Изобретение относится к области получения блочного пеностекла и может быть использовано в промышленности строительных материалов.
Из уровня техники известны аналогичные способы получения блочного пеностекла.
Недостатками данных способов являются высокая энергоемкость и длительность технологического процесса, низкое качество конечного продукта.
Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ получения блочного пеностекла (Патент РФ №2417170), включающий диспергирование стеклоотходов и их дигидроксилирование, смешивание их со вспенивающей смесью, гранулирование исходной шихты до размеров частиц 1-3 мм, подачу гранулированной шихты в питатель плазменного реактора перпендикулярно оси плазменного факела, вспенивание гранул шихты в плазменном факеле, напыление конгломератов пеностекла потоком плазмообразующего газа, транспортирование вспененных конгломератов отходящим плазмообразующим потоком газов в металлическую форму.
Существенным недостатком прототипа является высокая энергоемкость технологического процесса получения блочного пеностекла и неоднородность распределения гранул шихты в готовом пеностекле, что ведет к снижению качества конечного продукта.
Технический результат предлагаемого изобретения заключается в снижении энергоемкости процесса получения блочного пеностекла и улучшении однородности распределения гранул шихты в готовом пеностекле.
Технический результат достигается тем, что предлагаемый способ получения блочного пеностекла включает диспергирование стеклоотходов, смешивание их со вспенивающей смесью, гранулирование исходной шихты, подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, напыление конгломератов пеностекла потоком плазмообразующего газа, транспортирование вспененных конгломератов отходящим плазмообразующим потоком газов в металлическую форму, причем гранулирование исходной шихты осуществляется до размеров частиц 0,5-5,0 мм и гранулированная шихта подается в плазменную горелку параллельно оси плазменного факела потоком плазмообразующих газов, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазмотрона 12 кВт.
Предложенный способ получения блочного пеностекла отличается от прототипа тем, что в предлагаемом способе гранулирование исходной шихты осуществляется до размеров частиц 0,5-5,0 мм и гранулированная шихта подается в плазменную горелку параллельно оси плазменного факела потоком плазмообразующих газов, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазмотрона 12 кВт.
Проведенный анализ известных способов получения блочного пеностекла позволяет сделать заключение о соответствии заявляемого изобретения критерию «новизна».
Сопоставительный анализ известного и предлагаемого способов представлен в таблице 1. Экспериментально установлены оптимальные условия получения пеностекла и влияние размера частиц исходной шихты на качество блочного пеностекла (таблицы 2, 3).
Как видно из таблицы 3, размер частиц исходной шихты влияет на вспенивании конгломератов пеностекла и, как следствие, на показатели качества готового пеностекла.
Пример получения блочного пеностекла.
Гранулированная шихта с размером частиц 0,5-5,0 мм, приготовленная из отходов стеклобоя, вспениваясь в автоматическом режиме, загружалась в порошковый питатель. Затем зажигалась дуга плазменного реактора. Под действием плазмообразующего газа (аргон) частицы шихты поступали в зону действия плазменного факела, где образовывались конгломераты пеностекла. Из плазменного реактора под действием динамического напора плазменного факела конгломераты пеностекла напылялись в металлическую форму, где формируется блочное пеностекло, которое поступало на транспортирующем устройстве в зону напыления плазменного реактора.
При оптимальных параметрах работы электродугового плазмотрона УПУ - 8 м (мощность 12 кВт, расход плазмообразующего газа 1,5 м3/ч) получено блочное пеностекло со следующими свойствами: прочность на сжатие - 1,53 МПа; плотность - 0,250 г/см3; объемное водопоглощение - 8,33%; теплопроводность - 0,065 Вт/м⋅К.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА | 2022 |
|
RU2792509C1 |
СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА | 2009 |
|
RU2417170C2 |
Способ получения теплоизоляционного материала | 2020 |
|
RU2746337C1 |
СПОСОБ НАНЕСЕНИЯ ДЕКОРАТИВНОГО ПОКРЫТИЯ НА ЗАКАЛЕННЫЕ СТЕКЛА | 2021 |
|
RU2760667C1 |
СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТНОГО СТЕКЛА | 2017 |
|
RU2669975C1 |
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОМЕТАЛЛИЧЕСКИХ МИКРОШАРИКОВ | 2022 |
|
RU2788194C1 |
ВСПЕНИВАЮЩАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА С ЕЕ ИСПОЛЬЗОВАНИЕМ | 2003 |
|
RU2265582C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА БЛОЧНОМ ПЕНОСТЕКЛЕ | 2011 |
|
RU2458872C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ НА БЛОЧНОМ ПЕНОСТЕКЛЕ | 2018 |
|
RU2686792C1 |
СПОСОБ ПОЛУЧЕНИЯ ВСПЕНЕННЫХ ГРАНУЛ | 2015 |
|
RU2611093C1 |
Изобретение относится к области получения блочного пеностекла. Способ получения блочного пеностекла включает диспергирование стеклоотходов, смешивание их со вспенивающей смесью, гранулирование исходной шихты до размеров частиц 0,5-5,0 мм. Затем осуществляют подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, напыление конгломератов пеностекла потоком плазмообразующего газа, транспортирование вспененных конгломератов отходящим плазмообразующим потоком газов в металлическую форму. Гранулированная шихта подается в плазменную горелку параллельно оси плазменного факела потоком плазмообразующих газов, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазмотрона 12 кВт. Технический результат – улучшение однородности распределения гранул шихты в готовом продукте, снижение теплопроводности, повышение прочности на сжатие. 3 табл.
Способ получения блочного пеностекла, включающий диспергирование стеклоотходов, смешивание их со вспенивающей смесью, гранулирование исходной шихты, подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, напыление конгломератов пеностекла потоком плазмообразующего газа, транспортирование вспененных конгломератов отходящим плазмообразующим потоком газов в металлическую форму, отличающийся тем, что гранулирование исходной шихты осуществляется до размеров частиц 0,5-5,0 мм и гранулированная шихта подается в плазменную горелку параллельно оси плазменного факела потоком плазмообразующих газов, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазмотрона 12 кВт.
СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА | 2009 |
|
RU2417170C2 |
WO 1997030000 A1, 21.08.1997 | |||
CN 103420612 A, 04.12.2013 | |||
WO 2004101137 A1, 25.11.2004 | |||
US 5279633 A1, 18.01.1994. |
Авторы
Даты
2018-02-02—Публикация
2017-01-09—Подача