Способ анализа результатов активного теплового неразрушающего контроля изделий из полимерных композиционных материалов Российский патент 2018 года по МПК G01N25/72 G01J5/60 

Описание патента на изобретение RU2649247C1

Изобретение относится к области неразрушающего контроля материалов и изделий методом теплового контроля и может быть использовано для повышения надежности диагностики при ручном и автоматизированном активном тепловом контроле изделий из полимерных композиционных материалов.

Изобретение предназначено для обеспечения достоверной интерпретации результатов контроля, повышения температурного сигнала от дефекта и исключения ложных дефектных областей.

Для анализа результатов теплового контроля широко применяется преобразование массива полученных в ходе контроля термограмм в искусственную термограмму, на которой температурный сигнал дефекта максимален.

Известен способ активного одностороннего теплового контроля, основанный на нормализации последовательности термограмм, которая заключается в том, что все термограммы последовательности делят на опорную термограмму (одну из термограмм в начале нагрева), в которой присутствуют оптические помехи, но еще отсутствуют температурные аномалии от дефектов (В.П. Вавилов. Инфракрасная термография и тепловой контроль. - Москва, ИД «Спектр», 2009. С. 570). Недостатком данного метода является то, что в результате его применения температурный сигнал от дефекта на искусственной термограмме не возрастает, что затрудняет процесс расшифровки полученной термограммы.

Наиболее близким к заявляемому изобретению является метод обработки результатов активного теплового контроля с применением анализа Фурье и метода главных компонент (Применение Фурье-анализа и метода анализа главных компонент для обработки данных динамического теплового контроля [В.П. Вавилов и др.] // Известия Томского политехнического университета [Известия ТПУ]. - 2008. - Т. 312, № 2: Математика и механика. Физика. Приложение: Неразрушающий контроль и диагностика. - С. 279-285). К недостаткам данного метода относятся высокая трудоемкость и невысокое быстродействие в силу сложности алгоритма обработки.

Задачей заявленного изобретения является упрощение процесса анализа результатов теплового контроля при сохранении достоверности выявления дефектов.

Задача решается следующим образом.

Способ анализа результатов активного теплового неразрушающего контроля изделий из полимерных композиционных материалов, включающий проведение тепловизионной съемки поверхности изделия под внешней стимуляцией, измерение интенсивности излучения изделия в инфракрасном спектре, получение массива термограмм, отличающийся тем, что термограммы преобразуют в числовые матрицы, элементами которых являются значения яркости каждого из пикселей, получают трехмерный числовой массив введением номера термограммы в качестве третьего измерения, применяют робастный метод оценки, основанный на вычислении медианы всевозможных частных углов наклона, получают матрицу скоростей нагрева, затем генерируют искусственную термограмму скоростей нагрева.

В результате активного теплового контроля изделий из ПКМ получают массив термограмм, разрешение которых соответствует разрешению матрицы тепловизора. Количество термограмм в массиве зависит от времени нагревания и частоты регистрации тепловизором. Пример термограмм в начале измерения и при нагреве приведен на фиг. 1.

На первом этапе анализа результатов термограммы преобразовывают в числовые матрицы, элементами которых являются значения яркости каждого из пикселей. Затем из полученных числовых матриц получают трехмерный числовой массив, вводя номер термограммы в качестве третьего измерения. На фиг. 2 представлена зависимость яркости двух случайно выбранных пикселей от времени нагревания образца.

Наклон касательной к графику после точки изгиба (фиг. 2) определяется скоростью нагрева соответствующего участка образца. Для дальнейшего преобразования применяют робастный метод оценки, основанный на вычислении медианы всевозможных частных углов наклона:

при i < j,

где yj, уi - значения яркости пикселя на термограммах с номерами i, j,

xj, xi - порядковые номера термограмм i, j.

Такой подход избавляет от необходимости определять точку начала нагрева (точка изгиба). В результате применения алгоритма получают матрицу скоростей нагрева (углов наклона).

На последнем этапе полученная числовая матрица скоростей нагрева (углов наклона) визуализируется (по значениям матрицы генерируется искусственная термограмма) с использованием различных фильтров (числа градаций по яркости). Примеры такой визуализации приведены на фиг. 3.

В результате применения описанного способа анализа существенно повышается температурный сигнал от дефектов, уменьшаются шумы, облегчается процесс поиска дефектных областей. Описанный способ имеет существенно меньшую трудоемкость, чем имеющиеся аналоги, и вследствие простоты алгоритма обладает большим быстродействием.

Похожие патенты RU2649247C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ КИНЕТИЧЕСКИХ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ 2020
  • Головин Юрий Иванович
  • Самодуров Александр Алексеевич
  • Тюрин Александр Иванович
  • Головин Дмитрий Юрьевич
RU2753620C1
СПОСОБ БЕСКОНТАКТНОГО ОДНОСТОРОННЕГО АКТИВНОГО ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ 2015
  • Вавилов Владимир Платонович
  • Ширяев Владимир Васильевич
  • Чулков Арсений Олегович
RU2590347C1
СПОСОБ ЭЛЕКТРОСИЛОВОЙ ТЕРМОГРАФИИ ПРОСТРАНСТВЕННЫХ ОБЪЕКТОВ С ЗАШУМЛЕННОЙ ПОВЕРХНОСТЬЮ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2020
  • Козельская Софья Олеговна
RU2740183C1
СПОСОБ ТЕПЛОВОГО КОНТРОЛЯ НАДЕЖНОСТИ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ ПО АНАЛИЗУ ВНУТРЕННИХ НАПРЯЖЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Будадин Олег Николаевич
  • Кульков Александр Алексеевич
  • Пичугин Андрей Николаевич
RU2506575C1
СПОСОБ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КРУПНОГАБАРИТНЫХ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ 2021
  • Вавилов Владимир Платонович
  • Чулков Арсений Олегович
  • Нестерук Денис Алексеевич
  • Ширяев Владимир Васильевич
  • Шильников Геннадий Владимирович
  • Щепелин Владимир Яковлевич
  • Перепелица Анатолий Александрович
RU2774040C1
СПОСОБ ЭЛЕКТРОСИЛОВОЙ ТЕРМОГРАФИИ ПРОСТРАНСТВЕННЫХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2018
  • Будадин Олег Николаевич
  • Кульков Александр Алексеевич
  • Козельская Софья Олеговна
  • Каледин Валерий Олегович
  • Вячкин Евгений Сергеевич
RU2690033C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРОПРОВОДНОСТИ ОПТИЧЕСКИ ПРОЗРАЧНЫХ МАТЕРИАЛОВ 2019
  • Головин Юрий Иванович
  • Самодуров Александр Алексеевич
  • Тюрин Александр Иванович
  • Головин Дмитрий Юрьевич
RU2725695C1
СПОСОБ ТЕПЛОВИЗИОННОГО КОНТРОЛЯ ВОДЫ В АВИАЦИОННЫХ СОТОВЫХ ПАНЕЛЯХ ЭКСПЛУАТИРУЕМЫХ САМОЛЕТОВ 2005
  • Вавилов Владимир Платонович
  • Нестерук Денис Алексеевич
RU2284515C1
УСТРОЙСТВО ДЛЯ ИНФРАКРАСНОЙ ТЕРМОГРАФИИ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ В СРЕДЕ ПОСТОЯННОГО МАГНИТНОГО ПОЛЯ 2021
  • Зорин Владимир Александрович
  • Косенко Екатерина Александровна
  • Баурова Наталья Ивановна
RU2763987C1
Способ определения кристобалита в изделиях из кварцевого стекла методом тепловизионного контроля 2022
  • Минин Сергей Иванович
  • Терехин Александр Васильевич
  • Русин Михаил Юрьевич
  • Анашкина Антонина Александровна
  • Харитонов Дмитрий Викторович
RU2799896C1

Иллюстрации к изобретению RU 2 649 247 C1

Реферат патента 2018 года Способ анализа результатов активного теплового неразрушающего контроля изделий из полимерных композиционных материалов

Изобретение относится к области неразрушающего контроля материалов и изделий методом теплового контроля и может быть использовано для повышения надежности диагностики при ручном и автоматизированном активном тепловом контроле изделий из полимерных композиционных материалов. Способ включает проведение тепловизионной съемки поверхности изделия под внешней стимуляцией, измерение интенсивности излучения изделия в инфракрасном спектре, получение массива термограмм. Термограммы преобразуют в числовые матрицы, элементами которых являются значения яркости каждого из пикселей, получают трехмерный числовой массив введением номера термограммы в качестве третьего измерения, применяют робастный метод оценки, основанный на вычислении медианы всевозможных частных углов наклона, получают матрицы скоростей нагрева, затем генерируют искусственную термограмму скоростей нагрева. Технический результат - обеспечение достоверной интерпретации результатов контроля, повышение температурного сигнала дефекта и удаление ложных дефектных областей. 3 ил.

Формула изобретения RU 2 649 247 C1

Способ анализа результатов активного теплового неразрушающего контроля изделий из полимерных композиционных материалов, включающий проведение тепловизионной съемки поверхности изделия под внешней стимуляцией, измерение интенсивности излучения изделия в инфракрасном спектре, получение массива термограмм, отличающийся тем, что термограммы преобразуют в числовые матрицы, элементами которых являются значения яркости каждого из пикселей, получают трехмерный числовой массив введением номера термограммы в качестве третьего измерения, применяют робастный метод оценки, основанный на вычислении медианы всевозможных частных углов наклона, получают матрицу скоростей нагрева, затем генерируют искусственную термограмму скоростей нагрева.

Документы, цитированные в отчете о поиске Патент 2018 года RU2649247C1

Вавилов В.П
и др
"Применение Фурье-анализа и метода анализа главных компонент для обработки данных динамического теплового контроля"
Известия Томского политехнического университета, 2008 г., т
Способ обработки шкур 1921
  • Блистанов Ф.Н.
SU312A1
АППАРАТ ДЛЯ ОБОГАЩЕНИЯ РУД ПО МЕТОДУ ВСПЛЫВАНИЯ 1915
SU279A1
СПОСОБ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ СКРЫТЫХ ДЕФЕКТОВ ВСПЕНЕННОГО ИЗОЛИРУЮЩЕГО СЛОЯ В ИЗДЕЛИЯХ С МНОГОСЛОЙНОЙ СТРУКТУРОЙ 2014
  • Липатников Владимир Валентинович
  • Кашапов Марат Назмтдинович
  • Ильинец Яков Иосифович
  • Семенов Андрей Николаевич
  • Ильинец Михаил Яковлевич
RU2578260C1
US 20030137318 A1, 24.07.2003
Способ тепловизионного контроля внутренних дефектов 1989
  • Сапцин Владимир Михайлович
  • Вавилов Владимир Платонович
SU1712852A1
СПОСОБ ТЕПЛОВОГО КОНТРОЛЯ СОПРОТИВЛЕНИЯ ТЕПЛОПЕРЕДАЧЕ МНОГОСЛОЙНОЙ КОНСТРУКЦИИ В НЕСТАЦИОНАРНЫХ УСЛОВИЯХ ТЕПЛОПЕРЕДАЧИ 2009
  • Абрамова Елена Вячеславовна
  • Будадин Олег Николаевич
  • Иванушкин Евгений Федорович
  • Слитков Михаил Николаевич
RU2420730C2
JP 2014211340 A, 13.11.2014.

RU 2 649 247 C1

Авторы

Русаков Дмитрий Юрьевич

Скоморохов Александр Олегович

Даты

2018-03-30Публикация

2017-03-27Подача