СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ РАСПАДЕ МАРТЕНСИТА В СТАЛИ Российский патент 2016 года по МПК G01N25/02 C21D1/78 

Описание патента на изобретение RU2574950C1

Изобретение относится к области металлографии и может быть использовано в описании процессов диффузии, превращений, образования зародышей и роста новой фазы в металлах.

Известен дилатометрический анализ, позволяющий оценить энергию активации, основанный на изменении объема, происходящем в металле или сплаве в момент превращения [1].

Общим недостатком способа, в случае изучения внутренних превращений, является неточность количественных расчетов получающихся кривых, поскольку не удается количественно отделить объемный эффект превращения от чисто термического расширения или сжатия.

Также известен более простой способ определения энергии активации, который заключается в том, что экспериментально определяют коэффициенты в уравнении Аррениуса, представленной в логарифмической форме: lnk=lnk0-E0/RT, где k - константа скорости реакции с размерностью обратного времени, k0 - постоянная, Е0 - энергия активации при распаде мартенсита. Строят график зависимости в координатах lnk и l/RT, эта зависимость линейная. Тангенс угла наклона прямой Аррениуса определяет энергию активации [2].

Наиболее близким аналогом является SU 410299 А, МПК G01N 25/02, 05.01.1974, формула.

Недостаток данных способов заключается в том, что данные способы не позволяют раздельно оценить доли энергии активации, приходящиеся на зародышеобразование и рост новой фазы.

Задачей заявляемого способа является повышение достоверности сведений о свойствах металлов и сплавов при термической обработке.

Технический результат данного изобретения заключается в повышении точности определения энергии активации при распаде мартенсита в стали и в возможности оценки доли энергии активации, отдельно приходящейся на энергию активации зародышеобразования и энергию активации роста ферритной и цементитной фаз.

Технический результат настоящего изобретения достигается следующим образом.

Способ определения энергии активации фазовых превращений при распаде мартенсита в стали, в котором для определения энергии активации фазовых превращений определяют энергию активации образования зародышей новых ферритной и цементитной фаз и энергию активации роста упомянутых зародышей, для чего проводят закалку стальных образцов, отпуск упомянутых образцов при различных температурах, определяют количество микроструктурных объектов (N), образующихся при распаде мартенсита, и среднюю площадь зерна (Scp), с помощью которой определяют температурный коэффициент (αr) приращения среднего диаметра зерна по формуле:

α r = Δ с р Т , (1)

где Δ с р = S с р , Т - температура отпуска, °С.

Затем строят график зависимости натурального логарифма количества микроструктурных объектов (N) как функцию обратной величины произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации образования зародышей ферритной и цементитной фаз, затем строят график зависимости натурального логарифма температурного коэффициента (αr) приращения среднего диаметра зерна как функцию обратного произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации роста упомянутых зародышей, а энергию активации фазовых превращений при распаде мартенсита в стали определяют как сумму энергий активации образования зародышей ферритной и цементитной фаз и энергии активации роста упомянутых зародышей.

Мартенсит - пересыщенный твердый раствор углерода в α-железе. Образуется при закалке сталей в воду. Имеет «игольчатое» строение. При дальнейшей термической обработке (отпуске) происходит распад мартенсита. Различают 4 основных превращения при нагреве закаленной стали. Все процессы идут внутри мартенситных пластин (игл), поэтому характер игольчатой структуры сохраняется до высоких температур.

Первое превращение при отпуске происходит в интервале 80-200°C и называется «двухфазным» или «гетерогенным» расплавом мартенсита. Выделяются тончайшие пластины карбида (ε - карбид или FexC), уменьшается степень тетрагональности с/а→1 (где с и а - параметры кристаллической решетки), образуется «отпущенный мартенсит». Это превращение сопровождается сокращением объема образца.

Второе превращение происходит в интервале от 200-300°C. Одновременно идут процессы:

- образуются ε - и FexC - карбиды, когерентно связанные с решеткой мартенсита;

- остаточный аустенит переходит в «отпущенный мартенсит»;

(бейнит нижний). Процесс сопровождается увеличением объема;

- продолжается выделение углерода из мартенсита (с/а→1);

- начинается карбидное обособление - образование карбида железа по схеме: FexC→Fe2C→Fe5C→Fe3C.

Третье превращение происходит в интервале от 350-450°C. Увеличивается скорость диффузии, карбид железа выделяется из решетки мартенсита. Степень тетрагональности с/а→1. Образуется дисперсная смесь феррита и цементита (троостит отпуска).

Четвертое превращение происходит выше 400-450°C. Растут частицы карбида (коагуляция) и сливаются, округляются (сфероидизация). Тонкая феррито-цементитная структура троостита отпуска превращается при температуре 500-550°C в сорбит отпуска, а при более высоких температурах (600-650°C) - в перлит.

Энергия активации при распаде мартенсита - это энергия, которой должна обладать система, чтобы перескочить энергетический барьер, чтобы пошла реакция распада мартенсита. Чем больше энергия активации, тем сильнее возрастает скорость распада при увеличении температуры.

Распад мартенсита при отпуске можно разделить на ряд параллельно протекающих процессов: образование условных зародышей новой ферритной и цементитной фаз и их рост. Рост кристаллитов связан с переносом атомов железа через фазовую границу, представляющую определенный энергетический барьер, который определяет энергию активации роста новой структуры. В результате такого массопереноса происходит смещение самой фазовой границы, которое проявляется как миграция границы между исходной и новой структурой. Скорость образования условных зародышей и их суммарное количество, а также рост кристаллитов новых структур носит термофлуктуационную природу, при этом процесс роста зерен или миграция границ главным образом управляется самодиффузией. Тогда процесс распада мартенсита характеризуется суммой энергий активации, учитывающей энергию образования ферритных и цементитных зародышей, рост зерен новых структур, в частности феррита и перлита (ферритных и цементитных прослоек). Следовательно, кинетику процесса распада мартенсита при отпуске и отжиге нельзя однозначно оценить только миграцией атомов углерода, которая рассматривается как основной механизм в экспериментально-теоретических моделях разложения мартенсита.

Количество зародышей новой структуры отличается от количества зерен. Это связано с тем, что зародыши образуются не одновременно и отличаются устойчивостью и степенью привязки к матрице. Первичные зародыши имеют большую вероятность вырасти до зерна, а последующие - могут быть захвачены границей и мигрировать вместе с ней или поглощены растущим зерном и сформировать в нем субмикроструктуру. Часть зародышей может терять идентификационный признак при слиянии зерен.

Для определения энергии активации роста новых структур при распаде мартенсита используем температурный коэффициент приращения среднего диаметра зерна, определяемого по формуле (1).

Способ осуществляли следующим образом.

Провели закалку 7 образцов стали 45. Далее провели отпуск 6 образцов стали 45 при различных температурах. Затем готовили шлифы по стандартной методике. Затем образцы протравливали. Для стали 45 используется пятипроцентный спиртовой раствор HNO3. Затем провели фотографирование микроструктуры на металлографическом микроскопе (среднее количество фотографий 5 штук на каждой микроструктуре).

Фотографии микроструктур представлены на фиг. 1 (а-е). Фиг. 1а - микроструктура закаленной стали 45, фиг. 1б - микроструктура стали 45 после отпуска 200°C; фиг. 1в - микроструктура стали 45 после отпуска 300°C; фиг. 1г - микроструктура стали 45 после отпуска 400°C; фиг. 1д - микроструктура стали 45 после отпуска 500°C; фиг. 1е - микроструктура стали 45 после отпуска 600°C.

Оцифрованные фотографии микроструктур загружаются в программу, с помощью которой можно рассчитать различные количественные показатели микроструктуры, например Image.Pro.Plus.5.1, которая считает количество микроструктурных объектов на каждом снимке. Определили среднее значение микроструктурных объектов для каждой температуры отпуска.

В таблице представлены режимы термической обработки (Т, °C), среднее количество (N) и площадь микроструктурных объектов (S), определенных по фотографиям микроструктур с помощью программы Image.Pro.Plus.5.1.

Кинетику структурных изменений анализируем по характеру изменения количества микроструктурных объектов. Общее число микроструктурных объектов N на одной фотографии является самостоятельной количественной характеристикой, не связанной прямым образом с количеством зерен. Для мартенсита и других закалочных структур, не имеющих зеренную организацию, этот параметр можно использовать для оценки степени дисперсности. Из таблицы видно, что микроструктура после закалки отличается низким значением N, которое резко возрастает после отпуска, а с повышением температуры отпуска монотонно снижается до минимального уровня.

Далее строим зависимость натурального логарифма количества микроструктурных объектов от обратной величины больцмановского произведения RT. На фиг. 2 показана графическая зависимость определения энергии активации образования зародышей новой структуры при распаде мартенсита стали 45, где 1 - значение натурального логарифма количества микроструктурных объектов после закалки стали 45, 2 - значение натурального логарифма количества микроструктурных объектов после отпуска 200°C, 3 - значение натурального логарифма количества микроструктурных объектов после отпуска 300°C, 4 - значение натурального логарифма количества микроструктурных объектов после отпуска 400°C, 5 - значение натурального логарифма количества микроструктурных объектов после отпуска 500°C, 6 - значение натурального логарифма количества микроструктурных объектов после отпуска 600°C, 7 - уравнение наклонной прямой, которое приводим к уравнению Аррениуса lnk=lnk0-E0/RT, где lnk0=5,2124, Е0=7804,8 Дж/моль. Значение 7804,8 является энергией активации зародышеобразования.

Для определения энергии активации роста новых структур при распаде мартенсита используем температурный коэффициент приращения среднего диаметра зерна, рассчитанный по формуле 1.

На фиг. 3 показана зависимость натурального логарифма температурного коэффициента приращения среднего диаметра зерна как функция обратного произведения постоянной Больцмана и температуры l/RT, где 8 - значение натурального логарифма температурного коэффициента приращения среднего диаметрального размера зерна после отпуска 200°C, 9 - значение натурального логарифма температурного коэффициента приращения среднего диаметрального размера зерна после отпуска 300°C, 10 - значение натурального логарифма температурного коэффициента приращения среднего диаметрального размера зерна после отпуска 400°C, 11 - значение натурального логарифма температурного коэффициента приращения среднего диаметрального размера зерна после отпуска 500°C, 12 - значение натурального логарифма температурного коэффициента приращения среднего диаметрального размера зерна после отпуска 600°C, 13 - уравнение наклонной прямой, которое приводим к уравнению Аррениуса lnk=lnk0-E0/RT, где lnk0=5,2124, Е0=7066,2 Дж/моль. Значение 7066,2 является энергией активации роста новой фазы.

Для подтверждения достоверности рассчитанной энергии активации по предлагаемому способу дополнительно определяем энергию активации по дилатометрическим кривым (Фиг. 4), где 14 - дилатометрическая кривая после отжига, 15 - дилатометрическая кривая после закалки. Для проведения дилатометрического анализа подготавливаем образец из исследуемой закаленной стали 45. Для этого делаем образец в форме прямоугольного параллелепипеда, замеряем штангенциркулем длину, она составляет 25 мм (стандарт). На дилатометре, например Netzsch DIL 402РС, производим калибровку режима на эталонном образце. Нагреваем до температуры 850°C со скоростью 10 К/мин в воздушной среде. После этого кладем исследуемый образец в дилатометр и нагрев осуществляется по откалиброванному режиму. На мониторе компьютера, в прикладной программе, рисуется дилатометрическая кривая. Далее образец остывает до комнатной температуры. Затем производится повторный нагрев по тому же режиму, но образец уже находится в отожженном состоянии. И также на мониторе вырисовывается дилатометрическая кривая.

Для определения энергии активации берем участок 16 дилатометрических кривых 14 и 15 в интервале температур от 200°C до 450°C, так как в этом интервале на кривой 15 наблюдается изгиб. До 80°C распад мартенсита и аустенита протекает с незначительной скоростью и в небольшой степени. Далее распад мартенсита идет достаточно интенсивно. Из α-раствора выделяется углерод, при этом образуются дисперсные частицы карбида железа. При температуре 150-350°C происходит дальнейшее выделение углерода из твердого раствора, образование карбидов и их коагуляция, превращение остаточного аустенита. При температуре 350-450°C происходит интенсивное уменьшение углерода и полное завершение процесса выделения углерода из α-раствора и соответственно уменьшение плотности дефектов строения в этой фазе. Выше 450°C резко уменьшается плотность дефектов строения в α-фазе, а также рост (коагуляция) и сфероидизация карбидов. Следующий изгиб наблюдается выше температуры фазовых превращений, где происходит перестроение кристаллической решетки металла. Вычитанием производных получаем температурную зависимость разницы коэффициентов термических расширений закаленной и отожженной сталей 45 (фиг. 5). Для построения наклонных прямых разделяем параболу на восходящую и нисходящую кривую.

Численное значение энергии активации определяют путем построения в полулогарифмических координатах зависимости коэффициентов термических расширений ln(α) от обратной величины произведения постоянной Больцмана и температуры l/(RT). На фиг. 6 приведена зависимость для стали 45 (нисходящая кривая). На фиг. 7 приведена зависимость для стали 45 (восходящая кривая). Наклон аппроксимирующей кривой определяет энергию активации, где 17 - уравнение наклонной прямой, которое приводим к уравнению Аррениуса lnk=lnk0-E0/RT, где lnk0=6,9913, Е0=13159 Дж/моль, 18 - уравнение наклонной прямой, которое приводим к уравнению Аррениуса lnk=lnk0-E0/RT, где lnk0=18,68, Е0=19831 Дж/моль. Среднее значение энергии активации распада мартенсита по дилатометрическим кривым составляет 16495 Дж/моль.

Используя дилатометрический метод можно вычислить энергию активации распада мартенсита в целом. Энергия активации составляет 16495 Дж/моль. Используя метод определения энергии активации по оцифрованным фотографиям микроструктуры можно вычислить энергию активации различных стадий: образование зародышей новой фазы (энергия активации равна 7804,8 Дж/моль) и энергию роста новой фазы (равна 7066,2 Дж/моль). В сумме получаем энергию активации распада мартенсита 14871 Дж/моль, что численно удовлетворительно совпадает с энергией активации, полученной по дилатометрическим кривым.

Литература

1. Аматуни А.Н., Методы и приборы для определения температурных коэффициентов линейного расширения материалов. - М., 1972.

2. Ермаков С.С. Физика металлов и дефекты кристаллического строения. Учеб. пособие. - Л.: Издательство Ленинградского университета. 280 с., стр. 165-166.

Похожие патенты RU2574950C1

название год авторы номер документа
СПОСОБ ОБРАБОТКИ СТАЛЕЙ 2000
  • Зарипова Р.Г.
  • Кайбышев О.А.
  • Салищев Г.А.
  • Фархутдинов К.Г.
RU2181776C2
Бесшовная высокопрочная труба из стали мартенситного класса для обсадных колонн и способ ее производства 2021
  • Пумпянский Дмитрий Александрович
  • Пышминцев Игорь Юрьевич
  • Чикалов Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Неклюдов Илья Васильевич
  • Буняшин Михаил Васильевич
  • Усков Дмитрий Петрович
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Коновалов Сергей Сергеевич
  • Битюков Сергей Михайлович
RU2787205C2
БЕСШОВНАЯ ВЫСОКОПРОЧНАЯ ТРУБА ИЗ СТАЛИ МАРТЕНСИТНОГО КЛАССА ДЛЯ ОБСАДНЫХ КОЛОНН И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2022
  • Пумпянский Дмитрий Александрович
  • Чикалов Сергей Геннадьевич
  • Четвериков Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Буняшин Михаил Васильевич
  • Ульянов Андрей Георгиевич
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Лоханов Дмитрий Валерьевич
  • Благовещенский Сергей Иванович
  • Никляев Андрей Викторович
  • Пышминцев Игорь Юрьевич
  • Выдрин Александр Владимирович
  • Черных Иван Николаевич
  • Корсаков Андрей Александрович
RU2798642C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ПРОКАТА 2011
  • Салганик Виктор Матвеевич
  • Денисов Сергей Владимирович
  • Набатчиков Дмитрий Геннадьевич
  • Чикишев Денис Николаевич
  • Стеканов Павел Александрович
  • Артамонова Марина Олеговна
RU2477323C1
СВЕРХВЫСОКОПРОЧНАЯ ДВУХФАЗНАЯ СТАЛЬ С ВЫСОКОЙ УДАРНОЙ ВЯЗКОСТЬЮ ПРИ КРИОГЕННОЙ ТЕМПЕРАТУРЕ 1998
  • Коо Дзайоюнг
  • Бангару Нарасимха-Рао В.
RU2216599C2
Способ термомеханической обработки жаропрочной стали мартенситного класса 2018
  • Кайбышев Рустам Оскарович
  • Дудова Надежда Рузилевна
  • Дудко Валерий Александрович
  • Федосеева Александра Эдуардовна
  • Мишнев Роман Владимирович
  • Ткачев Евгений Сергеевич
RU2688017C1
ЛИСТ ДВУХФАЗНОЙ СТАЛИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2013
  • Йокои Тацуо
  • Суто Хироси
  • Сакурада Эйсаку
  • Окада Хироюки
RU2605014C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНЫХ ХОЛОДНОКАТAНЫХ И ОТОЖЖЕННЫХ СТАЛЬНЫХ ЛИСТОВ И ЛИСТЫ, ПОЛУЧЕННЫЕ ЭТИМ СПОСОБОМ 2008
  • Хиль Отин Хавьер
  • Мулэн Антуан
RU2437945C2
ДВУХФАЗНАЯ СТАЛЬ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 1995
  • Ку Джейянг
  • Хемраджани Рамеш Р.
RU2151214C1
СВЕРХВЫСОКОПРОЧНАЯ, ЗАКАЛИВАЮЩАЯСЯ НА ВОЗДУХЕ, МНОГОФАЗНАЯ СТАЛЬ, ОБЛАДАЮЩАЯ ОТЛИЧНЫМИ ТЕХНОЛОГИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ, И СПОСОБ ПОЛУЧЕНИЯ ПОЛОС УКАЗАННОЙ СТАЛИ 2015
  • Шульц, Томас
  • Шётлер, Йоахим
  • Клюге, Саша
  • Бехтольд, Марион
RU2682913C2

Иллюстрации к изобретению RU 2 574 950 C1

Реферат патента 2016 года СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ РАСПАДЕ МАРТЕНСИТА В СТАЛИ

Изобретение относится к области металлографии и может быть использовано в описании процессов диффузии, превращений, образования зародышей и роста новой фазы в металлах. Способ определения энергии активации фазовых превращений при распаде мартенсита в стали, в котором для определения энергии активации фазовых превращений определяют энергию активации образования зародышей новых ферритной и цементитной фаз и энергию активации роста упомянутых зародышей. Проводят закалку стальных образцов, отпуск упомянутых образцов при различных температурах, определяют количество микроструктурных объектов (N), образующихся при распаде мартенсита, и среднюю площадь зерна (Scp), с помощью которой определяют температурный коэффициент (αr) приращения среднего диаметра зерна по формуле:

α r = Δ с р Т , где Δ с р = S с р , Т - температура отпуска, °С. Затем строят график зависимости натурального логарифма количества микроструктурных объектов (N) как функцию обратной величины произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации образования зародышей ферритной и цементитной фаз. Затем строят график зависимости натурального логарифма температурного коэффициента (αr) приращения среднего диаметра зерна как функцию обратного произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации роста упомянутых зародышей. Энергию активации фазовых превращений при распаде мартенсита в стали определяют как сумму энергий активации образования зародышей ферритной и цементитной фаз и энергии активации роста упомянутых зародышей. Обеспечивается повышение точности определения энергии активации при распаде мартенсита закаленной стали и возможность оценки доли энергии активации, отдельно приходящейся на энергию активации зародышеобразования и энергию активации роста новой фазы. 7 ил., 1 табл.

Формула изобретения RU 2 574 950 C1

Способ определения энергии активации фазовых превращений при распаде мартенсита в стали, отличающийся тем, что для определения энергии активации фазовых превращений определяют энергию активации образования зародышей новых ферритной и цементитной фаз и энергию активации роста упомянутых зародышей, для чего проводят закалку стальных образцов, отпуск упомянутых образцов при различных температурах, определяют количество микроструктурных объектов (N), образующихся при распаде мартенсита, и среднюю площадь зерна (Scp), с помощью которой определяют температурный коэффициент (αr) приращения среднего диаметра зерна по формуле:
α r = Δ с р Т , где Δ с р = S с р , Т - температура отпуска, °С, затем строят график зависимости натурального логарифма количества микроструктурных объектов (N) как функцию обратной величины произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации образования зародышей ферритной и цементитной фаз, затем строят график зависимости натурального логарифма температурного коэффициента (αr) приращения среднего диаметра зерна как функцию обратного произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации роста упомянутых зародышей, а энергию активации фазовых превращений при распаде мартенсита в стали определяют как сумму энергий активации образования зародышей ферритной и цементитной фаз и энергии активации роста упомянутых зародышей.

Документы, цитированные в отчете о поиске Патент 2016 года RU2574950C1

1971
SU410299A1
Способ определения энергии активации полимерных превращений в металлах 1976
  • Лобачев Владимир Иванович
  • Баталов Вячеслав Семенович
  • Лобачев Константин Иванович
  • Линник Лев Николаевич
SU620879A1
Способ упрочнения стальных изделий 1985
  • Усольцева Ирина Ивановна
  • Кулаков Геннадий Алексеевич
  • Федоров Василий Васильевич
SU1275050A1
JP 2014029320 A, 13.02.2014
US 7645069 B1, 12.01.2010.

RU 2 574 950 C1

Авторы

Ким Владимир Алексеевич

Белова Инна Валерьевна

Даты

2016-02-10Публикация

2014-07-03Подача