Люминесцентное полимерное покрытие для обнаружения повреждений конструкции Российский патент 2018 года по МПК C09K11/06 C07F5/00 C09D5/22 C09D183/10 G01N21/88 

Описание патента на изобретение RU2644917C1

Изобретение относится к получению полимерных покрытий с люминесцентными свойствами для обнаружения повреждений, в том числе, малозаметных, на агрегатах конструкций и может быть использовано при неразрушающем контроле и диагностике состояния различных конструкций, в том числе, изготовленных с применением полимерных композиционных материалов, с целью получения полной и достоверной информации о техническом состоянии, требующих особых мер контроля и обеспечения безопасности, например, воздушных судов (ВС) и др.

В настоящее время наиболее удобным, простым и эффективным способом НК в составе визуально-оптического метода может быть люминесцентный, который основан на создании специальных ударочувствительных полимерных покрытий, содержащих в своем составе определенные химические вещества, способные люминесцировать при облучении их ультрафиолетовым светом, за счет чего обладающие функциями индикатора повреждений при изменении окраски.

Люминесценция - это излучение атомами, молекулами, ионами и другими более сложными образованиями в ультрафиолетовой, видимой и инфракрасной областях электромагнитного спектра, возникающее при переходе этих частиц из возбужденного состояния в основное. Тип люминесценции определяется способом возбуждения. Первоначально при поглощении света молекулы вещества переходят в возбужденное состояние, после чего получают развитие разнообразные процессы дезактивации. К излучательным процессам относятся:

- флуоресценция - это излучательный процесс, сопровождающийся переходом молекулы с энергетического уровня S1 на уровень S0;

- фосфоресценция - это еще один излучательный процесс; он возникает в результате квантового перехода с энергетического уровня Т1 на уровень S0;

- замедленная флуоресценция.

Более подробно механизм люминесценции в органических соединениях представлен, например, в работе: Мельников М.Я., Иванов В.Л. Экспериментальные методы химической кинетики. Фотохимия. Учебное пособие. - М.: Издательство Московского Университета, 2004. - 125 с.

При этом деление люминесценции на флуоресценцию и фосфоресценцию достаточно условно, поскольку формально четкой границы между ними нет. На практике флуоресценцией обычно называют свечение длительностью не более долей секунды, а более длительные процессы свечения относят к фосфоресценции.

При создании ударочувствительных полимерных покрытий, обладающих функциями индикатора повреждений, при добавлении в слой полимерного покрытия определенного вещества, которое могло бы помочь легко обнаружить дефекты во время инспекции состояния агрегатов ВС на земле, следует учитывать природу полимерного композиционного материала (ПКМ), из которых они изготовлены, поскольку при создании полимерных покрытий выбор основы зависит от типа матрицы (связующего) в ПКМ, а она, в свою очередь, определяет природу добавки люминофора, обеспечивающей возможность индикации повреждения.

Возможными модифицирующими добавками в полимерные покрытия могут быть органические, металлоорганические, неорганические соединения, проявляющие фотолюминисцентные свойства, содержащие в своем составе люминесцирующие функциональные группы, При этом концентрация таких добавок должна быть минимальной для исключения изменения структуры полимера или катализа его деградации во времени или в жестких условиях эксплуатации (повышенные температуры, давление и т.д.).

Наиболее перспективно введение в полимерную композицию покрытия совместимых с ней координационных соединений редкоземельных элементов (РЗЭ). При этом более высокие морфологические качества полимерных пленок будут препятствовать деградации люминофора. Полимерные металлокомплексы, образованные лигандами с двумя хелатирующими узлами, привлекают к себе значительный интерес, поскольку они соединяют в себе достоинства неорганических материалов и полимеров, а также обладают рядом существенных преимуществ по сравнению с неорганическими и органическими металлокомплексами: более высокой термической стабильностью, хорошей технологичностью, способностью легко образовывать высококачественные однородные тонкие пленки и т.д. (Wu Q.R., Wang J.J., Hu Н.М. et al. A series of lanthanide coordination polymers with 4 '-(4-carboxyphenyl)-2,2 ':6 ',2 ʺ-terpyridine: Syntheses, crystal structures and luminescence properties. // Inorg. Chem. Commun. - 2011. - Vol. 14, №3. - P. 484-488). Люминесцентными свойствами обладают большинство ионов лантанидов (Ln3+). Они люминесцируют в УФ области, проявляя характеристическую флуоресценцию в инфракрасной (ИК) области (Pr3+, Nd3+, Но3+, Er3+, Yb3+) или фосфоресценцию (оранжевый Sm3+, красный Eu3+, Gd3+, зеленый Tb3+, желтый Dy3+ и синий Tm3+). Достаточно исчерпывающий обзор по лантанидсодержащим координационным полимерам представлен в работе «Olvier Guillou and Carole Daiguebonne in Handbook on the Physics and Chemistry of Rare Earths», Vol. 34, edited by K.A. Gschneidner, Jr., J.-C.G. and V.K. Pecharsky: Elsevier. 2005. P 359-404.

Одним из важнейших физических свойств металлоорганических координационных соединений лантанидов является монохроматическая (ширина линии на половине высоты ~10 нм) фотолюминесценция (ФЛ) в видимой или ближней инфракрасной области спектра, специфический механизм которой позволяет обеспечить высокие значения квантового выхода. В таких комплексах энергия возбуждения поглощается хромофорными группами органического лиганда и в результате квантовых переходов излучается в виде характеристической спектральной полосы ФЛ иона Ln3+. Интенсивность ФЛ ионов лантанидов в комплексных соединениях зависит от многих факторов (Brinker C.J., Scherer G.W. Sol-Gel Science. New York: Acad. Press. 1990; Liaw D.-J., Wang K.-L., Huang Y.-C., Lee K.-R., Lai J.-Y., Ha C.-S. Advanced polyimide materials: Syntheses, physical properties and applications.// Progress in Polymer Science. 2013. V. 37. P. 907-974; Nandi M., Conklin J.A, Salvati Jr.L., Sen A. Molecular level ceramic/polymer composites. 2. Synthesis of polymer-trapped silica and titania nanoclusters.// Chem. Mater. 1991. V.3 P. 201; Novak B.M., Davies C. ʺInverseʺ organic-inorganic composite materials. 2. Free-radical routes into nonshrinking sol-gel composites. Macromolecules. 1991. V.24. P. 5481-5483).

Диагностика поверхности ПКМ с использованием люминофоров, естественно, предполагает использование таких соединений РЗЭ, которые в результате возбуждения обеспечивали бы излучение в видимой области электромагнитного спектра. Комплексы ионов лантанидов Sm3+, Eu3+, Tb3+, Dy3+ обнаруживают сильную ионную флуоресценцию со слабой молекулярной флуоресценцией и фосфоресценцией, что указывает, во-первых, на эффективный перенос энергии с триплетного уровня органического лиганда на резонансный уровень иона лантанида и, во-вторых, на менее выраженную безызлучательную дезактивацию.

Узкая красная люминесценция европия Eu3+, а также зеленая - тербия Tb3+, делает материалы на их основе очень востребованными.

Другим важным преимуществом комплексов лантанидов является принципиальная достижимость квантового выхода, равного 100%.

Известно люминесцентное покрытие (№ US 20020165294 А1 «Luminescent coating», B05D 5/12; C09D 5/29 / W.R. Cooper, H.M. Jess), которое представляет собой эпоксидный лакокрасочный материал, в которое добавляют люминесцентный пигмент в количестве не более 10% по массе, что значительно меньше, чем в люминесцентных красках, где количество люминесцентного вещества составляет более 45% от массы.

Покрытие, описанное в изобретении, было разработано для определения мест повреждений и износа аэрокосмических аппаратов и ВС в процессе эксплуатации (например, удар птицы), а также для выявления мест повреждений поверхностей других конструкций (морских судов, подводных секций морских буровых установок и промышленных платформ, наземных установок, таких, как емкости для хранения нефти или химикатов, реакционные сосуды на промышленных предприятиях, железнодорожные цистерны и т.д.) в процессе сварки, климатических воздействий (коррозия), эрозионного износа или других случаях, в широком диапазоне эксплуатационных условий. Покрытие может выступать в качестве индикатора напряженных зон или сочленений (швов), содержащих трещины, в металлических конструкциях.

Визуализацию изображения с помощью разработанного люминесцентного покрытия получают после нанесения его на поверхность конструкций и облучения ультрафиолетовым светом с длиной волны 360 нм.

Недостаток разработанного состава для обнаружения повреждений заключается в наличии только индикаторного люминесцентного слоя, который не защищен покровным слоем и может люминесцировать при воздействии солнечного УФ излучения, придавая конструкции ВС неэстетичный вид. Кроме того, содержание люминесцентного пигмента в составе покрытия составляет не менее 10% по массе, что превосходит в 7 раз содержание люминофора в защищаемом патенте (1,4 масс. %).

Известны механолюминесцентный материал и механолюминесцентная композиция (RU №2484117 С2. Применение производных 4-бифенилкарбоновой кислоты в качестве органического механолюминесцентного материала и механолюминесцентная композиция. С09К 11/06, С07С 69/76, С07С 233/64, С07С 327/20 / Корнев А.Б., Трошин П.А., Разумов В.Ф.; Учреждение Российской Академии наук «Институт проблем химической физики РАН» (ИПХФ РАН). - №2011111781/05; Заявл. 30.03.2011; Опубл. 10.10.2012, Бюл. №16), относящаяся к органическим материалам, способным генерировать световое излучение при механических воздействиях. В качестве органического механолюминесцентного материала предложены производные 4-бифенилкарбоновой кислоты, которые отличаются невысокой стоимостью и нетоксичны при использовании. Важным свойством патентуемых материалов является также стабильность люминесценции при длительном механическом воздействии. Кроме того, предложена механолюминесцентная композиция, содержащая эффективное количество механолюминесцентного вещества (от 0,01 до 99,99 вес. %) на основе производных 4-бифенилкарбоновой кислоты и люминесцентное вещество (остальное количество). Высокоэффективный перенос энергии в таких системах позволяет контролируемым образом менять цветность и спектральные характеристики возникающего свечения. Изобретение предназначено для создания новых эффективных механолюминесцентных материалов (детектируемых невооруженным глазом, адаптированным к полной темноте в течение 15 минут), используемых для создания различных оптоэлектронных устройств: сенсоров удара, трения, растяжения или давления, а также детекторов разрушения материалов.

Недостатками запатентованного механолюминесцентного материала и механолюминесцентной композиции на его основе являются отсутствие полимерного связующего в составе композиции, являющейся ее основой и придающей ей важные технологические свойства, такие как, способность образовывать однородные, тонкие, механически прочные пленки с высокой адгезией к поверхностям различных материалов, а также устойчивость к воздействию климатических факторов, в первую очередь, способность работать в широком температурном интервале.

Известен люминесцентный материал для создания покрытий в виде пленок (RU №2499022. Трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин]европия в качестве люминесцентного материала. С09К11/77, C07F5/00. Князев А.А., Галяметдинов Ю.Г., Молостова Е.Ю., Лобков B.C.; ФГБОУ ВПО «КНИТУ». - №2012121956/05; заявл. 29.05.2012; опубл. 20.11.2013, бюл. №32), основанный на комплексных соединениях лантаноидов, а именно, трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин] европия, который при нанесении на поверхность представляет собой оптически прозрачную бездефектную пленку, трансформирующую УФ-излучение с высокой эффективностью и обладающую по сравнению с ближайшими аналогами в 2 раза более эффективной люминесценцией в красной области спектра и превышающей в 5 раз светопропускающей способностью. Разработанный материал способен пропускать 98% видимого света, что позволяет использовать его как индивидуальное вещество в качестве люминесцентного светотрансформирующего материала.

Недостатком разработанного состава люминесцентного материала является отсутствие полимерного связующего, способствующего получению полимерных пленок с высокими морфологическими качествами, которые препятствуют деградации люминофора, а также придающие материалу хорошую технологичность, способность легко образовывать высококачественные однородные тонкие, но механически прочные пленки с высокой адгезией к гидрофобным и гидрофильным поверхностям материалов различной химической природы, особенно к ПКМ, способные работать в широком интервале температур, например, от -60 до+100°С.

Наиболее близким техническим решением, принятым за прототип, являются люминесцентные композитные покрытия (RU №2505579. Люминесцентные композитные покрытия. С09К 11/77, C09D 5/26. Гирин А.С., Владимиров Ф.Л., Готлиб В.А., Елохин В.А., Рудая Л.И., Марфичев А.Ю., Лебедева Г.К., Шаманин В.В.; ФГБУН «Институт высокомолекулярных соединений РАН», ЗАО «Научные приборы». - №2012133798/05; заявл. 08.08.2012; опубл. 27.01.2014, бюл. №3.). Заявленные покрытия в своем составе содержат полимерные связующие - высокопрочные термостойкие поли(о-гидроксиамиды) - продукты поликонденсации дихлорида изофталевой кислоты с 3,3'-дигидрокси-4,4'-диаминодифенилметаном или дихлорида изофталевой кислоты со смесью 3,3'-дигидрокси-4,4'-диаминодифенилметана с бис-(3-аминопропил)диметилсил океаном в амидном растворителе, а также смесь УФ и антистоксовых люминофоров на основе редкоземельных элементов, люминесцирующих в видимой области спектра под воздействием УФ и ИК излучений. Положительный эффект изобретения - создание жидкофазного композита, способного формировать однослойные покрытия, обладающие хорошей люминесценцией при использовании различных осветителей, высокой адгезией к гидрофильным и гидрофобным поверхностям различных субстратов в том числе полиимиду и высокогидрофобному лавсану. Разработанные покрытия стабильны во времени и выдерживают термоциклические нагрузки от -50 до+300°С, в связи с чем их можно использовать в качестве люминесцентных меток в различных областях техники.

Недостаток разработанного состава люминесцентных композитных покрытий заключается в наличии только индикаторного люминесцентного слоя, который не защищен покровным слоем и может люминесцировать при воздействии солнечного УФ излучения, придавая конструкции неэстетичный вид, например, во время рейсового полета самолета. Кроме того, содержание смеси люминофоров в составе разработанной композиции составляет от 1,5 до 4% по массе, что превосходит содержание люминофора в защищаемом патенте (до 1,4 масс. %).

Задачей предложенного изобретения является получение люминесцентного полимерного покрытия для обнаружения повреждений на поверхности конструкций, в том числе авиационных конструкций, изготовленных из ПКМ, включающего в себя два слоя: индикаторный слой с люминофором и защитный (покровный) слой с поглощающим УФ излучение компонентом, позволяющего просто и оперативно осуществлять визуальный контроль технического состояния, с высокой точностью и достоверностью обнаруживать ударные повреждения без использования сложного оборудования и высококвалифицированного обслуживающего персонала.

Технический результат использования разработанного люминесцентного полимерного покрытия заключается в повышении безопасности полетов, сокращении времени обслуживания авиатехники, облегчении технической поддержки летной годности конструкции планера за счет упрощения и повышения оперативности процедуры визуального контроля технического состояния, высокой точности и достоверности обнаружения малозаметных ударных повреждений.

Технический результат достигается тем, что люминесцентное многослойное полимерное покрытие для обнаружения повреждений конструкции, содержащее первый по направлению от конструкции индикаторный слой с люминофором и второй защитный покровный слой с рабочим компонентом, поглощающим УФ излучение, в котором индикаторный слой включает связующее на основе кремнийорганического блок-сополимера в толуоле и 1,4 масс. % люминофора - пивалатного комплекса европия с гетероциклическим диимином - 4,7-дифенил-1,10-фенантролином, защитный слой включает связующее на основе кремнийорганического блок-сополимера в толуоле и дибензоилметан в качестве рабочего компонента, поглощающего УФ излучение, с концентрацией 2÷6⋅10-2 моль/л, и где покрытие получено нанесением индикаторного слоя, высушиванием при температуре 20÷25°С в течение 8÷10 часов, затем при 90÷100°С в течение 2÷3 часов с последующим нанесением защитного слоя и сушкой при температуре 20÷25°С в течение 1÷2 часов, затем при 90÷100°С в течение 2÷3 часов, при этом количество наносимых защитных слоев может варьироваться от 2-х до 3-х.

На фиг. 1 показана фотография люминесцентного полимерного покрытия, нанесенного на конструктивно подобный образец из углепластика, содержащего индикаторный и защитный слои, при естественном освещении, на фиг. 2 представлена фотография этого же покрытия при облучении УФ, на фиг. 3 - фотография того же покрытия после ударного воздействия при естественном освещении, на фиг. 4 - фотография того же покрытия после ударного воздействия при УФ облучении.

Люминесцентное полимерное покрытие для обнаружения повреждений конструкции, включающее полимерное связующее, люминофор и органический растворитель, являющееся многослойным и содержащее первый по направлению от конструкции индикаторный слой с люминофором и второй защитный покровный слой с рабочим компонентом, поглощающим УФ излучение, получают следующим образом.

Индикаторный слой создают путем приготовления композиции, состоящей из раствора связующего на основе кремнийорганических блок-сополимеров в толуоле с добавленным в него люминофором. Кремнийорганические сополимеры могут быть получены конденсацией фенилтриметоксисилана, диметилдиметоксисилана, метилтриэтоксисилана в соотношении 1:1:0,5 в уксусной кислоте:

PhSi(OMe)3+Me2Si(OMe)2+0,5MeSi(OEt)3→[PhSiO1,5][Me2SiO][MeSiO1,5]0.5

Далее проводят модификацию связующего на основе синтезированных кремнийорганических сополимеров эпоксидной смолой марки ЭД-20, в результате чего получают раствор блок-сополимера на основе полиорганосилоксана и эпоксидной смолы в толуоле (аналог промышленного лака КО-945). В качестве отвердителя полученного кремнийорганического связующего может быть использован 3-аминопропилтриэтоксисилан (АГМ-9). АГМ-9 является мономером, и при отверждении кремнийорганического связующего в процессе сушки в результате реакции поликонденсации образуется поперечно сшитая пространственная структура полимерного покрытия. В качестве частных форм выражения кремнийорганических блок-сополимеров, кроме лака КО-945, можно предложить смолы К-9 и К-2105, модифицированные эпоксидной смолой.

В качестве люминофора, обладающего значительной интенсивностью и монохромностью фотолюминесценции, высокой величиной общего квантового выхода и высокой термической стабильностью, используют пивалатный комплекс европия с гетероциклическим диимином (1,4 масс %) - 4,7-дифенил-1,10-фенантролином в качестве добавочного лиганда. Нанесение индикаторного слоя проводят методом распыления на поверхность тестовых образцов углепластика. После нанесения индикаторного слоя покрытие высушивают при температуре 20÷25°С в течение 8÷10 часов, затем при температуре 90÷100°С - в течение 2÷3 часов. Композицию связующего для создания защитного слоя получают на основе раствора кремнийорганических блок-сополимеров в толуоле и компонента, поглощающего УФ излучение. В качестве такого компонента используют β-дикетон-1,3-дифенилпропан-1,3-дион (дибензоилметан, DBM). Защитный слой наносят распылением раствора кремнийорганического связующего в толуоле с добавленным дибензоилметаном DBM с концентрацей 2÷6⋅10-2 моль/л. Время промежуточной сушки нанесенного слоя составляет 1÷2 часа при температуре 20÷25°С. Количество наносимых слоев варьируют от двух до трех. Завершающую сушку покрытия проводят при 90÷100°С в течение 2÷3 часов.

Далее проверяли чувствительность полученного покрытия к ударам с малыми значениями энергий (10-20 Дж). Металлический шар массой 0,3 кг и диаметром 4 см сбрасывали по вертикальному полому столбу высотой 3 м и диаметром 5 см (для имитации точечного удара) на тестовые образцы с покрытием. Результаты представлены на фиг. 3 и 4.

При выполнении визуального осмотра с использованием УФ излучения места ударных повреждений покрытия определяют согласно видимым глазу цветовым различиям, т.е. поврежденные места будут иметь цветовую окраску, отличную от цвета защитного слоя покрытия и будут давать гидрофобным поверхностям различных субстратов, в том числе, к поверхности ПКМ, не имеет окраски (является прозрачным), имеет значение твердости ниже величин, характерных для типовых лакокрасочных покрытий, и сохраняет термическую стабильность в интервале температур от -60° до +100°С. Разработанное люминесцентное полимерное покрытие позволяет просто и оперативно осуществлять визуальный контроль технического состояния конструктивно подобных образцов из ПКМ, с высокой точностью и достоверностью обнаруживать малозаметные ударные повреждения без использования сложного оборудования.

Результат использования этого покрытия на натурных конструкциях ВС - повышение безопасности полетов, сокращение времени обслуживания авиатехники, облегчение технической поддержки летной годности конструкции планера.

Похожие патенты RU2644917C1

название год авторы номер документа
Способ обнаружения ударных повреждений конструкции 2016
  • Чернышев Сергей Леонидович
  • Зиченков Михаил Чеславович
  • Смотрова Светлана Александровна
  • Смотров Андрей Васильевич
  • Новоторцев Владимир Михайлович
  • Еременко Игорь Леонидович
  • Доброхотова Жанна Вениаминовна
  • Музафаров Азиз Мансурович
RU2645431C1
Фотолюминесцентный индикатор дозы ультрафиолетового излучения 2020
  • Карякин Максим Евгеньевич
  • Князев Андрей Александрович
  • Лапаев Дмитрий Викторович
  • Галяметдинов Юрий Геннадьевич
RU2731655C1
ЛЮМИНЕСЦЕНТНОЕ ПОКРЫТИЕ НА ОКСИДИРОВАННОМ ТИТАНЕ НА ОСНОВЕ СОЕДИНЕНИЙ ЕВРОПИЯ(II, III) 2022
  • Белобелецкая Маргарита Витальевна
  • Стеблевская Надежда Ивановна
  • Яровая Татьяна Петровна
RU2788775C1
СВЕТОПРЕОБРАЗУЮЩИЙ МАТЕРИАЛ И КОМПОЗИЦИЯ ДЛЯ ЕГО ПОЛУЧЕНИЯ 2007
  • Воробьев Виктор Андреевич
  • Власьянц Галина Рафаиловна
  • Синельников Борис Михайлович
  • Каргин Николай Иванович
  • Храмов Роберт Николаевич
  • Кособрюхов Анатолий Александрович
  • Креславский Владимир Данилович
RU2407770C2
СОСТАВ ДЛЯ ПРОЗРАЧНОГО В ДИАПАЗОНЕ ВИДИМОГО СВЕТА МАТЕРИАЛА С ФОТОКОРРЕКТИРУЮЩИМИ СВОЙСТВАМИ 1998
  • Юрченко В.И.
  • Мокроусов Г.М.
  • Спирин Е.А.
  • Астафурова Т.П.
RU2202567C2
Способ скрытой маркировки 2022
  • Хребтов Александр Андреевич
  • Федоренко Елена Валерьевна
  • Мирочник Анатолий Григорьевич
RU2790680C1
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ СВЕТОТРАНСФОРМИРУЮЩЕГО ПЛЕНОЧНОГО МАТЕРИАЛА 2013
  • Иваницкий Алексей Евгеньевич
  • Минич Александр Сергеевич
RU2561455C2
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ПЛЕНОК 1992
  • Минич А.С.
  • Райда В.С.
  • Майер Р.А.
  • Майер Э.А.
  • Полле Э.Г.
  • Лабзовский С.Я.
  • Черников В.Б.
  • Иволгин В.Я.
  • Голянд Я.С.
  • Залевский В.И.
  • Матюшин В.А.
  • Волков Б.М.
RU2047623C1
ПОЛИМЕРНАЯ ЛЮМИНЕСЦЕНТНАЯ КОМПОЗИЦИЯ ДЛЯ УВЕЛИЧЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ 2019
  • Хребтов Александр Андреевич
  • Федоренко Елена Валерьевна
  • Лим Любовь Андреевна
  • Мирочник Анатолий Григорьевич
RU2747603C2
СОЕДИНЕНИЕ ДИ(НИТРАТО)АЦЕТИЛАЦЕТОНАТОБИС (1,10-ФЕНАНТРОЛИН) ЛАНТАНОИД (III), ПРИГОДНОЕ ДЛЯ ИСПОЛЬЗОВАНИЯ В КАЧЕСТВЕ ЛЮМИНЕСЦЕНТНОЙ ДОБАВКИ В ЧЕРНИЛА, И ЧЕРНИЛА ДЛЯ СКРЫТОЙ МАРКИРОВКИ ЦЕННЫХ МАТЕРИАЛЬНЫХ ОБЪЕКТОВ 2007
  • Мирочник Анатолий Григорьевич
  • Карасев Владимир Егорович
RU2373211C2

Иллюстрации к изобретению RU 2 644 917 C1

Реферат патента 2018 года Люминесцентное полимерное покрытие для обнаружения повреждений конструкции

Изобретение относится к люминесцентным покрытиям для обнаружения повреждений конструкций и может быть использовано при неразрушающем контроле и диагностике состояния различных конструкций. Люминесцентное покрытие содержит первый по направлению от конструкции индикаторный слой с люминофором и второй защитный покровный слой с рабочим компонентом, поглощающим УФ излучение. Индикаторный слой включает связующее на основе кремнийорганического блок-сополимера в толуоле и 1,4 мас. % люминофора - пивалатного комплекса европия с 4,7-дифенил-1,10-фенантролином. Защитный слой включает связующее на основе кремнийорганического блок-сополимера в толуоле и дибензоилметан в качестве рабочего компонента, поглощающего УФ излучение, с концентрацией 2-6⋅10-2 моль/л. Покрытие получают нанесением индикаторного слоя, высушиванием при 20-25°С 8-10 часов, затем при 90-100°С 2-3 часа. Далее наносят защитный слой и сушат при 20-25°С 1-2 часа, затем при 90-100°С 2-3 часа. Количество наносимых защитных слоев может варьироваться от 2-х до 3-х. Люминесцентное покрытие сохраняет термическую стабильность в интервале температур от -60° до +100°С. Изобретение дает возможность просто и оперативно осуществлять визуальный контроль технического состояния конструкций, в том числе авиационных, с высокой точностью и достоверностью обнаруживать ударные повреждения на их поверхности без использования сложного оборудования, что способствует повышению безопасности полетов. 4 ил., 1 пр.

Формула изобретения RU 2 644 917 C1

Люминесцентное многослойное полимерное покрытие для обнаружения повреждений конструкции, содержащее первый по направлению от конструкции индикаторный слой с люминофором и второй защитный покровный слой с рабочим компонентом, поглощающим УФ излучение, где

индикаторный слой включает связующее на основе кремнийорганического блок-сополимера в толуоле и 1,4 мас. % люминофора - пивалатного комплекса европия с гетероциклическим диимином - 4,7-дифенил-1,10-фенантролином,

защитный слой включает связующее на основе кремнийорганического блок-сополимера в толуоле и дибензоилметан в качестве рабочего компонента, поглощающего УФ излучение, с концентрацией 2-6⋅10-2 моль/л, и где

покрытие получено нанесением индикаторного слоя, высушиванием при температуре 20-25°С в течение 8-10 часов, затем при 90-100°С в течение 2-3 часов с последующим нанесением защитного слоя и сушкой при температуре 20-25°С в течение 1-2 часов, затем при 90-100°С в течение 2-3 часов, при этом количество наносимых защитных слоев может варьироваться от 2-х до 3-х.

Документы, цитированные в отчете о поиске Патент 2018 года RU2644917C1

ЛЮМИНЕСЦЕНТНЫЕ КОМПОЗИТНЫЕ ПОКРЫТИЯ 2012
  • Рудая Людмила Ивановна
  • Шаманин Валерий Владимирович
  • Лебедева Галина Константиновна
  • Марфичев Алексей Юрьевич
  • Елохин Владимир Александрович
  • Готлиб Владимир Абович
  • Владимиров Фёдор Львович
  • Гирин Адольф Станиславович
RU2505579C1

RU 2 644 917 C1

Авторы

Чернышев Сергей Леонидович

Зиченков Михаил Чеславович

Смотрова Светлана Александровна

Смотров Андрей Васильевич

Новоторцев Владимир Михайлович

Еременко Игорь Леонидович

Доброхотова Жанна Вениаминовна

Музафаров Азиз Мансурович

Даты

2018-02-14Публикация

2016-12-02Подача