Изобретение относится к области газовой промышленности и может быть использовано для получения гидрата метана как продукта, пригодного для хранения и транспортировки газа (метана) в газогидратном состоянии. При непрерывном росте потребления традиционных энергоносителей - нефти, природного газа, каменного угля и неизбежном истощении их запасов, все острее встает задача о вовлечении в потребление альтернативных энергоносителей. Одним из таких энергоносителей является гидрат природного газа. Запасы природного газа в наземных залежах Арктики и Антарктики, на дне океанов и морей в составе газовых гидратов на порядки превышают разведанные запасы свободного природного газа. По различным оценкам, запасы углеводородов в гидратах составляют от 1.8×1014 до 7.6×1018 м3. Это делает весьма привлекательным рассмотрение возможности использования в перспективе газовых гидратов в качестве сырья для получения свободного природного газа. Кроме того, гидраты природного газа следует рассматривать как продукт сбора, промышленной переработки и хранения из природного газа непосредственно в местах добычи.
Газовые гидраты представляют собой клатратные соединения, состоящие из молекул газа, окруженные каркасом из молекул воды. Газовые гидраты образуют твердую фазу при давлениях выше 50 атмосфер и при температурах ниже 0°С. Собственно метан CH4 - бесцветный газ без запаха, применяется как топливо, сырье в химической промышленности, производный продукт - гидрат метана обладает следующими характеристиками:
- формула - CH4-5,9 H2O;
- соотношение массы метана к воде -1:6,64;
- плотность гидрата - 0,90 г/см3;
- удельная теплота сгорания - 57,7 кДж/моль;
- количество теплоты - 112,8 ккал/кг.
Известен способ и устройство добычи свободного газа конверсией газового гидрата из скважины (патент РФ №2370642). Согласно данному изобретению газ удаляют из газового гидрата приведением в контакт гидрата с высвобождающим агентом. Когда высвобождающий агент контактирует с газовым гидратом, высвобождающий агент самопроизвольно замещает газ в гидратной структуре без плавления гидратной структуры. Недостатком данного способа является, что он позволяет получить газ из гидрата, но не синтезировать гидрат самостоятельно.
Настоящее изобретение относится к устройствам для получения из природного газа метана гидрата метана в виде стеклообразного жидкотекучего продукта, предназначенного для его транспортировки в термотаре с возможностью последующей рекуперации метана в газообразный или сжиженный вид топлива. В предлагаемой установке реализуется способ образования гидрата газа в условиях, далеких от термодинамического состояния равновесия двухкомпонентной водно-газовой смеси, которые в результате охлаждения первоначально формируют стеклообразные слои водно-газовой смеси с последующим переходом из стеклообразного в жидкотекучее состояние.
Поставленная задача решается тем, что установка для получения гидрата из газа включает такие принципиальные элементы, как реактор, системы подачи газа метана и воды, холодильные установки и контрольные приборы. Реактор выполнен в виде вертикальной колонки, разделенной сверху вниз на функциональные камеры: смесительная камера, камера предварительного охлаждения, камера сбора стеклообразного газового гидрата, камера-сборник жидкого гидрата. Дополнительно к реактору пристроена камера низких температур, имеющая в верхней части охлаждающий теплообменник, а в донной части люк для выемки готового продукта. Подача в смесительную камеру исходных компонентов гидрата метана - газ (метан) и вода осуществляется через форсунки с головками-распылителями, которые соединены с магистральными трубопроводами высокого давления воды и газ - метана. Смесительная камера отделена от камеры предварительного охлаждения горизонтальной перегородкой, выполненной из мелкоячеистой сетки. В этой камере установлены вертикальные теплообменники охладительной системы. Эта камера отделена от камеры сбора жидкотекучего гидрата метана горизонтальной сепаратной решеткой, под которой расположен лоток с уклоном в сторону сливного отверстия в стенке колонки, причем лоток закреплен к стенке колонки с некоторым зазором. Под лотком установлен сборник водного конденсата, который стекает через донное отверстие в нагревательную емкость. Нагревательная емкость в свою очередь соединена с внешней водопроводной системой, включающей в себя магистральный водопровод, насос и компрессор, который подает воду под давлением к форсунке. С внешней стороны колонки установлена камера низких температур, полость которой связана с камерой сбора жидкотекущего гидрата метана сливным патрубком. Камера низких температур представляет собой замкнутую емкость, оборудованную теплообменником холодильной системы, а в донной части имеется люк для извлечения накопленного в сменной термотаре готового продукта и установки новой термотары.
На фиг. 1 показана схема установки для производства гидрата метана.
Установка для получения гидрата из природного газа включает реактор, выполненный в виде вертикальной герметичной и имеющей с наружной стороны теплоизолирующее покрытие колонны 1, которая разделена сверху вниз на функциональные камеры: смесительную камеру 2, камеру предварительного охлаждения 3, камеру сбора стеклообразного газового гидрата метана 4 и конденсата воды 5. Кроме того, установка включает в себя пристроенную к колонке 1 отдельную камеру низких температур 6, магистральный газопровод метана 7, систему водопровода 8 с насосом 9 и компрессором 10, холодильную систему 11 и нагреватель конденсата воды 12 с обратным клапаном 13, установленные в донной части колонки 1. В смесительной камере 2 расположены распылители газа 14 и воды 15 инжекторного типа, которые соединены с магистральными трубопроводами высокого давления воды 8 и газа метана 7, при этом камера 2 отделена от камеры предварительного охлаждения 3 горизонтальной перегородкой 16, выполненной из мелкоячеистой сетки. В камере 3 вертикально установлены конвекторы 17 холодильной системы 11. Между камерой 3 и камерой сбора стеклообразного газового гидрата метана 4 установлена сепараторная решетка 18, под которой к стенкам колонки 1 с зазором закреплен сливной лоток 19, имеющий уклон в сторону сливного отверстия в стенке колонки, через которое проходит соединительная трубка 20 с камерой низких температур 6. В камере низких температур 6 установлен конвектор горизонтального расположения 21 холодильной системы 11. В донной части выполнен люк 22 для выгрузки готового продукта в виде брикетов гидрата метана или накопленного в сменной термотаре. Под лотком 19 занимает место камера 5 - сборник конденсата воды, стекающей по стенкам колонки 1 в нижнюю часть камеры 12, которая после подогрева нагревательным электрическим элементом 23 попадает в водопроводную систему 8 для повторного использования. Для исключения обратного попадания воды в колонку 1 за нагревательным элементом установлен обратный клапан 13. Кроме того, в установке использованы контрольные приборы давления газа метана 24 и воды 25, расположенные перед смесительной камерой 2, датчик контроля давления и температуры 26 и 27 в камерах охлаждения 3 и 6 соответственно.
Принцип работы установки заключается в следующем. В смесительную камеру 2 из магистрального газопровода 7 и водопровода 8 подаются газ (метан) и вода - основные компоненты для производства гидрата метана. Подача этих компонентов осуществляется через распылительные инжекторные головки 14 и 15 под давлением 30-150 атм и температуре 0÷-50°С. Внутри колонки поддерживается постоянные показатели давления в диапазоне 30-150 атм. Объемы подаваемых компонентов и их процентное соотношение также регулируются по подаче в смесительную камеру. В процессе смешивания метана с водяным паром в условиях термодинамического равновесия происходит образование газового гидрата, переходящее в лавинообразную кристаллизацию молекул газа в оболочке воды с поступательным смещением фронта газообразных и кристаллизованных масс в нижнюю часть смесительной камеры с постепенным просачиванием каплеобразных соединений газа с водой через сетчатую разделительную перегородку 16 между смесительной камерой 2 и камерой предварительного охлаждения 3, вследствие чего они проникают в зону пониженных температур, постепенно сливаясь в единую стекловидную жидкоподвижную массу. В процессе продвижения этой массы через камеру охлаждения 3 температура ее поддерживается в пределах, при которых невозможен обратный процесс молекулярного разложения и превращения метана в газообразное состояние, но достаточная для поддержания массы в жидкоподвижном состоянии. В последующем стекловидная масса проникает через достаточно большие ячейки сепараторной решетки 18 между камерами, падает в сборный лоток 4 и под тяжестью собственного веса смещается в сторону сливного отверстии, заполняя переходную трубку 20. Под действием собственного веса и избыточного давления, которое постоянно поддерживается в камерах 2, 3 и 4, стекловидная масса попадает в камеру низких температур 6, где она подвергается дополнительному охлаждению до температур, необходимых для транспортировки продукта, фасуется в виде брикетов, которые периодически извлекаются через люк 22, расположенный в нижней части камеры, или заполняется в сменную термотару. Вода, которая не участвовала в химическом процессе соединения с газом метана, конденсируется на стенках колонки 1, стекает в нижнюю часть камеры - сборника конденсата 12, эта вода, содержащая пары газа, с помощью нагревательного элемента 23 нагревается до температуры, соответствующей температуре воды водопроводной системы и направляется через обратный клапан в водопроводную систему 8 для повторного использования. Для исключения обратного попадания воды в колонку 1 за нагревательным элементом установлен обратный клапан 13. Кроме того, в установке использованы контрольные приборы давления газа метана 24 и воды 25, расположенные перед смесительной камерой 2, датчик контроля давления и температуры 26 и 27 в камерах охлаждения 3 и 6 соответственно. Не участвовавший в начальной стадии процесса газ метан как самая легкая фракция всегда находится в верхней части смесительной камеры 2 до полного использования.
Пример 1. В смесительную камеру 2 подается метан под давлением 80 атм и температуре +15°С. Вода из магистрального водопровода подвергается сжатию до давления примерно 150 атм и поступает через распылительную инжекторную головку 15 в смесительную камеру 2 с расширением до давления 80 атм. Давление в камерах поддерживается на уровне 80 атм. Температура камеры предварительного охлаждения поддерживается на уровне -3°С. В последующем гидратная масса падает в сборный лоток 4 и под тяжестью собственного веса заполняет переходную трубку 20. Образующийся гидрат попадает в камеру низких температур 6, где она подвергается дополнительному охлаждению до температуры -10°С. В результате образуются частицы гидрата в размере 1-8 мм, с газосодержанием 150 м3 метана в 1 м3 гидрата. Некристаллизующаяся вода стекает в сборник конденсата 12 и с помощью насоса возвращается в цикл и повторно поступает в смесительную камеру 2 через распылительные инжекторные головки 15. Полученный гидрат метана возможно направлять на хранение и транспортировку в изолированной термотаре.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ГИДРАТА МЕТАНА | 2023 |
|
RU2807263C1 |
ГАЗОНАПОЛНИТЕЛЬНАЯ СТАНЦИЯ НАУМЕЙКО | 2004 |
|
RU2244205C1 |
СПОСОБ ПОЛУЧЕНИЯ ГАЗОВЫХ ГИДРАТОВ | 2010 |
|
RU2457010C1 |
СПОСОБ НЕПРЕРЫВНОГО КОНДИЦИОНИРОВАНИЯ ГАЗА, ПРЕДПОЧТИТЕЛЬНО ПРИРОДНОГО ГАЗА | 2009 |
|
RU2470225C2 |
СПОСОБ ПОДГОТОВКИ ГАЗА ДЛЯ БЕСТРУБОПРОВОДНОГО ТРАНСПОРТИРОВАНИЯ | 2003 |
|
RU2277121C2 |
СПОСОБ ПЕРЕРАБОТКИ ГАЗА ПРИ РАЗРАБОТКЕ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ И КОМПЛЕКС ОБОРУДОВАНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2319083C2 |
УСТРОЙСТВО ДЛЯ НЕПРЕРЫВНОГО КОНДИЦИОНИРОВАНИЯ ПОСТУПАЮЩЕГО ИЗ ХРАНИЛИЩА ПРИРОДНОГО ГАЗА | 2009 |
|
RU2471116C2 |
СПОСОБ ЗАПРАВКИ ТРАНСПОРТА СЖАТЫМ ПРИРОДНЫМ ГАЗОМ (ВАРИАНТЫ) И ПЕРЕДВИЖНАЯ ГАЗОЗАПРАВОЧНАЯ СТАНЦИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2305224C2 |
СИСТЕМА ГАЗОСНАБЖЕНИЯ С ПИКОВЫМ РЕГУЛИРОВАНИЕМ ГАЗОПОТРЕБЛЕНИЯ | 2007 |
|
RU2374556C2 |
Газопровод для транспортировки природного газа в виде газовых гидратов | 1976 |
|
SU711758A1 |
Изобретение относится к установке для получения гидрата метана, содержащая выполненный в виде вертикальной колонки реактор, внутри которого выполнены функциональные камеры и к которому подведены магистральный газопровод метана, водопровод с насосом и компрессором, и холодильная система. Установка характеризуется тем, что колонка реактора сверху вниз разделена на смесительную камеру, камеру предварительного охлаждения, камеру сбора стеклообразного газового гидрата метана и конденсата воды, снаружи реактора пристроена отдельная камера низких температур, при этом в смесительной камере расположены распылители газа и воды инжекторного типа, соединенные с магистральными трубопроводами высокого давления газа метана и воды, а под смесительной камерой расположена отделенная мелкоячеистой горизонтальной перегородкой камера предварительного охлаждения, в которой установлены конвекторы холодильной системы вертикального расположения, далее между этой камерой и камерой сбора стеклообразного газового гидрата метана расположена сепараторная решетка, отделяющая камеру сбора стеклообразного газового гидрата метана и конденсата воды, в которой к стенкам колонки с зазором установлен сливной лоток, имеющий уклон в сторону сливного отверстия, выполненного в стенке колонки, через которое проходит соединительная трубка с камерой низких температур, причем в верхней части камеры низких температур установлен конвектор холодильной системы горизонтального расположения, а в донной части имеется люк выгрузки готового продукта. Изобретение используется для получения гидрата метана как продукта, пригодного для хранения и транспортировки газа (метана) в газогидратном состоянии. 2 з.п. ф-лы, 1 пр., 1 ил.
1. Установка для получения гидрата метана, содержащая выполненный в виде вертикальной колонки реактор, внутри которого выполнены функциональные камеры и к которому подведены магистральный газопровод метана, водопровод с насосом и компрессором и холодильная система, отличающаяся тем, что колонка реактора сверху вниз разделена на смесительную камеру, камеру предварительного охлаждения, камеру сбора стеклообразного газового гидрата метана и конденсата воды, снаружи реактора пристроена отдельная камера низких температур, при этом в смесительной камере расположены распылители газа и воды инжекторного типа, соединенные с магистральными трубопроводами высокого давления газа метана и воды, а под смесительной камерой расположена отделенная мелкоячеистой горизонтальной перегородкой камера предварительного охлаждения, в которой установлены конвекторы холодильной системы вертикального расположения, далее между этой камерой и камерой сбора стеклообразного газового гидрата метана расположена сепараторная решетка, отделяющая камеру сбора стеклообразного газового гидрата метана и конденсата воды, в которой к стенкам колонки с зазором установлен сливной лоток, имеющий уклон в сторону сливного отверстия, выполненного в стенке колонки, через которое проходит соединительная трубка с камерой низких температур, причем в верхней части камеры низких температур установлен конвектор холодильной системы горизонтального расположения, а в донной части имеется люк выгрузки готового продукта.
2. Установка для получения гидрата метана по п. 1, отличающаяся тем, что расположенная под сливным лотком камера сбора конденсата воды в нижней части снабжена нагревательным электрическим элементом и соединена с водопроводной системой посредством водопровода с клапаном обратного действия.
3. Установка для получения гидрата метана по п. 1, отличающаяся тем, что в ней установлены контрольные приборы давления газа метана и воды, расположенные перед смесительной камерой, а также датчики контроля давления и температуры в смесительной камере, камере предварительного охлаждения и камере низких температур.
СПОСОБ ФОРМОВАНИЯ ГРАНУЛЫ ГАЗОВОГО ГИДРАТА | 2012 |
|
RU2584685C2 |
СПОСОБ ПОДГОТОВКИ ГАЗА ДЛЯ БЕСТРУБОПРОВОДНОГО ТРАНСПОРТИРОВАНИЯ | 2003 |
|
RU2277121C2 |
СПОСОБ ПОЛУЧЕНИЯ, ЗАМЕЩЕНИЯ ИЛИ ДОБЫЧИ ГИДРАТА ГАЗА | 2006 |
|
RU2398813C2 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛ ГАЗОВОГО ГИДРАТА | 2006 |
|
RU2418846C2 |
СПОСОБ ПОДГОТОВКИ ПРИРОДНОГО ГАЗА ДЛЯ ТРАНСПОРТИРОВАНИЯ | 2012 |
|
RU2500950C1 |
JP 2009256424 A, 05.11.2009 | |||
JP 2006206635 A, 10.08.2006 | |||
JP 2009074091 A, 09.04.2009 | |||
JP 2009242682 A, 22.10.2009 | |||
JP 2014000540 A, 09.01.2014 | |||
JP 2003003181 A, 08.01.2003 | |||
WO 2010069472 A1, 24.06.2010. |
Авторы
Даты
2018-02-01—Публикация
2017-06-16—Подача