СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА Российский патент 2023 года по МПК C03B19/08 C03C11/00 

Описание патента на изобретение RU2792509C1

Изобретение относится к области получения блочного пеностекла и может быть использовано в промышленности строительных материалов.

Из уровня техники известны аналогичные способы получения блочного пеностекла.

Недостатком данных способов является высокая энергоёмкость, длительность технологического процесса и низкое качество конечного продукта.

Наиболее близким по технической сущности и достигаемому результату является способ получения блочного пеностекла (Патент РФ № 2643532), включающий их смешение со вспенивающей смесью, гранулирование шихты с размером частиц 0,5-5,0 мм, подачу гранулированной шихты в питатель плазменного реактора мощностью 12 кВт, вспенивание гранул в плазменном факеле, напыление конгломератов пеностекла потоком плазмообразующего газа в металлическую форму, причём подача шихты в плазменную горелку осуществляется параллельно оси плазменного факела.

Существенным недостатком прототипа является высокая энергоёмкость технологического процесса получения блочного пеностекла, что ведёт к снижению качеств конечного продукта.

Технологический результат предлагаемого изобретения заключается в снижении энергоёмкости процесса получения блочного пеностекла и повышении его качества.

Технический результат достигается тем, что предлагаемый способ получения блочного пеностекла включает диспергирование стеклоотходов, смешивание их со вспенивающейся смесью, гранулирование исходной шихты, подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, напыление конгломератов пеностекла в плазменном факеле. Напыление конгломератов пеностекла потоком плазмообразующего газа, транспортирование вспененных конгломератов отходящим плазмообразующим потоком газов в металлическую форму, причем гранулирование исходной шихты осуществляется до размеров 6-8 мм и гранулированная шихты подаётся в плазменную горелку одновременно перпендикулярно и параллельно оси плазменного факела потоком плазмообразующих газов , а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазматрона 9 кВт.

Предлагаемый способ получения блочного пеностекла отличается от прототипа тем, что в предлагаемом способе гранулирование исходной шихты осуществляется до размеров частиц 6-8 мм и гранулированная шихта подаётся в плазменную горелку одновременно перпендикулярно и параллельно оси плазменного факела потоком плазмообразующих газов, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы поз матрона 9 кВт.

Проведенный анализ известных способов получения блочного пеностекла позволяет сделать заключение о соответствии заявляемого изобретения критерию «новизне»

Сопоставительный анализ известного и предлагаемого способов представлен в таблице 1.

Таблица 1

Сравнительный анализ известного и предлагаемого способов

Технологические операции и параметры Ед. измерения Известный способ Предлагаемый способ Мощность работы плазмотрона кВт 12 9 Размер частиц шихты мм 0,5- 5,0 6,0-8,0 Способ подачи частиц шихты в плазменный реактор - Подача шихты в параллельно оси плазменного факела Подача шихты одновременно перпендикулярно и параллельно оси плазменного факела Прочность на сжатие МПа 1,53 1,85 Теплопроводность Вт/(м*К) 0,065 0,061

Экспериментально установленные оптимальные условия получения пеностекла и влияние размера частиц исходной шихты на качество блочного пеностекла представлен в таблицах 2 и 3.

Как видно из таблицы 3, размер частиц исходной шихты влияет на вспенивание конгломератов пеностекла, и как следствие на показатели качества готового пеностекла.

Таблица 2

Оптимальные условия получения пеностекла

Мощность плазмотрона, кВт Плотность пеностекла, г/см3 Теплопроводность, Вт/(м*К) Объемное водопоглощение, % Прочность при сжатии, МПа 6 0,302 0,072 8,59 1,35 7 0,298 0,069 8,52 1,49 8 0,291 0,065 8,48 1,63 9* 0,285 0,061* 8,41 1,85* 10 0,299 0,068 8,51 1,71 11 0,310 0,071 8,61 1,52

*оптимальный вариант

Таблица 3

Влияние размера частиц исходной шихты на качество пеностекла

Размер частиц стекла,
мм
Характеристика вспенивания конгломератов пеностекла
0,5-5,0 мм Частицы вспениваются равномерно с тонкими перегородками на границе раздела фаз, что снижает прочность на сжатие конечного продукта 6,00-8,00 Частицы вспениваются равномерно с толстыми перегородками на границе раздела фаз, что повышает прочность на сжатие конечного продукта

Пример получения блочного пеностекла.

Гранулированная шихта, с размером частиц 6,00-8,00 мм, приготовленная из отходов стеклобоя, в автоматическом режиме загружалась в порошковый питатель.

Затем зажигалась дуга плазменного реактора. Под действием плазмообразующего газа (аргон) частицы поступали в зону действия плазменного факела, где образовывались конгломераты пеностекла.

Из плазменного реактора под действием динамического напора плазменного факела конгломераты пеностекла напылялись в металлическую форму, где формируется блочное пеностекло, которое поступало на транспортирующем устройстве в зону напыления плазменного реактора.

При оптимальных параметрах работы электродугового плазматрона УПУ-8м (мощность 9 кВт, расход плазмообразующего газа 1,3 м3/час) получено блочное пеностекло со следующими свойствами: прочность на сжатие – 1,85 мПа, теплопроводность 0,061 Вт/(м*К).

Похожие патенты RU2792509C1

название год авторы номер документа
Способ получения теплоизоляционного материала 2020
  • Здоренко Наталья Михайловна
  • Бессмертный Василий Степанович
  • Самсонова Анастасия Олеговна
  • Черкасов Андрей Викторович
  • Пучка Олег Владимирович
  • Бондаренко Марина Алексеевна
  • Макаров Алексей Владимирович
RU2746337C1
СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА 2017
  • Бессмертный Василий Степанович
  • Здоренко Наталья Михайловна
  • Кочурин Дмитрий Владимирович
RU2643532C1
СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА 2009
  • Бессмертный Василий Степанович
  • Симачёв Александр Викторович
  • Пучка Олег Владимирович
  • Дюмина Полина Семеновна
  • Маслов Александр Александрович
  • Степанова Мария Николаевна
RU2417170C2
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ НА БЛОЧНОМ ПЕНОСТЕКЛЕ 2018
  • Бессмертный Василий Степанович
  • Бондаренко Надежда Ивановна
  • Бондаренко Диана Олеговна
  • Бессмертный Михаил Дмитриевич
RU2686792C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА БЛОЧНОМ ПЕНОСТЕКЛЕ 2011
  • Бессмертный Василий Степанович
  • Пучка Олег Владимирович
  • Стадничук Виктор Иванович
  • Минько Нина Ивановна
  • Семененко Сергей Викторович
  • Панасенко Владимир Алексеевич
  • Ткаченко Ольга Ивановна
  • Лазько Екатерина Александровна
RU2467963C1
СПОСОБ МЕТАЛЛИЗАЦИИ БЛОЧНОГО ПЕНОСТЕКЛА 2017
  • Бондаренко Надежда Ивановна
  • Бессмертный Михаил Дмитриевич
  • Бондаренко Диана Олеговна
  • Шахова Любовь Дмитриевна
  • Платова Раиса Абдулгафаровна
  • Карацупа Сергей Викторович
RU2647527C1
СПОСОБ НАНЕСЕНИЯ ДЕКОРАТИВНОГО ПОКРЫТИЯ НА ЗАКАЛЕННЫЕ СТЕКЛА 2021
  • Бессмертный Василий Степанович
  • Здоренко Наталья Михайловна
  • Платов Юрий Тихонович
  • Платова Раиса Абдулгафаровна
  • Трепалина Юлия Николаевна
  • Горбатенко Анастасия Алексеевна
RU2760667C1
СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТНОГО СТЕКЛА 2017
  • Бессмертный Василий Степанович
  • Здоренко Наталья Михайловна
  • Дюмина Полина Семенова
  • Макаров Алексей Викторович
  • Кочурин Дмитрий Владимирович
RU2669975C1
ВСПЕНИВАЮЩАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА С ЕЕ ИСПОЛЬЗОВАНИЕМ 2003
  • Суворов С.А.
  • Шевчик А.П.
  • Чы-Тай Ли
RU2265582C2
СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТНОГО СТЕКЛА 2019
  • Бессмертный Василий Степанович
  • Здоренко Наталья Михайловна
  • Рыженкова Лия Сергеевна
  • Бондаренко Надежда Ивановна
  • Бондаренко Диана Олеговна
  • Бондаренко Марина Алексеевна
RU2726676C1

Реферат патента 2023 года СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА

Изобретение относится к области получения блочного пеностекла и может быть использовано в промышленности строительных материалов. Способ получения блочного пеностекла включает диспергирование стеклоотходов, смешивание их со вспенивающейся смесью, гранулирование исходной шихты, подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, накопление конгломератов пеностекла потоком плазмообразующего газа, напыление вспененных конгломератов отходящим плазмообразующим потоком газа в металлическую форму. Гранулирование шихты осуществляют до размеров 6-8 мм. Гранулированная шихта подаётся в плазменную горелку одновременно перпендикулярно и параллельно оси плазменного факела потоком плазмообразующего газа, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазматрона 9 кВт. Технический результат изобретения – снижение энергоёмкости процесса и повышение прочности изделий. 3 табл.

Формула изобретения RU 2 792 509 C1

Способ получения блочного пеностекла, включающий диспергирование стеклоотходов, смешивание их со вспенивающейся смесью, гранулирование исходной шихты, подачу гранулированной шихты в питатель плазменного реактора, вспенивание гранул в плазменном факеле, накопление конгломератов пеностекла потоком плазмообразующего газа, напыление вспененных конгломератов отходящим плазмообразующим потоком газа в металлическую форму, отличающийся тем, что гранулирование шихты осуществляют до размеров 6-8 мм и гранулированная шихта подаётся в плазменную горелку одновременно перпендикулярно и параллельно оси плазменного факела потоком плазмообразующего газа, а напыление в металлические формы конгломератов пеностекла выполняется при мощности работы плазматрона 9 кВт.

Документы, цитированные в отчете о поиске Патент 2023 года RU2792509C1

СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА 2017
  • Бессмертный Василий Степанович
  • Здоренко Наталья Михайловна
  • Кочурин Дмитрий Владимирович
RU2643532C1
СПОСОБ ПОЛУЧЕНИЯ БЛОЧНОГО ТЕРМОСТОЙКОГО ПЕНОСТЕКЛА 2013
  • Бессмертный Василий Степанович
  • Дюмина Полина Семёновна
  • Стадничук Виктор Иванович
RU2536543C1
RU 2013105712 A, 20.08.2014
EP 3309135 A4, 06.03.2019
НОСИМОЕ УСТРОЙСТВО И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2012
  • Ауверкерк Мартин
  • Вестеринк Йоанне Хенриэтта Дезире Моник
RU2612508C2

RU 2 792 509 C1

Авторы

Самсонова Анастасия Олеговна

Даты

2023-03-22Публикация

2022-03-15Подача