Теплообменный аппарат Российский патент 2018 года по МПК F28D7/00 

Описание патента на изобретение RU2650444C1

Изобретение относится к области теплотехники, в частности к рекуперативным теплообменным аппаратам.

Известен теплообменный аппарат, содержащий пучок теплопередающих труб, расположенный в корпусе с патрубками подвода и отвода теплоносителей трубной и межтрубной полостей (В.А. Андреев. «Теплообменные аппараты для вязких жидкостей», стр. 97, Государственное энергетическое издательство, 1961 г., Москва, Ленинград).

Основным недостатком известного устройства является отсутствие возможности подачи в межтрубное пространство теплообменного аппарата дополнительного потока теплоносителя межтрубной полости.

Известен теплообменный аппарат, выбранный в качестве прототипа, содержащий пучок теплопередающих труб, расположенный в корпусе с патрубками подвода и отвода теплоносителя трубной полости и двумя патрубками подвода и патрубком отвода теплоносителя межтрубной полости (Ю.Г. Назмеев и В.М. Лавыгин. «Теплообменные аппараты ТЭС», стр. 8, 9. Издательство МЭИ, 2002 г., Москва).

Снабжение межтрубной полости двумя патрубками для подвода теплоносителя межтрубной полости позволяет подать в корпус теплообменника дополнительный поток теплоносителя межтрубной полости. Однако симметричное, притом встречно направленное расположение этих патрубков снижает тепловую эффективность теплообменного аппарата в связи с установлением температуры смешанного потока на промежуточном уровне относительно температур двух потоков, приводит к повышенному местному гидравлическому сопротивлению в этой точке и не позволяет реализовать 2-ступенчатую схему подогрева воды горячего водоснабжения в одном корпусе теплообменного аппарата.

Задачей предлагаемого технического решения является обеспечение возможности подвода в межтрубную полость дополнительного потока теплоносителя, не снижая среднелогарифмический напор и не увеличивая местное гидравлическое сопротивление, реализация 2-ступенчатой схемы подогрева воды горячего водоснабжения в одном корпусе теплообменного аппарата.

Поставленная задача решается тем, что один из двух патрубков подвода теплоносителя межтрубной полости расположен на корпусе в месте совпадения температур потока теплоносителя межтрубной полости, поступающего через этот патрубок, и потока теплоносителя межтрубной полости, движущегося внутри корпуса от другого патрубка к патрубку отвода. Патрубок подвода теплоносителя межтрубной полости, расположенный на корпусе в месте совпадения температур потоков теплоносителя межтрубной полости, расположен под острым углом к продольной оси теплообменного аппарата и спутно потоку теплоносителя межтрубной полости, движущемуся внутри корпуса от другого патрубка подвода теплоносителя.

Расположение одного из двух патрубков подвода теплоносителя межтрубной полости в месте совпадения температур потока теплоносителя межтрубной полости, поступающего через этот патрубок, и потока теплоносителя межтрубной полости, движущегося внутри корпуса от другого патрубка к патрубку отвода позволяет подавать в межтрубную полость дополнительный поток теплоносителя, не снижая среднелогарифмический напор, что позволяет реализовать 2-ступенчатую схему подогрева воды горячего водоснабжения в одном корпусе теплообменного аппарата.

Расположение этого патрубка под острым углом к продольной оси теплообменного аппарата и спутно потоку теплоносителя межтрубной полости, движущемуся внутри корпуса от другого патрубка подвода теплоносителя, позволяет снизить гидравлическое сопротивление в месте слияния потоков среды межтрубной полости от двух подводящих к ней патрубков.

На рисунке 1 представлен заявляемый теплообменный аппарат. Поз. 1 - корпус, поз. 2 - патрубок подвода теплоносителя трубной полости, поз. 3 - патрубок отвода теплоносителя трубной полости, поз. 4 и поз. 5 - патрубки подвода теплоносителя межтрубной полости, поз. 6 - патрубок отвода теплоносителя межтрубной полости, поз. 7 - трубный пучок.

Теплообменный аппарат работает следующим образом. Теплоноситель трубной полости через патрубок подвода 2 входит в трубный пучок 7 и, пройдя по трубной полости, выходит из аппарата через патрубок отвода 3. Теплоноситель межтрубной полости входит в межтрубную полость через патрубок подвода 4 и движется по межтрубной полости к патрубку отвода 6. Дополнительный теплоноситель входит в межтрубную полость через второй патрубок подвода 5, расположенный в том месте, где температура дополнительного теплоносителя совпадает с температурой теплоносителя, уже движущегося в межтрубной полости, после чего совместный поток движется к патрубку отвода 6 теплоносителя межтрубной полости.

Например, требуется обеспечить 2-ступенчатую схему подогрева воды горячего водоснабжения здания. В этом случае греющая вода, войдя в межтрубную полость через первый патрубок подвода и пройдя 2-ю ступень, должна смешаться с водой, прошедшей систему отопления здания и поступающей в межтрубную полость через второй патрубок подвода. После этого общий поток движется к патрубку отвода среды межтрубной полости, т.е. проходит 1-ю ступень. Как правило, смешение должно происходить при условии равенства температур этих двух потоков греющей воды (т.е. того потока, который прошел 2-ю ступень, и того потока, который прошел систему отопления). Эта равновесная для обоих потоков температура определяется проектом и находится обычно в районе 40°С. Используя общеизвестные формулы расчета теплообменных аппаратов, можно достаточно точно определить место, где температура греющей воды, вошедшей в межтрубное пространство через патрубок 4, имеет значение, равное 40°С. Именно в этом месте и должен быть расположен дополнительный патрубок, подающий воду, прошедшую систему отопления.

Например, требуется подогреть по 2-ступенчатой схеме 10 м3/ч воды горячего водоснабжения от 5 до 60°С. При этом греющая вода, поступающая во вторую ступень, имеет расход, равный 10 м3/ч, и температуру 75°С, равновесная температура двух потоков греющей воды (прошедшей 2-ю ступень и прошедшей систему отопления) равна 40°С, а температура греющей воды на выходе из теплообменника имеет температуру 30°С. Выбирается, например, теплообменник с диаметром корпуса 100 мм и теплопередающими трубками 6 мм. По известным формулам определяется, что длина второй ступени должна быть равна 2450 мм, а длина первой ступени должна быть равна 1700 мм. Из этого вытекает, что полная длина корпуса теплообменника (с учетом исключения двух толщин трубных решеток) должна иметь длину 4100 мм. При этом место расположения патрубка, подающего в межтрубное пространство дополнительный поток греющего теплоносителя, прошедшего ранее систему отопления, находится на расстоянии 1700 мм от трубной решетки, расположенной со стороны входа в теплообменник нагреваемой воды горячего водоснабжения. Это расстояние на фиг. 1 обозначено буквой «X».

Использование предлагаемого теплообменного аппарата позволяет создать кожухотрубный аппарат, реализующий 2-ступенчатую схему горячего водоснабжения в одном корпусе.

Похожие патенты RU2650444C1

название год авторы номер документа
Теплообменный аппарат 2017
  • Барон Виталий Григорьевич
  • Барон Александр Витальевич
RU2669441C1
Теплообменный аппарат 2017
  • Барон Виталий Григорьевич
  • Масловский Вячеслав Борисович
  • Денисов Андрей Алексеевич
RU2647942C1
ТЕПЛООБМЕННЫЙ АППАРАТ 1992
  • Барон Виталий Григорьевич
RU2009429C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕПЛООБМЕННОГО АППАРАТА С ПРОДОЛЬНО ОРИЕНТИРОВАННЫМИ КАНАЛАМИ 1991
  • Барон Виталий Григорьевич
RU2011503C1
Теплообменный аппарат 2018
  • Барон Александр Витальевич
RU2687549C1
ТЕПЛООБМЕННЫЙ АППАРАТ 1993
  • Барон Виталий Григорьевич
  • Барон Александр Вульфович
RU2047081C1
Теплообменный аппарат 2020
  • Барон Александр Витальевич
RU2731504C1
КОЖУХОТРУБЧАТЫЙ ТЕПЛООБМЕННЫЙ АППАРАТ 2015
  • Лагуткин Михаил Георгиевич
  • Сорокин Виктор Григорьевич
  • Сорокина Ирина Игоревна
  • Абрамов Александр Сергеевич
  • Корюкин Сергей Руфович
  • Михайловский Сергей Владимирович
  • Коровин Павел Иванович
  • Маркелова Анастасия Владимировна
  • Гребенщиков Денис Павлович
RU2672988C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕПЛООБМЕННОГО АППАРАТА С ПРОДОЛЬНО ОРИЕНТИРОВАННЫМИ КАНАЛАМИ 1991
  • Барон Виталий Григорьевич
RU2013734C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕПЛООБМЕННОГО АППАРАТА С ПРОДОЛЬНО ОРИЕНТИРОВАННЫМИ КАНАЛАМИ 1991
  • Барон Виталий Григорьевич
RU2038890C1

Иллюстрации к изобретению RU 2 650 444 C1

Реферат патента 2018 года Теплообменный аппарат

Теплообменный аппарат, содержащий пучок теплопередающих труб, расположенный в корпусе с патрубками подвода и отвода теплоносителей трубной и межтрубной полостей, снабжен дополнительным патрубком подвода теплоносителя межтрубной полости, который расположен на корпусе в месте совпадения температур потока теплоносителя межтрубной полости, поступающего через этот патрубок, и потока теплоносителя межтрубной полости, движущегося внутри корпуса от другого патрубка к патрубку отвода. Дополнительный патрубок расположен под острым углом к продольной оси теплообменного аппарата и спутно потоку теплоносителя межтрубной полости, движущемуся внутри корпуса от другого патрубка подвода теплоносителя. Такое расположение дополнительного патрубка подвода теплоносителя межтрубной полости позволяет реализовать 2-ступенчатую схему подогрева воды горячего водоснабжения в одном корпусе теплообменного аппарата. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 650 444 C1

1. Теплообменный аппарат, содержащий пучок теплопередающих труб, расположенный в корпусе с патрубками подвода и отвода теплоносителя трубной полости, двумя патрубками подвода и патрубком отвода теплоносителя межтрубной полости, отличающийся тем, что один из двух патрубков подвода теплоносителя межтрубной полости расположен на корпусе в месте совпадения температур потока теплоносителя межтрубной полости, поступающего через этот патрубок, и потока теплоносителя межтрубной полости, движущегося внутри корпуса от другого патрубка к патрубку отвода.

2. Теплообменный аппарат по п. 1, отличающийся тем, что патрубок подвода теплоносителя межтрубной полости, расположенный на корпусе в месте совпадения температур потоков теплоносителя межтрубной полости, расположен под острым углом к продольной оси теплообменного аппарата и спутно потоку теплоносителя межтрубной полости, движущемуся внутри корпуса от другого патрубка подвода теплоносителя.

Документы, цитированные в отчете о поиске Патент 2018 года RU2650444C1

ВИХРЕВОЙ ТЕПЛООБМЕННЫЙ ЭЛЕМЕНТ 2009
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Алябьева Татьяна Васильевна
  • Кобелев Андрей Николаевич
  • Плетнёв Александр Николаевич
RU2425315C1
Кожухотрубный теплообменник 1979
  • Колоколова Тамара Григорьевна
  • Даниленко Нина Хаимовна
  • Ефременко Иван Павлович
SU851079A1
Теплообменник 1984
  • Седова Вера Павловна
SU1268927A1
KR 20100057420 A, 31.05.2010.

RU 2 650 444 C1

Авторы

Барон Виталий Григорьевич

Даты

2018-04-13Публикация

2017-06-13Подача