СПОСОБ ИЗГОТОВЛЕНИЯ БАЛЛОНОВ, РАБОТАЮЩИХ ПОД ДАВЛЕНИЕМ ДО 250 кгс/см Российский патент 2018 года по МПК B21D51/24 

Описание патента на изобретение RU2648343C1

Изобретение относится к области машиностроения, а именно производству баллонов, работающих под давлением до 250 кгс/см2, предназначенных для хранения и транспортирования сжатых и сжиженных газов для технологических, медицинских или пищевых целей, а также для хранения углекислоты в огнетушителях и хладонов в системах пожаротушения.

Известны способы изготовления баллонов из отрезков трубы круглого сечения, получаемых из бесшовных горячедеформируемых труб методом закатки разогретых участков соответствующей длины на концах заготовки с образованием глухого днища на одном конце трубной заготовки и днища с горловиной на другом.

В частности, известен способ изготовления баллонов из такой трубной заготовки, применяемый при изготовлении баллонов диаметром 219 мм, включающий закатку днища, закатку герметичной горловины, механическую обработку горловины с образованием в ней отверстия, термообработку баллона и очистку внутренней поверхности днища, цилиндрической части и горловины баллона, причем с целью повышения производительности и качества изделий первоначально осуществляют закатку горловины, затем производят очистку горловины и цилиндрической части внутренней поверхности баллона, далее закатывают днище, термообрабатывают баллон, после чего выполняют механическую обработку горловины с образованием в ней отверстия и очистку внутренней поверхности днища [Описание изобретения к а.с. СССР №1712029 от 09.11.1989, МПК B21D 22/16, B21D 51/54, опубл. 15.02.1992].

Недостатком такого способа изготовления баллонов является то, что в силу особенностей технологического процесса изготовления бесшовной горячедеформированной трубы она имеет значительную разностенность, то есть толщина стенки с одной стороны трубы может превышать номинальную вплоть до значения максимального плюсового допуска (до +12,5% по ГОСТ 8732-78 «Трубы стальные бесшовные горячедеформированные. Сортамент»), а с противоположной стороны - быть меньше номинальной вплоть до максимального значения минусового допуска (до -15% по ГОСТ 8732-78).

Вследствие этого при закатке такой трубы возникают технологические проблемы, связанные с неуравновешенностью масс вращающегося разогретого конца трубной заготовки, что приводит к нестабильности технологического процесса закатки, преждевременному износу и поломкам инструмента и оборудования и, соответственно, к снижению производительности.

Кроме того, в горловине баллона появляется эксцентриситет между ее наружным диаметром и диаметром внутренней резьбовой части, что при вворачивании запорной арматуры с конической резьбой может привести к нарушению целостности горловины (трещине) по тонкой стенке и невозможности герметизации соединения запорной арматуры с баллоном.

Поскольку изготовление таких баллонов производится из трубы, рассчитанной на гарантированное обеспечение прочности при минимальной толщине (на 15% меньше номинала), то баллоны из такой трубы получаются переутяжеленными за счет наличия избыточного металла на стенке с плюсовым допуском, то есть с повышенной металлоемкостью, что требует дополнительных затрат на ресурсы и оборудование по нагреву и закатке концов трубной заготовки.

Для решения вышеупомянутых проблем могут быть применены технологические приемы, предназначенные для исправления технологических недостатков бесшовных горячекатаных труб, применяемых для изготовления баллонов, работающих под давлением до 250 кгс/см2.

Например, известен способ изготовления облегченных бесшовных баллонов высокого давления из бесшовной трубной заготовки, включающий порезку трубы на мерные заготовки, формирование днища и горячее формирование горловины, абразивную очистку наружной и внутренней поверхностей заготовки, обработку наружной поверхности цилиндрической части заготовки с утонением стенки до заданных размеров, термическую обработку и механическую обработку горловины баллона, при этом наружную поверхность одного конца заготовки подвергают механической обработке путем обтачивания до заданных размеров, затем осуществляют горячее формирование днища, после обработки цилиндрической части заготовки осуществляют горячее формирование горловины и термическую обработку баллона, при этом перед термической обработкой проводят предварительную механическую обработку горловины, а после термической обработки - чистовую механическую обработку. (Описание изобретения к патенту РФ №2558315 от 12.05.2014, МПК B21D 51/24, B21D 51/54, опубл. 27.07.2015).

Недостатком данного способа является применение ряда сложных дополнительных технологических операций с целью минимизировать разностенность заготовки баллона для уменьшения его массы, использование дополнительного инструмента и оборудования, которые усложняют технологический процесс, повышают трудоемкость изготовления баллона, снижают производительность и, снижая массу баллона, не снижают его металлоемкость.

Задача, решаемая изобретением, и достигаемый технический результат заключаются в повышении технологичности изготовления баллонов, работающих под давлением до 250 кгс/см2, снижении их металлоемкости при сохранении прочностных свойств, снижении расхода закаточного инструмента и снижении расхода электроэнергии на разогрев закатываемых днищ, повышении производительности при закатке днищ за счет увеличения скорости операции закатки вследствие уменьшения биения вследствие минимизации разностенности, повышении надежности баллонов за счет уменьшения влияния технологического эксцентриситета при нарезке присоединительной резьбы на горловине и вворачивании запорной арматуры с конической резьбой, уменьшении массы баллонов, изготовленных из конкретной марки стали, по сравнению с баллонами, изготовленными из бесшовных горячедеформированных труб, снижении трудоемкости изготовления баллонов. Дополнительно, могут быть снижены требования к материалу для заготовок баллонов.

Для решения поставленной задачи и получения заявленного технического результата в способе изготовления баллонов, работающих под давлением до 250 кгс/см2, трубную заготовку выполняют в виде отрезка прямошовной трубы круглого сечения из листового проката стыковой сваркой кромок листа. Осуществляют закатку разогретых концов трубной заготовки на длине 60-160 мм при температуре от температуры горячей ковки - в начале закатки, до температуры низкого отжига - при окончании закатки.

При этом может быть использована прямошовная труба с номинальным наружным диаметром от 80 до 180 мм и с номинальной толщиной стенки от 3 до 8 мм, изготовленная из углеродистой стали с содержанием углерода до 0,3% или из низколегированной стали для сварных конструкций.

После закатки получают баллоны вместимостью от 2 до 30 литров.

Использование сварных труб при производстве различных конструкций известно давно, однако эти конструкции не являлись особо ответственными, к которым относятся баллоны высокого давления.

Современные технологии сварки встык кромок листа позволяют получить равнопрочное сварное соединение, с прочностью шва, равной прочности основного металла. В частности, соответствующие государственные стандарты на прямошовные сварные трубы были приняты более чем на десять лет позже, чем аналогичные стандарты на бесшовные горячедеформированные трубы.

Листовой прокат, в отличие от трубного, в силу особенностей технологии его изготовления характеризуется высокой точностью выполнения размера по толщине, высокой стабильностью толщины по всей площади проката, чистотой и гладкостью поверхности.

Как следствие, баллоны, изготовленные из отрезков трубы круглого сечения, изготовленной из листового проката с применением стыковой сварки, отличаются более высокой технологичностью, более низкой металлоемкостью, более низкими расходами на закаточный инструмент и электроэнергию на разогрев днищ, более высокой производительностью при закатке днищ за счет более высоких скоростей закатки из-за уменьшения биения при низкой разностенности трубы, повышенной надежностью баллонов за счет уменьшения влияния технологического эксцентриситета при нарезке присоединительной резьбы на горловине и вворачивании запорной арматуры с конической резьбой, меньшей массой баллонов, изготовленных из конкретной марки стали по сравнению с баллонами, изготовленными из бесшовных горячедеформированных труб, более низкой трудоемкостью изготовления баллонов.

Сравнивая способы изготовления баллонов из трубной заготовки из бесшовной горячедеформированной трубы и из прямошовной трубы, изготовленной из листового проката в другом аспекте, можно отметить, что изделия массового изготовления, каковыми являются баллоны для огнетушителей, имеет смысл изготавливать из недорогих малоуглеродистых сталей (с содержанием углерода до 0,3%) или низколегированных сталей для сварных конструкций, так как для данных изделий более актуально добиваться снижения себестоимости, которая, в первую очередь, определяется стабильностью технологического процесса изготовления баллонов, скоростью технологических операций, минимизацией технологических издержек (затраты на нагрев, износ инструмента и оборудования), минимизацией металлоемкости.

В таком случае, баллон из прямошовной сварной трубы, изготовленной из листового проката, будет иметь не только меньшую массу, но и более низкую себестоимость за счет высокой производительности технологического процесса при обеспечении требований по прочности, меньшей трудоемкости.

Заявленный способ реализуется следующим образом.

Вначале производят нагрев конца трубной заготовки из трубы круглого сечения, изготовленной из листового проката с применением стыковой сварки, наружным диаметром от 80 до 180 мм с номинальной толщиной стенки от 3 до 8 мм на длине 60-160 мм, до температуры, не большей предельной температуры нагрева при ковке. К нагретому концу заготовки, зажатой в приспособлении, обеспечивающем ее вращение, подводят инструмент, обеспечивающий формообразование глухого днища или днища с горловиной. После этого производят операцию нагрева другого конца заготовки и производят затем формирование другого конца, формируя днище с горловиной или глухое днище. В результате получается баллон, работающий под давлением, с одной или двумя горловинами для установки запорной арматуры.

Пример реализации изобретения

Наиболее массовым в производстве баллонов высокого давления для сжатых и сжиженных газов, в частности для углекислотных огнетушителей, является баллон с наружным диаметром 140 мм на рабочее давление 14,7 МПа (по ГОСТ 949-73 «Баллоны стальные малого и среднего объема для газов на РP≤19,6 мПа (200 кгс/см2). Технические условия»). Применительно к изготовлению такого баллона из стали марки 20 потребную толщину стенки можно определить, например, по формуле, приведенной в патенте на полезную модель №56985 от 18.11.2005.

Согласно формуле минимальная потребная толщина стенки составляет 4,8 мм. С учетом допусков на бесшовную трубу, изготавливаемую из трубного проката, что составляет 15%, номинальная толщина стенки будет составлять 4,8/(1-0,15)=5,65 мм, то есть необходимо выбрать трубу номинальной толщиной 6 мм.

В то же время для прямошовной сварной трубы, изготовленной из листового проката с применением стыковой сварки кромок листа, допуск по ГОСТ 19903-74 «Прокат листовой горячекатаный. Сортамент» составляет ±0,5 мм, что определяет минимальную толщину стенки 4,8+0,5=5,3 мм, то есть номинальная толщина равна 5,5 мм из сортамента трубы.

Таким образом, в качестве материала трубных заготовок следует использовать прямошовную сварную трубу из низкоуглеродистой стали или низколегированной стали для сварных конструкций. Конкретные геометрические размеры трубы выбираются из расчета требуемой вместимости будущих баллонов и их рабочего давления.

Полученные мерные заготовки из упомянутой прямошовной сварной трубы передают на формовку днищ методом типовой технологии (т.е. отработанной) закатки разогретых концов трубной заготовки. Для этого концы трубной заготовки нагревают и закатывают под воздействием формообразующего инструмента в диапазоне температур от температуры горячей ковки (при начале закатки), до температуры низкого отжига (при окончании закатки), в результате чего получаются требуемые глухое днище и днище с горловиной, или два днища, имеющие горловины. В днищах с горловинами полученных заготовок баллонов нарезают резьбу для запорно-присоединительной арматуры.

Преимущества заявленной технологии проявляются на разных стадиях общего цикла изготовления баллонов - от выбора трубы до нарезания резьбы на горловинах.

Таким образом, баллоны, изготовленные из отрезков трубы круглого сечения, изготовленной из листового проката с применением стыковой сварки, отличаются более высокой технологичностью, более низкой металлоемкостью, более низкими расходами на закаточный инструмент и электроэнергию на разогрев днищ, более высокой производительностью при закатке днищ за счет более высоких скоростей закатки из-за уменьшения биения вследствие низкой разностенности трубы, повышенной надежностью баллонов за счет уменьшения влияния технологического эксцентриситета при нарезке присоединительной резьбы на горловине и вворачивании запорной арматуры с конической резьбой, меньшей массой баллонов, изготовленных из конкретной марки стали по сравнению с баллонами, изготовленными из бесшовных горячедеформированных труб, более низкой трудоемкостью изготовления, чем баллоны, изготавливаемые из отрезков трубы, изготовленной из бесшовных горячедеформированных труб.

Похожие патенты RU2648343C1

название год авторы номер документа
Способ изготовления стальных корпусов для углекислотных огнетушителей 2019
  • Васильев Дмитрий Владимирович
  • Иванов Денис Владимирович
RU2705278C1
СПОСОБ ИЗГОТОВЛЕНИЯ БАЛЛОНОВ И СЕМЕЙСТВО БАЛЛОНОВ, РАБОТАЮЩИХ ПОД ДАВЛЕНИЕМ ОТ 100 ДО 200 кгс/см 2011
  • Федулов Сергей Алексеевич
  • Алексеенко Владимир Иванович
RU2480666C2
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНЫХ ТРУБ БОЛЬШОГО И СРЕДНЕГО ДИАМЕТРОВ С ПОВЫШЕННОЙ ТОЧНОСТЬЮ ПО СТЕНКЕ ИЗ СПЛАВОВ НА ОСНОВЕ ТИТАНА 2005
  • Сафьянов Анатолий Васильевич
  • Тазетдинов Валентин Иреклеевич
  • Дановский Николай Григорьевич
  • Вольберг Исаак Иосифович
  • Литвак Борис Семенович
  • Смирнов Владимир Григорьевич
  • Романцов Игорь Александрович
  • Ненахов Сергей Васильевич
  • Лапин Леонид Игнатьевич
  • Никитин Кирилл Николаевич
  • Головинов Валерий Александрович
  • Логовиков Валерий Александрович
  • Матюшин Александр Юрьевич
RU2288055C1
СПОСОБ ИЗГОТОВЛЕНИЯ СОСУДОВ ВЫСОКОГО ДАВЛЕНИЯ 2005
  • Свободов Андрей Николаевич
  • Гаврилин Олег Сергеевич
  • Капустин Анатолий Иванович
  • Макаровец Николай Александрович
  • Кобылин Рудольф Анатольевич
  • Романцев Борис Алексеевич
  • Хапонен Николай Андреевич
  • Четвертаков Геннадий Вячеславович
  • Рыбин Виктор Дмитриевич
RU2288063C1
Баллон высокого давления (варианты) и способ его изготовления (варианты) 2007
  • Клюнин Олег Станиславович
  • Елкин Николай Михайлович
RU2758470C2
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНЫХ ТРУБ БОЛЬШОГО И СРЕДНЕГО ДИАМЕТРОВ ИЗ ТРУДНОДЕФОРМИРУЕМЫХ МАРОК СТАЛИ И СПЛАВОВ С ПОВЫШЕННОЙ ТОЧНОСТЬЮ ПО СТЕНКЕ 2008
  • Сафьянов Анатолий Васильевич
  • Марков Дмитрий Всеволодович
  • Осадчий Владимир Яковлевич
  • Усанов Константин Александрович
  • Дановский Николай Григорьевич
  • Литвак Борис Семенович
  • Лапин Леонид Игнатьевич
  • Еремин Виктор Николаевич
  • Логовиков Валерий Андреевич
RU2387502C2
БАЛЛОН ВЫСОКОГО ДАВЛЕНИЯ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ) 2007
  • Клюнин Олег Станиславович
  • Елкин Николай Михайлович
RU2382919C2
СПОСОБ ИЗГОТОВЛЕНИЯ БАЛЛОНА 2014
  • Губин Алексей Иванович
  • Рымаев Владимир Дмитриевич
  • Соснин Сергей Дмитриевич
RU2558315C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНЫХ ТРУБ БОЛЬШОГО И СРЕДНЕГО ДИАМЕТРОВ ПОВЫШЕННОЙ ТОЧНОСТИ ИЗ СПЛАВОВ НА ОСНОВЕ ТИТАНА 2004
  • Сафьянов Анатолий Васильевич
  • Тазетдинов Валентин Иреклеевич
  • Дановский Николай Григорьевич
  • Вольберг Исаак Иосифович
  • Литвак Борис Семёнович
  • Романцов Игорь Александрович
  • Смирнов Владимир Григорьевич
  • Ненахов Сергей Васильевич
  • Яров Александр Романович
  • Лапин Леонид Игнатьевич
  • Головинов Валерий Александрович
  • Никитин Кирилл Николаевич
  • Христенко Виталий Кононович
  • Матюшин Александр Юрьевич
  • Мазаник Владимир Фёдорович
RU2294247C2
Способ изготовления баллонов высокого давления 2018
  • Лобов Василий Александрович
  • Ремшев Евгений Юрьевич
  • Афимьин Григорий Олегович
  • Затеруха Екатерина Владимировна
RU2699701C1

Реферат патента 2018 года СПОСОБ ИЗГОТОВЛЕНИЯ БАЛЛОНОВ, РАБОТАЮЩИХ ПОД ДАВЛЕНИЕМ ДО 250 кгс/см

Изобретение относится к области производства баллонов, работающих под давлением до 250 кгс/см2, предназначенных для хранения и транспортирования сжатых и сжиженных газов. Трубную заготовку получают в виде отрезка прямошовной трубы круглого сечения, изготовленной из листового проката стыковой сваркой кромок листа с получением прямошовной сварной трубы. Нагрев концов трубной заготовки осуществляют на определенной длине, а закатку днищ - в диапазоне температур от температуры горячей ковки - в начале закатки, до температуры низкого отжига - при окончании закатки. Повышается прочность баллона. 1 з.п. ф-лы.

Формула изобретения RU 2 648 343 C1

1. Способ изготовления баллонов, работающих под давлением до 250 кгс/см2, включающий получение трубной заготовки в виде отрезка трубы круглого сечения, нагрев ее концов и формовку днищ закаткой ее разогретых концов формообразующим инструментом с получением глухого днища и днища с горловиной или днищ, имеющих горловины, отличающийся тем, что трубную заготовку получают из прямошовной трубы, изготовленной из листового проката стыковой сваркой кромок листа, при этом закатку разогретых концов трубной заготовки осуществляют на длине 60-160 мм при температуре от температуры горячей ковки - в начале закатки, до температуры низкого отжига - при окончании закатки.

2. Способ по п. 1, отличающийся тем, что используют прямошовную трубу с номинальным наружным диаметром от 80 до 180 мм и с номинальной толщиной стенки от 3 до 8 мм, изготовленную из углеродистой стали с содержанием углерода до 0,3% или из низколегированной стали для сварных конструкций.

Документы, цитированные в отчете о поиске Патент 2018 года RU2648343C1

СПОСОБ ИЗГОТОВЛЕНИЯ БАЛЛОНА 2014
  • Губин Алексей Иванович
  • Рымаев Владимир Дмитриевич
  • Соснин Сергей Дмитриевич
RU2558315C1
БАЛЛОН 1997
  • Патон Борис Евгеньевич
  • Савицкий Михаил Михайлович
  • Кулик Виктор Михайлович
  • Савиченко Александр Анисьевич
  • Лупан Аркадий Филиппович
  • Мельничук Георгий Михайлович
RU2169880C2
СПОСОБ ИЗГОТОВЛЕНИЯ БАЛЛОНА ВЫСОКОГО ДАВЛЕНИЯ 2004
  • Плюханов Сергей Иванович
  • Селин Николай Николаевич
  • Дудкин Иван Васильевич
  • Гладченко Татьяна Ивановна
  • Медведев Сергей Алексеевич
RU2355500C2
Способ изготовления баллонов 1991
  • Блинов Юрий Иванович
  • Губин Алексей Иванович
  • Ларионов Валерий Александрович
  • Редько Валерий Владимирович
  • Краев Виктор Алексеевич
  • Прохода Олег Григорьевич
SU1750797A1
СПОСОБ И СИСТЕМА ДЛЯ СНИЖЕНИЯ РАСХОДА КРАСКИ ПРИ ПЕЧАТИ 2009
  • Сафонов Илья Владимирович
  • Яковлев Сергей Юрьевич
  • Аликберов Ильмир Расикович
  • Курилин Илья Васильевич
RU2405201C1

RU 2 648 343 C1

Авторы

Федулов Сергей Алексеевич

Даты

2018-03-23Публикация

2016-09-28Подача