Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии.
Известен лазерный дальномер, содержащий лазерный передатчик, приемник отраженного объектом излучения и измеритель временного интервала между зондирующим и отраженным целью импульсами, определяемого путем подсчета хронирующих импульсов, заполняющих измеряемый временной интервал [1].
Такие устройства характеризуются невысокой точностью измерения, определяемой погрешностью временной фиксации передаваемого и принимаемого импульсов излучения, дискретностью хронирующих импульсов и систематической ошибкой, связанной с разной задержкой сигнала в устройствах временной фиксации зондирующего и принятого импульса.
Наиболее близким по технической сущности к предлагаемому устройству является лазерный дальномер, описанный в [2].
Этот лазерный дальномер содержит лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальный приемник с коммутатором входов, а также внешнее вычислительное устройство, причем один из входов коммутатора связан с выходом лазерного излучателя, а второй вход - с датчиком тока накачки лазера.
На выходе приемника поочередно формируются сигналы от этих источников. Внешнее устройство (схема временной фиксации [3] с последующим измерителем временных интервалов или цифровой сигнальный процессор (ЦСП) с аналого-цифровым преобразователем на входе) осуществляет временную привязку выходных сигналов приемника к хронирующим импульсам времязадающего устройства [4].
Данное решение компенсирует погрешность измерения временного интервала τ, обусловленную разным временем регистрации и обработки сигналов с датчика тока накачки Iн(t,t0) и с выхода приемника Iф(t,tD), но не устраняет разность временного положения импульса тока накачки Iн(t,t0) и светового импульса лазера S0(t,t0), которая может достигать 1-5 нс. Здесь t - текущее время, t0 - момент зондирования, tD - момент приема отраженного сигнала.
Задачей изобретения является повышение точности лазерного дальномера.
Указанная задача решается за счет того, что в известном лазерном дальномере, содержащем лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, введено второе двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, а также введен расщепитель выходного излучения лазерного полупроводникового излучателя, причем первый пучок выходного излучения направлен на первый объект, находящийся в поле зрения первого приемника, а второй пучок - на второй объект, находящийся в поле зрения второго приемника, при этом введен вычислитель дифференциальной дальности до первого и второго объектов.
Может быть введен калиброванный по оптической длине световод, вход которого направлен на излучатель и является расщепителем выходного излучения, а выход направлен на второй приемник.
На фиг. 1 представлена блок-схема лазерного дальномера. На фиг. 2 - функциональная схема одного из его каналов.
Лазерный дальномер (фиг. 1) содержит передающее устройство 1 с датчиком тока накачки, первый приемный канал, включающий первое приемное устройство 2, первый двухканальный усилитель 3, выход которого подключен к первому аналого-цифровому вычислителю 4. Второй приемный канал содержит второе приемное устройство 5, второй двухканальный усилитель 6, выход которого подключен к второму аналого-цифровому вычислителю 7. К управляющим входам первого и второго усилителей подключены соответственно первый 8 и второй 9 коммутаторы. Цифровые выходы аналого-цифровых вычислителей поступают на вход вычислителя дифференциальной дальности 10. Устройства 4, 7, 10 входят в состав вычислительного устройства 11. На выходе передающего устройства 1 установлен расщепитель выходного излучения 12, направляющий часть выходного излучения на первый объект 13, а часть - на второй объект 14. Сигнал с датчика тока накачки поступает на вторые входы усилителей 3 и 6.
На фиг. 2 показан двухканальный усилитель 3, на первый вход которого поступает сигнал с нагрузки фотоприемника 15, входящего в состав приемного устройства 2, а на второй вход - с датчика тока накачки 16, включенного в цепь тока накачки лазерного диода 17, входящего в состав передающего устройства 1. Питание фотоприемника, усилителя и лазерного диода осуществляется от источников питания 17, 18 и 19. Рабочий режим двухканального усилителя задается источником 20. Коммутатор 8 с помощью ключей 21 и 22 переключает входы двухканального усилителя, представляющего собой два истоковых повторителя с общей нагрузкой.
Устройство работает следующим образом.
Лазерный диод 17, входящий в состав передающего устройства 1, излучает ряд зондирующих импульсов. С помощью расщепителя 12 часть излучения направляется на первый объект 13, а часть - на второй объект 14. Отраженное этими объектами излучение принимается соответственно первым 2 и вторым 5 приемными устройствами, с помощью коммутаторов 8 и 9 подключаемыми к первому входу усилителей 3 и 6. При этом второй вход усилителей закрыт. При излучении очередного зондирующего импульса первый вход усилителей закрывается, а на второй вход поступает сигнал с датчика тока накачки 16. Таким образом, на выходах усилителей поочередно возникают импульсы, соответствующие зондирующим импульсам, вызванным током накачки Iн(t), и импульсы, соответствующие отраженным целью задержанным сигналам Is(t-τ)=Sλ⋅P(t-τ), где Sλ - спектральная чувствительность приемного устройства; P(t-τ) - мощность отраженного первым или вторым объектом сигнала на чувствительной площадке приемного устройства; τ=2R/c - задержка отраженного сигнала; t - текущее время; R - дальность до объекта; с - скорость света.
Аналого-цифровые вычислители 4 и 7 определяют [3, 4] временное положение tн импульса Iн(t) и временное положение ts1 и ts2 импульсов Is1(t-τ) и Is2(t-τ), после чего вычисляют оценку τ*1 и τ*1 задержки отраженного сигнала от первого и второго объектов по формулам
В связи с тем, что сигналы Iн(t) и Is(t-τ) проходят по одинаковым цепям, ошибки, связанные с их временем распространения, компенсируются.
Однако остается ошибка, достигающая нескольких наносекунд, определяемая несовпадением тока накачки Iн(t,t0) и светового импульса лазера S0(t,t0). Эта ошибка компенсируется путем определения вычислителем дифференциальной разности величины
Данное техническое решение позволяет определять с высокой точностью относительное перемещение двух элементов объекта, что бывает необходимо при установке строительных конструкций, стыковке космических аппаратов, контроле ширины рельсового пути и т.п.
В качестве первого объекта может быть введен точно калиброванный по оптической длине световод, вход которого зафиксирован на выходе передающего устройства и играет роль расщепителя, а выход закреплен у первого приемного устройства. Такая конструкция создает эталон дальности, относительно которого дальность до второго объекта определяется с высокой точностью, соизмеримой с погрешностью определения оптической длины световода. Построенный подобным образом лазерный дальномер не содержит источников систематической погрешности и обеспечивает погрешность измерения несколько миллиметров по сравнению с несколькими десятками миллиметров у прототипа.
Благодаря указанному построению дальномера обеспечивается решение поставленной задачи - повышение точности лазерного дальномера
Источники информации
1. В.А. Смирнов. Введение в оптическую радиоэлектронику. М.: Советское радио, 1973 г., с. 189.
2. Патент РФ №2506547 по з-ке 2012140350 от 21.09.2012 г. - прототип.
3. В.Г. Вильнер и др. Методы повышения точности импульсных лазерных дальномеров. «Электроника. Наука, Технология, Бизнес». №3, 2008 г. - с. 118.
4. В.Г. Вильнер и др. Способ измерения временного интервала. Патент РФ №2451962.
название | год | авторы | номер документа |
---|---|---|---|
ПРИЕМНИК ИМПУЛЬСНЫХ ОПТИЧЕСКИХ СИГНАЛОВ | 2012 |
|
RU2506547C1 |
ПРИЕМНИК ИМПУЛЬСНОГО ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ | 2012 |
|
RU2511069C1 |
ПРИЦЕЛ-ДАЛЬНОМЕР ДЛЯ СТРЕЛКОВОГО ОРУЖИЯ И ГРАНАТОМЕТОВ | 2013 |
|
RU2536186C1 |
ОПТИКО-ЭЛЕКТРОННЫЙ СЛЕДЯЩИЙ КООРДИНАТОР | 2011 |
|
RU2476826C1 |
Способ локационного измерения дальности | 2021 |
|
RU2766065C1 |
ЛАЗЕРНЫЙ БИНОКЛЬ-ДАЛЬНОМЕР | 2010 |
|
RU2442959C1 |
ФЕМТОСЕКУНДНЫЙ ЛАЗЕРНЫЙ ДАЛЬНОМЕР | 2000 |
|
RU2228517C2 |
ЛАЗЕРНЫЙ ДАЛЬНОМЕР | 2006 |
|
RU2324145C1 |
Приемное устройство лазерного дальномера | 2021 |
|
RU2759262C1 |
ЛАЗЕРНЫЙ ИМПУЛЬСНЫЙ ДАЛЬНОМЕР | 2004 |
|
RU2288449C2 |
Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, введено второе двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности. Причем приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, а также введен расщепитель выходного излучения лазерного полупроводникового излучателя, причем первый пучок выходного излучения направлен на первый объект, находящийся в поле зрения первого приемника, а второй пучок - на второй объект, находящийся в поле зрения второго приемника, при этом введен вычислитель дифференциальной дальности до первого и второго объектов. Технический результат – повышение точности лазерного дальномера. 1 з.п. ф-лы, 2 ил.
1. Лазерный дальномер, содержащий лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, отличающийся тем, что введено второе двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, а также введен расщепитель выходного излучения лазерного полупроводникового излучателя, причем первый пучок выходного излучения направлен на первый объект, находящийся в поле зрения первого приемника, а второй пучок - на второй объект, находящийся в поле зрения второго приемника, при этом введен вычислитель дифференциальной дальности до первого и второго объектов.
2. Лазерный дальномер по п. 1, отличающийся тем, что введен калиброванный по оптической длине световод, вход которого направлен на излучатель и является расщепителем выходного излучения, а выход направлен на второй приемник.
Лазерный фазовый дальномер | 2015 |
|
RU2610514C2 |
ЛАЗЕРНЫЙ ДАЛЬНОМЕР | 2010 |
|
RU2554279C2 |
Счетчик учета работы транспортных двигателей | 1953 |
|
SU112399A1 |
US 5805275 A1, 08.09.1998. |
Авторы
Даты
2018-04-17—Публикация
2017-03-17—Подача