Изобретение относится к области получения блочного пеностекла и может быть использовано в промышленности строительных материалов.
Из уровня техники известны аналогичные способы получения блочного пеностекла.
Недостатком данных способов является высокая энергоёмкость, длительность технологического процесса и низкое качество конечного продукта.
Наиболее близким по технической сущности и достигаемому результату является способ получения блочного пеностекла (Патент РФ № 2643532), включающий их смешение со вспенивающей смесью, гранулирование шихты с размером частиц 0,5-5,0 мм, подачу гранулированной шихты в питатель плазменного реактора мощностью 12 кВт, вспенивание гранул в плазменном факеле, напыление конгломератов пеностекла потоком плазмообразующего газа в металлическую форму, причём подача шихты в плазменную горелку осуществляется параллельно оси плазменного факела.
Существенным недостатком прототипа является высокая энергоёмкость технологического процесса получения блочного пеностекла, что ведёт к снижению качеств конечного продукта.
Технологический результат предлагаемого изобретения заключается в снижении энергоёмкости процесса получения блочного пеностекла и повышении его качества.
Технический результат достигается тем, что предлагаемый способ получения блочного пеностекла включает диспергирование стеклоотходов, смешивание их со вспенивающейся смесью, гранулирование исходной шихты, подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, напыление конгломератов пеностекла в плазменном факеле. Напыление конгломератов пеностекла потоком плазмообразующего газа, транспортирование вспененных конгломератов отходящим плазмообразующим потоком газов в металлическую форму, причем гранулирование исходной шихты осуществляется до размеров 6-8 мм и гранулированная шихты подаётся в плазменную горелку одновременно перпендикулярно и параллельно оси плазменного факела потоком плазмообразующих газов , а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазматрона 9 кВт.
Предлагаемый способ получения блочного пеностекла отличается от прототипа тем, что в предлагаемом способе гранулирование исходной шихты осуществляется до размеров частиц 6-8 мм и гранулированная шихта подаётся в плазменную горелку одновременно перпендикулярно и параллельно оси плазменного факела потоком плазмообразующих газов, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы поз матрона 9 кВт.
Проведенный анализ известных способов получения блочного пеностекла позволяет сделать заключение о соответствии заявляемого изобретения критерию «новизне»
Сопоставительный анализ известного и предлагаемого способов представлен в таблице 1.
Таблица 1
Сравнительный анализ известного и предлагаемого способов
Экспериментально установленные оптимальные условия получения пеностекла и влияние размера частиц исходной шихты на качество блочного пеностекла представлен в таблицах 2 и 3.
Как видно из таблицы 3, размер частиц исходной шихты влияет на вспенивание конгломератов пеностекла, и как следствие на показатели качества готового пеностекла.
Таблица 2
Оптимальные условия получения пеностекла
*оптимальный вариант
Таблица 3
Влияние размера частиц исходной шихты на качество пеностекла
мм
Пример получения блочного пеностекла.
Гранулированная шихта, с размером частиц 6,00-8,00 мм, приготовленная из отходов стеклобоя, в автоматическом режиме загружалась в порошковый питатель.
Затем зажигалась дуга плазменного реактора. Под действием плазмообразующего газа (аргон) частицы поступали в зону действия плазменного факела, где образовывались конгломераты пеностекла.
Из плазменного реактора под действием динамического напора плазменного факела конгломераты пеностекла напылялись в металлическую форму, где формируется блочное пеностекло, которое поступало на транспортирующем устройстве в зону напыления плазменного реактора.
При оптимальных параметрах работы электродугового плазматрона УПУ-8м (мощность 9 кВт, расход плазмообразующего газа 1,3 м3/час) получено блочное пеностекло со следующими свойствами: прочность на сжатие – 1,85 мПа, теплопроводность 0,061 Вт/(м*К).
название | год | авторы | номер документа |
---|---|---|---|
Способ получения теплоизоляционного материала | 2020 |
|
RU2746337C1 |
СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА | 2017 |
|
RU2643532C1 |
СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА | 2009 |
|
RU2417170C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ НА БЛОЧНОМ ПЕНОСТЕКЛЕ | 2018 |
|
RU2686792C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА БЛОЧНОМ ПЕНОСТЕКЛЕ | 2011 |
|
RU2467963C1 |
СПОСОБ МЕТАЛЛИЗАЦИИ БЛОЧНОГО ПЕНОСТЕКЛА | 2017 |
|
RU2647527C1 |
СПОСОБ НАНЕСЕНИЯ ДЕКОРАТИВНОГО ПОКРЫТИЯ НА ЗАКАЛЕННЫЕ СТЕКЛА | 2021 |
|
RU2760667C1 |
СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТНОГО СТЕКЛА | 2017 |
|
RU2669975C1 |
ВСПЕНИВАЮЩАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА С ЕЕ ИСПОЛЬЗОВАНИЕМ | 2003 |
|
RU2265582C2 |
СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТНОГО СТЕКЛА | 2019 |
|
RU2726676C1 |
Изобретение относится к области получения блочного пеностекла и может быть использовано в промышленности строительных материалов. Способ получения блочного пеностекла включает диспергирование стеклоотходов, смешивание их со вспенивающейся смесью, гранулирование исходной шихты, подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, накопление конгломератов пеностекла потоком плазмообразующего газа, напыление вспененных конгломератов отходящим плазмообразующим потоком газа в металлическую форму. Гранулирование шихты осуществляют до размеров 6-8 мм. Гранулированная шихта подаётся в плазменную горелку одновременно перпендикулярно и параллельно оси плазменного факела потоком плазмообразующего газа, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазматрона 9 кВт. Технический результат изобретения – снижение энергоёмкости процесса и повышение прочности изделий. 3 табл.
Способ получения блочного пеностекла, включающий диспергирование стеклоотходов, смешивание их со вспенивающейся смесью, гранулирование исходной шихты, подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, накопление конгломератов пеностекла потоком плазмообразующего газа, напыление вспененных конгломератов отходящим плазмообразующим потоком газа в металлическую форму, отличающийся тем, что гранулирование шихты осуществляют до размеров 6-8 мм и гранулированная шихта подаётся в плазменную горелку одновременно перпендикулярно и параллельно оси плазменного факела потоком плазмообразующего газа, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазматрона 9 кВт.
СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА | 2017 |
|
RU2643532C1 |
СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ТЕРМОСТОЙКОГО ПЕНОСТЕКЛА | 2013 |
|
RU2536543C1 |
RU 2013105712 A, 20.08.2014 | |||
EP 3309135 A4, 06.03.2019 | |||
НОСИМОЕ УСТРОЙСТВО И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2012 |
|
RU2612508C2 |
Авторы
Даты
2023-03-22—Публикация
2022-03-15—Подача