Изобретение относится к теоретической теплотехнике и может быть использовано для определения коэффициента диффузии D жидкости в материалах, имеющих капиллярно-пористую структуру, при воздействии ультразвуком.
В капиллярно-пористых телах процесс тепломассообмена в ульятразвуковом поле, в значительной степени усложняется в условиях изменения влагосодержания в поровом пространстве. При моделировании тепловлажностного состояния капиллярно-пористого тела учет особенностей материала, таких как размер пор, их форма, расположение выполняют интегрально через определение эффективных свойств.
Известен способ (см. патент РФ №2212027 - Опубл. 10.09.2003.), включающий нанесение пленки диффундирующего элемента на поверхность металла, стимулирующее диффузию воздействия, определение изменения концентрации элемента в металле и расчет коэффициента диффузии элемента по концентрационной зависимости.
Недостатком данного способа является невозможность определения коэффициента диффузии у капиллярно-пористых тел, так же не учитывается возможность воздействия ультразвуком.
Известен способ (см. патент РФ №2398214 - Опубл. 27.08.2010.), основанный на анализе цифрового изображения плоскопараллельной вертикальной ячейки с неоднородным распределением концентрации, позволяющий определить коэффициент диффузии окрашенных растворов различных веществ.
Недостатком данного способа является неточность определения коэффициента диффузии, так как не учитывается пористое внутреннее строение тел, невозможность определения коэффициента диффузии при воздействии ультразвуком.
Наиболее близким по техническому решению является способ регулярного теплового режима [1]. Этот способ служит основой для достаточно простого определения теплофизических свойств материалов и коэффициентов теплоотдачи. Основная закономерность регулярного режима состоит в том, что при теплообмене в регулярном режиме натуральный логарифм избыточной температуры связан со временем линейной зависимостью. Угол наклона прямой характеризуется коэффициентом m - темпом регулярного режима.
Недостатком данного способа является определение темпа регулярного режима лишь при теплопроводности, так же невозможность определения коэффициента диффузии при воздействии ультразвуком.
Общим признаком прототипа и предлагаемого решения является нахождение коэффициента m - темпа регулярного режима путем построения зависимости натурального логарифма избыточных измеряемых величин от времени, а также нахождения K - коэффициента формы тела.
Техническим результатом предлагаемого способа является определение коэффициента диффузии капиллярно-пористого тела при воздействии ультразвуком.
Сущность способа поясняется фиг. 1, где приведены результаты определения темпа регулярного режима влагопереноса, где ο - экспериментальные данные; сплошная линия - линейная аппроксимирующая зависимость.
Предлагаемый способ заключается в том, что коэффициент диффузии D жидкости в капиллярно-пористом теле при воздействии ультразвуком в рассматриваемых условиях является параметром-аналогом коэффициента температуропроводности. Коэффициент диффузии D жидкости в капиллярно-пористом теле при воздействии ультразвуком определяется экспериментально на основе аналогии с методом регулярного теплового режима по выражению:
где K - коэффициент формы тела; m - темп регулярного режима влагопереноса.
Коэффициент формы тела K определяется аналогично методу регулярного теплового режима. Так, например, для тела в виде прямоугольного параллелепипеда размерами axbxc имеем [1]:
Для отыскания темпа регулярного режима влагопереноса m осушенное капиллярно-пористое тело погружают в воду, воздействуют на тело ультразвуком и определяют изменение с течением времени его массы, которая однозначно связана со средним влагосодержанием. По результатам эксперимента строят зависимость натурального логарифма избыточной массы (разности максимальной массы тела после его длительного пребывания в воде и массы в текущий момент времени, отсчитываемый от начала погружения) от времени. На полученной зависимости выделяют стадию регулярного режима влагопереноса, характеризуемую тем, что опытные точки на графике группируются около прямой линии. Тангенс угла наклона этой прямой к оси абсцисс на графике численно равен значению темпа регулярного режима влагопереноса m. Далее по формуле (1) рассчитывают коэффициент диффузии D при воздействии ультразвуком.
По изложенной методике определен коэффициент диффузии D при воздействии ультразвуком жидкости для красного строительного кирпича. Результаты эксперимента с пятью экземплярами кирпича для стадии регулярного режима влагопереноса приведены на фиг. 1. При обработке полученных результатов были определены значения K=3,191⋅10-4 м2; m=1,2⋅10-4 с-1; D=3,84⋅10-8 м2/с. Относительная погрешность определения коэффициента диффузии, приведенная к доверительной вероятности 0,95, составляет ±5%.
Информационный материал, используемый при составлении описания:
1. Теплопередача - Исаченко В.П., Осипова В.А., Сукомел А.С. Учебник для вузов, изд. 3-е, перераб. и доп. - М., «Энергия», 1975 г. - 488 с.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ ЖИДКОСТИ В КАПИЛЛЯРНО-ПОРИСТОМ ТЕЛЕ | 2011 |
|
RU2469292C1 |
Способ определения запасов природного газа глубокозалегающей газоконденсатной залежи, разрабатываемой в режиме истощения | 1987 |
|
SU1553656A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ РАСПАДЕ МАРТЕНСИТА В СТАЛИ | 2014 |
|
RU2574950C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СРЕДНЕЙ ПЛОТНОСТИ СВЯЗАННОЙ ЖИДКОСТИ КОЛЛОИДНЫХ И КАПИЛЛЯРНО-ПОРИСТЫХ ТЕЛ | 2008 |
|
RU2380683C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЛЕТУЧЕСТИ И ТЕПЛОТЫ ИСПАРЕНИЯ СМЕСИ ЖИДКИХ ВЕЩЕСТВ | 2012 |
|
RU2488811C1 |
СПОСОБ ИДЕНТИФИКАЦИИ ПРОМЕЖУТОЧНЫХ ФАЗ В МОНОКРИСТАЛЛАХ СИЛИКАТОВ | 2011 |
|
RU2470288C1 |
СПОСОБ УВЕЛИЧЕНИЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНЫХ СКВАЖИН | 1989 |
|
RU2021497C1 |
Способ определения коэффициента влагопроводности капиллярно-пористых материалов | 1984 |
|
SU1193529A1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ РАЗДЕЛЕНИЯ СМЕСИ ГАЗОВ ПО МОЛЕКУЛЯРНОЙ МАССЕ | 2018 |
|
RU2708046C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЛАГОПРОВОДНОСТИ ЛИСТОВЫХ ОРТОТРОПНЫХ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ | 2012 |
|
RU2497099C1 |
Изобретение относится к теоретической теплотехнике. Способ определения коэффициента диффузии жидкости в капиллярно-пористом теле, включающий погружение в воду капиллярно-пористого тела и определение изменения с течением времени его массы, отличающийся тем, что на тело воздействуют ультразвуком, по результатам эксперимента строят зависимость натурального логарифма избыточной массы от времени, на полученной зависимости выделяют стадию регулярного режима влагопереноса, характеризуемую тем, что опытные точки на графике сгруппированы около прямой линии, а тангенс угла наклона этой прямой к оси абсцисс на графике численно равен значению темпа регулярного режима влагопереноса, затем коэффициент диффузии жидкости в капиллярно-пористом теле определяют по формуле: D=Km, где K - коэффициент формы тела; m - темп регулярного режима влагопереноса. Технический результат заключается в обеспечении возможности определения коэффициента диффузии при воздействии ультразвуком. 1 ил.
Способ определения коэффициента диффузии жидкости в капиллярно-пористом теле, включающий погружение в воду капиллярно-пористого тела и определение изменения с течением времени его массы, отличающийся тем, что на тело воздействуют ультразвуком, по результатам эксперимента строят зависимость натурального логарифма избыточной массы от времени, на полученной зависимости выделяют стадию регулярного режима влагопереноса, характеризуемую тем, что опытные точки на графике сгруппированы около прямой линии, а тангенс угла наклона этой прямой к оси абсцисс на графике численно равен значению темпа регулярного режима влагопереноса, затем коэффициент диффузии жидкости в капиллярно-пористом теле определяют по формуле:
D=Km,
где K - коэффициент формы тела;
m - темп регулярного режима влагопереноса.
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ ЖИДКОСТИ В КАПИЛЛЯРНО-ПОРИСТОМ ТЕЛЕ | 2011 |
|
RU2469292C1 |
Способ определения коэффициента диффузии | 1989 |
|
SU1791756A1 |
US 9074985 B2, 07.07 | |||
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса | 1924 |
|
SU2015A1 |
Архангельский М.Е | |||
"Воздействие акустических колебаний на процесс диффузии", Успехи физических наук., Т | |||
Автоматический огнетушитель | 0 |
|
SU92A1 |
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
стр | |||
Водяные лыжи | 1919 |
|
SU181A1 |
Крутилин А.Н | |||
и др | |||
"Обзор методов интенсификации диффузионных процессов восстановления оксидов", Литьё и металлургия | |||
Способ приготовления лака | 1924 |
|
SU2011A1 |
Авторы
Даты
2018-03-29—Публикация
2016-12-20—Подача