ЛАЗЕРНЫЙ ДАЛЬНОМЕР Российский патент 2015 года по МПК G01C3/08 

Описание патента на изобретение RU2554279C2

Заявляемое изобретение относится к оптическим измерительным приборам, в частности к устройствам для бесконтактного измерения дальности, и может использоваться при производстве лазерных дальномеров или тахеометров, позволяющих с высокой точностью измерять расстояния до объекта или его отдельных частей, а также может использоваться при топографической съемке местности.

Предшествующий уровень техники

В настоящее время в геодезии, в строительстве, инженерных изысканиях, землеустроительных и кадастровых работах для высокоточного контроля расстояний широко используются лазерные дальномеры, позволяющие с точностью до 1 мм на дальностях до 3 км определять расстояния. Основными требованиями, предъявляемыми к указанным измерителям дальности, являются:

- простота и быстрота работы с ним потребителя, что позволяет существенно упростить эксплуатационные издержки и снизить уровень обслуживающего прибор персонала;

- дешевизна прибора при его массовом производстве, что позволит существенно снизить затраты предприятий, использующих одновременно десятки и сотни приборов;

- обеспечение гарантированной надежности приборов в диапазоне рабочих температур от - 40°С зимой и до + 50°С летом, т.к. работа может вестись круглогодично в труднодоступных местах, например, при прокладке трубопроводов в северных широтах, что исключает возможность проведения частых поверок приборов в метрологической лаборатории.

Известно устройство лазерного дальномера с двумя фотоприемными устройствами (ФПУ), позволяющего за счет использования фазового метода с высокой точностью измерять дальность (см. патент США №7023531, кл. G01C 3/08, 2006 г.). Устройство содержит передающий канал, включающий задающий генератор, соединенный со входом лазерного передатчика, и два приемных канала (сигнальный и опорный), каждый из которых представляет собой ФПУ на основе лавинного фотодиода, выход которого через преобразователь сигнала (демодулятор, полосовой фильтр, усилитель и АЦП) подключен к микроконтроллеру. Оба приемных канала работают одновременно: сигнальный принимает излучение, отраженное от измеряемого объекта, а в опорный канал подается небольшая часть излучения, отраженная от полупрозрачного зеркала на выходе оптического передатчика.

Главный принцип работы этой схемы основан на предположении о том, что температурный дрейф фаз в этих каналах должен быть одинаков, и, соответственно, на разность фаз влияния оказывать не должен.

Основными недостатками известного устройства являются, во-первых, наличие двух ЛФД, каждый из которых является наиболее дорогостоящим компонентом схемы.

Во-вторых, эти ЛФД должны быть комплементарны, то есть изготовлены в одной партии и подобраны друг к другу, чтобы на выходе каждого ФПУ иметь одинаковый температурный дрейф фазы. Использование в этой схеме ЛФД одной модели, но из разных партий не позволит полностью скомпенсировать температурный дрейф, что приведет к дополнительной погрешности.

Наиболее близким к заявляемому лазерному дальномеру является взятое в качестве прототипа двухканальное устройство, работающее по принципу фазового дальномера (см. патент США №7221435, кл. G01C 3/08, 2007 г). Устройство содержит: передающий канал; приемный канал; оптический контрольный канал и электронный блок. Передающий канал включает задающий генератор, соединенный со входом лазерного передатчика с выходной оптической системой. Приемный канал включает входную оптическую систему, в фокусе которой установлен ЛФД, соединенный с сигнальным входом электронного блока. Опорный вход электронного блока соединен с задающим генератором. Оптический контрольный канала выполнен в виде механического переключателя с двумя оптически связанными зеркалами, одно из которых установлено перед выходным отверстием передающего канала, а другое - перед входным отверстием приемного канала. Наличие оптического контрольного канала с двумя переключаемыми оптически связанными зеркалами позволяет повысить точность измерения дальности за счет того, что перед каждым измерением производится калибровочное измерение длины контрольного оптического канала, при котором за счет двух поворотных зеркал выходное излучение передающего канала не выходя за пределы устройства сразу поступает на вход приемного канала. Наличие опорного канала позволяет устранить возникающие при измерении расстояния ошибки, возникающие из-за временных задержек, вносимых лавинным фотодиодом, лазерным передатчиком и некоторыми другими электронными элементами схемы устройства. Эти ошибки имеют величину порядка нескольких десятков миллиметров, что не приемлемо для решения поставленных задач.

Опорный канал непосредственно перед каждым измерением с помощью поворотных зеркал «замыкает» излучение оптического передатчика непосредственно на ФПУ, производит контрольное измерение длины опорного канала. Результат контрольного измерения вычитается из результата последующего измерения дальности, которое производится сразу после контрольного измерения, когда поворотные зеркала перекрывают опорный канал и открывают оптический путь до измеряемого объекта.

Основными недостатками известного устройства являются, во-первых, сложность конструкции, содержащей подвижные элементы. Известно, что механически подвижные части устройства обычно являются наименее надежными частями устройств, работающих при очень низких температурах (до -40°С).

Во-вторых, необходимость проведения контрольного замера перед каждым измерением дальности увеличивает общее время измерений, что также особенно негативно сказывается в очень холодных или очень жарких климатических условиях.

Раскрытие изобретения

В основу изобретения поставлена задача расширения функциональных возможностей лазерного дальномера за счет устранения вышеуказанных недостатков при одновременном удешевлении себестоимости изделия.

Эта задача в лазерном дальномере, содержащем передающий канал, включающий задающий генератор, соединенный со входом лазерного передатчика с выходной оптической системой, и приемный канал, включающий входную оптическую систему, в фокусе которой установлен лавинный фотодиод, подключенный к сигнальному входу электронного блока, опорный вход которого соединен с задающим генератором, а также оптический контрольный канал, решена тем, что оптический контрольный канал выполнен в виде внешней оптической линии, замыкающей входной и выходной каналы. Кроме того, корпусы лавинного фотодиода и лазерного диода снабжены термодатчиком, подключенным к измерительному входу электронного блока, а сам электронный блок оборудован энергонезависимой памятью.

Внешний оптический контрольный канал позволяет измерить зависящие от температуры фазовые сдвиги, возникающие внутри дальномера, а наличие термодатчика позволяет построить калибровочную зависимость (КЗ) фазовых сдвигов от температуры, которая записывается в энергонезависимую память. Таким образом, единожды измеренная КЗ позволяет отказаться от необходимости использования данных опорного канала перед каждым измерением, что соответственно повышает за счет этого скорость измерений, удобство эксплуатации, диапазон рабочих температур и одновременно с этим снижает стоимость устройства.

Для контроля за температурой корпуса лавинного фотодиода и лазерного диода они установлены на общем металлическом теплопроводе, температуру которого отслеживает термодатчик.

Для измерения КЗ каждый прибор, оснащенный оптическим контрольным каналом, выполненным, например, в виде двух неподвижных зеркал, установленных друг к другу под прямым углом, или в виде двух- или трехгранной призмы, грани которой образуют прямой угол, или в виде отрезка световода, устанавливается в климатической камере. При этом внутри оптического контрольного канала установлен ослабитель оптического излучения, например затемненное стекло, позволяющий направить на рабочую площадку ЛФД нужный уровень оптической мощности.

Измерение КЗ для каждого дальномера проводится только один раз на заводе-изготовителе и записывается в энергонезависимую память, например флэш-память.

Краткое описание чертежей

На фиг.1 приведена блок-схема заявляемого лазерного дальномера в рабочем режиме.

На фиг.2 приведена блок-схема заявляемого лазерного дальномера в режиме измерения КЗ.

На фиг.3 приведена блок-схема измерительного блока лазерного дальномера.

На фиг.4 приведено конструктивное выполнение оптического контрольного канала с использованием двухгранной призмы.

Лучший вариант осуществления изобретения

Заявляемое устройство (фиг.1) включает: передающий канал 1, состоящий из задающего генератора 2 и лазерного передатчика в составе драйвера 3 и лазерного диода 4 с выходной оптической системой 5, преобразующей расходящийся пучок света в параллельный пучок света 6; приемный канал 7, состоящий из входной оптической системы 8, преобразующей параллельный пучок света 9 в сходящийся пучок, в фокусе которого установлен лавинный фотодиод 10; металлический теплопровод 11, на котором установлены корпусы лазерного диода 4 и лавинного фотодиода 10, а также термодатчик 12; источник питания 13, подающий высокое напряжение на лавинный фотодиод 10; электронный блок 14 содержащий микроконтроллер 15, преобразователь высокочастотного сигнала 16, интерфейс управления и индикации 17, интерфейс передачи данных 18, аккумуляторный источник питания 19 и энергонезависимую памятью 20.

Представленное на фиг.2 устройство дополнительно включает: оптический контрольный канал 21, состоящий из двух неподвижных зеркал 22 и 23, расположенных под прямым углом друг к другу, а также ослабителя лазерного излучения 24.

Представленная на фиг.3 блок-схема включает: цифроаналоговый преобразователь (ЦАП) 25; преобразователь высокочастотного сигнала 16, состоящий из двух аналого-цифровых преобразователей (АЦП) 26 и 27, двух смесителей (Down converter) 28 и 29, генератора гетеродина 30 (Local oscillator) и усилителя 31.

На фиг.4 представлена конструкция сопряжения заявляемого устройства с оптическим контрольным каналом, выполненным в виде двухгранной призмы 25, грани которой образуют прямой угол. Теплопровод 11, в котором запрессованы лазерный диод 4 и лавинный фотодиод 10, закреплен непосредственно на печатной плате 26.

После сборки дальномера его калибровка по температуре является заключительным этапом изготовления, и производится она непосредственно в заводских условиях.

Для этого один или несколько дальномеров с присоединенными оптическими контрольными каналами 21 (фиг.4) одновременно располагают в климатической камере.

Градуировка каждого прибора происходит следующим образом. Прибор или приборы, размещенные в климатической камере, нагревают до температуры свыше 50°С. После этого на прибор подается питание и микроконтроллер 15 запускает калибровочную программу, которая по мере охлаждения прибора до температуры минус 40°С производит измерение длины оптического контрольного канала с заданным шагом, например 0,5 или 1,0°С. Эти данные, далее по тексту калибровочные значения (КЗ), с помощью микроконтроллера 15 записываются в энергонезависимую память 20 и используются в работе устройства во время всего срока эксплуатации прибора.

Методика измерения длины контрольного канала аналогична методике измерения дальности и проводится следующим образом.

Задающий генератор 2 генерирует электрический сигнал, имеющий вид:

A ( 2 π × f 0 × t ) ( 1 ) ,

где А - амплитуда электрического сигнала, f0 - частота задающего генератора 2, t - время.

Драйвер лазера 3 преобразует этот сигнал в модулированное по мощности лазерное излучение 6 лазерного диода 4. С помощью выходной оптической системой 5 лазерное излучение направляется на неподвижные зеркала 22 и 23, ослабляясь в ослабителе 24. После этого лазерное излучение 9 с помощью входной оптической системы 8 направляется на лавинный фотодиод 10, который преобразует оптический сигнал в электрический, имеющий вид:

B ( 2 π × f 0 × t + Δ ϕ ( L ) ) ( 2 ) ,

где В - амплитуда принимаемого электрического сигнала, L - измеряемое расстояние, Δφ(L) - разность фаз между электрическим сигналом с выхода задающего генератора 2 и электрического сигнала с выхода ЛФД.

Разность фаз Δφ(L) описывается следующей формулой:

Δ ϕ ( L ) = 4 π × L × f 0 / C ( 3 ) ;

где С - скорость света, или

L = Δ ϕ ( L ) × C / 4 π f 0 ( 4 ) ;

Так как частота f0 может иметь значения от нескольких сотен мегагерц до гигагерца, а расстояние L в общем случае может достигать нескольких километров, то величина Δφ(L) в общем случае имеет вид:

Δ ϕ ( L ) = 2 π × N + δ , 0 δ < 2 π , ( 5 ) ,

где δ - дробная часть фазы, а N - целое число, или так называемая «неопределенность фазы».

Дробная часть фазы δ может определяться стандартными методиками измерения электрических сигналов (например, с помощью фазометра).

Для определения неопределенности фаз N необходимо использовать измерения на нескольких значениях f0, применяя известный алгоритм фазового дальномера (В.В. Григорин-Рябов, Радиолокационные устройства. - М.: Советское радио, 1970, с.19-24,).

В измерительном блоке 14 прибора посредством преобразователя высокочастотного сигнала 16, содержащего генератор гетеродина 30 с частотой f1 и два смесителя 28 и 29, сигналы B(2π×f0×t+Δφ(L)) и A(2π×f0×t) переносятся в область низких частот (метод демодуляции):

B ( 2 π × f 0 × t + Δ ϕ ( L ) ) b ( 2 π × Ω × t + Δ ϕ ( L ) ) , ( 6 )

A ( 2 π × f 0 × t ) a ( 2 π × Ω × t ) . ( 7 )

Ω=f0-f1, где f1 - частота опорного генератора.

Значение Ω обычно выбирается в диапазоне от 1 кГц до 100 кГц.

Разность фаз Δφ(L) при этом сохраняется.

Сигналы b(2π×Ω×t+Δφ(L) и а(2π×Ω×t) с помощью двух АЦП 26 и 27 записываются в оперативную память микроконтроллера 15, в котором происходит вычисление длины оптического контрольного канала 21 по формуле (4).

После снятия КЗ с прибора снимают оптический контрольный канал 21, в микроконтроллер 15 записывают рабочую программу измерения дальности, после чего устройство (фиг.1) готово к работе.

Методика измерения дальности в рабочей программе отличается от калибровочной тем, из полученного значения дальности вычитается КЗ, соответствующее температуре, ближайшей к значению температуры, измеренной термодатчиком 12.

Таким образом, в заявляемом устройстве исключается необходимость проведения контрольного измерения перед каждым измерением дальности.

Техническая применимость

Экспериментальный образец заявляемого устройства был установлен вместо штатного блока дальномера на тахеометре марки «3Та5Д» производства Уральского оптико-механического завода с диаметром приемной апертуры 45 мм. Габаритные размеры дальномерного блока - 40×80×20 мм., габаритные размеры внешнего оптического контрольного канала - 40×20×0 мм.

В качестве интерфейса управления и индикации использовался штатный интерфейс тахеометра.

Краткие характеристики лазерного дальномера в составе тахеометра «3Та5Д».

Режимы работы:

- автоматический;

- призма;

- безотражательный.

Режим измерения расстояний - автоматический (автоматическое определение типа отражательной способности мишени):

Минимальное время измерения - 0.4 сек;

Все остальные параметры по дальности и точности соответствуют параметрам режимов ПРИЗМА и БЕЗОТРАЖАТЕЛЬНЫЙ для соответствующих типов отражателей (мишени).

Режим измерения расстояний - ПРИЗМА

Соосный видимый красный лазер 658 нм.

Класс лазерной безопасности 2 по стандартам IEC 60825-1 (Laser safety Class 2)

Дальность:

Отражатель GPR1 - 3000 м;

Минимальное расстояние - 0.1 м;

Точность/время измерений - 1 мм + 1,5 ppm / 2.4 с;

Разрешение экрана - 1 мм.

Режим измерения расстояний - БЕЗОТРАЖАТЕЛЬНЫЙ

Соосный видимый красный лазер 658 нм.

Класс лазерной безопасности 2 по стандартам IEC 60825-1 (Laser safety Class 2)

Разрешение экрана - 0,1 мм.

Дальность и время измерения:

Время измерения расстояния 1 км составляет 50 сек (отражательная поверхность Kodak gray 90%).

300 м. - 0,4 сек (отражательная поверхность Kodak gray 90%).

Минимальное расстояние - 0,1 м.

Точность / Время измерения:

До 100 м (Kodak gray 90%) - 1 мм + 2 ppm / 0.4 сек..(автоматический режим);

0.1 сек (безотражательный режим);

Более 300 м - 3 мм + 2 ppm / 1-6 сек, максимально 12 сек.

Размер лазерного пятна на 100 м - 20×10 мм.

Похожие патенты RU2554279C2

название год авторы номер документа
СПОСОБ НОЧНОГО И/ИЛИ ДНЕВНОГО НАБЛЮДЕНИЯ УДАЛЕННОГО ОБЪЕКТА С СИНХРОННОЙ ФАЗОВОЙ МАНИПУЛЯЦИЕЙ ЛАЗЕРНЫМИ ИМПУЛЬСАМИ ПОДСВЕТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Барышников Николай Васильевич
  • Бокшанский Василий Болеславович
  • Золотов Игорь Юрьевич
  • Карасик Валерий Ефимович
RU2269804C1
ОПТИКО-ЭЛЕКТРОННОЕ ЛОКАЦИОННОЕ УСТРОЙСТВО 2005
RU2304792C1
ЛАЗЕРНЫЙ ДАЛЬНОМЕР 2006
  • Слипченко Николай Николаевич
  • Крымский Михаил Ильич
RU2324145C1
Лазерный обнаружитель оптических сигналов 2023
  • Слипченко Николай Николаевич
  • Дручевский Владимир Андреевич
RU2816284C1
ЛАЗЕРНЫЙ ИМПУЛЬСНЫЙ ДАЛЬНОМЕР 2014
  • Медведев Александр Владимирович
  • Жибарев Николай Дмитриевич
RU2551700C1
СПОСОБ СОПРОВОЖДЕНИЯ ВОЗДУШНОЙ ЦЕЛИ И ОПТИЧЕСКИЙ ПРИЦЕЛ СО СЛЕДЯЩИМ ДАЛЬНОМЕРОМ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Ефанов Василий Васильевич
  • Ашурков Андрей Александрович
  • Вытришко Федор Михайлович
  • Гаврилов Николай Витальевич
  • Закота Александр Александрович
  • Махно Игорь Вадимович
RU2549552C2
УНИВЕРСАЛЬНАЯ УСТАНОВКА ДЛЯ ПРОВЕРКИ ЛАЗЕРНОГО ДАЛЬНОМЕРА 2017
  • Нужин Андрей Владимирович
  • Ильинский Александр Владимирович
  • Полякова Инесса Петровна
  • Горемыкин Юрий Алексеевич
  • Евсикова Любовь Георгиевна
  • Баздров Игорь Иванович
  • Смирнов Сергей Александрович
  • Чижов Сергей Александрович
  • Кувалдин Эдуард Васильевич
RU2678259C2
Лазерный импульсный дальномер 2022
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
RU2791186C1
ЛАЗЕРНЫЙ ЦЕЛЕУКАЗАТЕЛЬ-ДАЛЬНОМЕР 2013
  • Прядеин Владислав Андреевич
  • Емельянов Вячеслав Сергеевич
  • Кутурин Владимир Николаевич
  • Михайлов Лев Кириллович
  • Ступников Владимир Александрович
  • Текутов Александр Иванович
  • Уиц Альберт Белович
  • Шабашева Галина Никитична
RU2535240C1
ОПТИЧЕСКАЯ СИСТЕМА ЭЛЕКТРОННО-ОПТИЧЕСКОГО ТАХЕОМЕТРА 1994
  • Антушев А.А.
RU2097694C1

Иллюстрации к изобретению RU 2 554 279 C2

Реферат патента 2015 года ЛАЗЕРНЫЙ ДАЛЬНОМЕР

Изобретение относится к оптическим устройствам для бесконтактного измерения дальности и может использоваться при производстве лазерных дальномеров или тахеометров. Дальномер содержит передающий канал, включающий задающий генератор, соединенный со входом лазерного передатчика с выходной оптической системой, приемный канал, а также оптический контрольный канал. Приемный канал включает входную оптическую систему, в фокусе которой установлен лавинный фотодиод, подключенный к сигнальному входу измерительного блока, опорный вход которого соединен с задающим генератором. Контрольный канал выполнен в виде внешней оптической линии, замыкающей входной и выходной каналы. Корпусы лавинного фотодиода и лазерного диода снабжены термодатчиком, подключенным к измерительному входу измерительного блока, а сам измерительный блок оборудован энергонезависимой памятью. Технический результат - расширение функциональных возможностей. 5 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 554 279 C2

1. Лазерный дальномер, содержащий передающий канал, включающий задающий генератор, соединенный со входом лазерного передатчика с выходной оптической системой, и приемный канал, включающий входную оптическую систему, в фокусе которой установлен лавинный фотодиод, подключенный к сигнальному входу электронного блока, опорный вход которого соединен с задающим генератором, а также оптического контрольного канала, отличающийся тем, что оптический контрольный канал выполнен в виде внешней оптической линии, замыкающей входной и выходной каналы, а корпусы лавинного фотодиода и лазерного диода снабжены термодатчиком, подключенным к измерительному входу электронного блока, а сам электронный блок оборудован энергонезависимой памятью.

2. Лазерный дальномер по п.1, отличающийся тем, что корпусы лавинного фотодиода, лазерного диода и термодатчик установлены на общем металлическом теплопроводе.

3. Лазерный дальномер по п.1, отличающийся тем, что внешняя оптическая линия выполнена в виде двух неподвижных зеркал, установленных друг к другу под прямым углом, и снабжена ослабителем лазерного излучения.

4. Лазерный дальномер по п.1, отличающийся тем, что внешняя оптическая линия выполнена в виде двух- или трехгранной призмы, грани которой образуют прямой угол, и снабжена ослабителем лазерного излучения.

5. Лазерный дальномер по п.1, отличающийся тем, что внешняя оптическая линия выполнена в виде отрезка световода и снабжена ослабителем лазерного излучения.

6. Лазерный дальномер по п.1, отличающийся тем, что в качестве энергонезависимой памяти использована флэш-память.

Документы, цитированные в отчете о поиске Патент 2015 года RU2554279C2

US 7221435 B2, 22.05.2007
US 7583366 B2, 01.09.2009
US 2004105087 A1, 03.06.2004
ДИСПЕРСИОННЫЙ ЛАЗЕРНЫЙ ДАЛЬНОМЕР 2007
  • Григорьевский Владимир Иванович
  • Григорьевская Мария Владимировна
  • Прилепин Михаил Тихонович
  • Садовников Владимир Петрович
  • Хабаров Владимир Викторович
RU2353901C1

RU 2 554 279 C2

Авторы

Баланюк Валерий Васильевич

Мещеряков Игорь Витальевич

Даты

2015-06-27Публикация

2010-10-04Подача