • Барахтина Наталия Николаевна
  • Соседков Сергей Михайлович
  • Арцруни Арташес Андреевич
  • Хромов Александр Петрович
  • Цургозен Леонид Александрович
RU2431692C1
КРИОГЕННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1995
  • Бондарев Борис Иванович
  • Давыдов Валентин Георгиевич
  • Доброжинская Руслана Ивановна
  • Елагин Виктор Игнатович
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
RU2085607C1

Иллюстрации к изобретению RU 2 233 345 C1

Реферат патента 2004 года КОНСТРУКЦИОННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к металлургии сплавов, в частности деформируемых термически неупрочняемых сплавов, предназначенных для использования в виде деформированных полуфабрикатов в качестве конструкционного материала. Предложен сплав, содержащий следующие компоненты, мас.%: магний 5,0-5,6; титан 0,01-0,03; бериллий 0,0002-0,005; цирконий 0,05-0,12; скандий 0,16-0,26; церий 0,0002-0,0009; марганец 0,15-0,5 и группу элементов, включающую железо и кремний 0,05-0,12; алюминий – остальное, при этом величина отношения содержания железа к содержанию кремния должна быть равна или больше единицы. Техническим результатом изобретения является создание сплава, обладающего более высокими характеристиками статической прочности, вязкости разрушения и циклической трещиностойкости по сравнению с известным. 2 табл.

Формула изобретения RU 2 233 345 C1

Конструкционный деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, титан, бериллий, цирконий, скандий и церий, отличающийся тем, что он дополнительно содержит марганец и группу элементов, включающую железо и кремний, и компоненты взяты в следующем соотношении, мас.%:

Магний 5,0-5,6

Титан 0,01-0,03

Бериллий 0,0002-0,005

Цирконий 0,05-0,12

Скандий 0,16-0,26

Церий 0,0002-0,0009

Марганец 0,15-0,5

Группа элементов, включающая

железо и кремний 0,05-0,12

Алюминий Остальное

при этом величина отношения содержания железа к содержанию кремния должна быть равна или больше единицы.

Документы, цитированные в отчете о поиске Патент 2004 года RU2233345C1

КРИОГЕННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1995
  • Бондарев Борис Иванович
  • Давыдов Валентин Георгиевич
  • Доброжинская Руслана Ивановна
  • Елагин Виктор Игнатович
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
RU2085607C1

RU 2 233 345 C1

Авторы

Филатов Ю.А.

Давыдов В.Г.

Елагин В.И.

Захаров В.В.

Швечков Е.И.

Панасюгина Л.И.

Доброжинская Р.И.

Даты

2004-07-27Публикация

2003-01-13Подача