Изобретение относится к области гальваностегии, к электрохимическому осаждению серебряного покрытия на проволоку меди и ее сплавов из бесцианистых электролитов.
Уровень техники
Известно, что в основном при серебрении металлов используется цианистый электролит, основным недостатком которого является сильная токсичность из-за наличия цианистого калия в свободном состоянии. Наряду с цианистым электролитом серебрения большое распространение получили бесцианистые электролиты серебрения. Одним из основных бесцианистых электролитов является синеродистороданистый или смешанный железистосинеродистороданистый электролит серебрения, в котором цианистый калий находится в связанном состоянии, поэтому и токсичность таких электролитов намного меньше. Электролит по своим свойствам близок к цианистому, так как разряд ионов серебра идет из цианистого комплекса, поэтому и все зависимости в этом электролите будут идентичны цианистому. Выход по току близок к 100%, высокая рассеивающая способность приближается к цианистому электролиту. Удельная электрическая проводимость электролита 0,175 Ом-1*см-1. Из электролита осаждаются светлые мелкокристаллические покрытия, обладающие высокой прочностью сцепления с основным металлом, в частности с медью и ее сплавами, без какой- либо специальной обработки. Известны бесцианистые электролиты следующих типов: нитратные, пирофосфатные, йодидные, сульфитные, тиосульфатные, аммиачные и т.д. Для достижения определенных целей в состав основных компонентов этих электролитов добавляют: перекись водорода (для ускорения образования цианистого комплекса серебра), трилон Б (для связывания ионов меди и серебра в прочные трилонатные комплексы, что препятствует гидролизу солей и улучшает стабильность электролита), ОС-2 (ПАВ), сурьмяновиннокислый калий и т.д. SU 829727 А1, МПК C25D 3/46, опубл. 15.05.1981. Но все эти бесцианистые электролиты других типов или других составов не обеспечивают при высокой скорости осаждения серебра необходимой прочности сцепления нанесенного слоя с основой.
Наиболее близким аналогом (прототипом) является электролит, в состав которого входит железистосинеродистый и роданистый калий (Буркат Г.К. Серебрение, золочение, палладирование и родирование. - М.: Машиностроение. 1984. - 86 с.).
Железистоинеродистый электролит имеет следующий состав (г/л) и режим работы:
Причиной, препятствующей получению в известном техническом решении технического результата, который обеспечивается заявленным изобретением, является отсутствие в составе электролита сегнетовой соли, поэтому использование этого электролита затруднено из-за сильной пассивации серебряных анодов. Введение роданистого калия облегчает растворение серебра на аноде, однако данное соотношение компонентов и введение роданистого калия не обеспечивает получение достаточной плотности тока с соответственно высокой скоростью осаждения серебра при непрерывно движущейся через ванну с электролитом медной проволоки и получение необходимой прочности сцепления нанесенного слоя с основой.
Новизной данной заявки на изобретение является применение бесцианистого электролита на основе железосинеродистого и роданистого калия в непрерывном процессе серебрения медной проволоки с высокой скоростью осаждения серебра и необходимой прочностью сцепления нанесенного слоя с основой.
Раскрытие изобретения
Задача, на решение которой направлено изобретение, заключается в получении бесцианистого электролита с таким соотношением компонентов, который позволяет при рН 10.0-10.8 и температуре 40-50°С обеспечить плотность тока до 8.6 А/Дм2, что при протяжке медной проволоки через ванну в течение 1.5-5.0 мин с использованием серебряных анодов СР999.9, обеспечивает скорость осаждения серебра до 5.49 мкм/мин и сцепление покрытия с основой не менее 300 кг/см2.
Техническим результатом изобретения является увеличение скорости осаждения серебра на непрерывно движущуюся через ванну с электролитом медную проволоку из бесцианистого раствора серебрения, позволяющее осуществлять получение посеребренной проволоки в масштабах производства кабельной продукции.
Технический результат достигается тем, что электролит серебрения медной проволоки содержит хлористое серебро, железистосинеродистый калий, углекислый калий, роданистый калий и сегнетову соль при соотношении компонентов, г/л:
При этом данный состав электролита и указанный режим работы обеспечивают скорость осаждения серебра до 5.49 мкм/мин и сцепление покрытия с основой не менее 300 кг/см2.
Осуществление изобретения
Электролит по своим свойствам близок к цианистому, так как разряд ионов серебра идет из цианистого комплекса, поэтому и все зависимости в этом электролите будут идентичны цианистому. Такой электролит по всем показателям не уступает цианистому и вместе с тем по профессиональной вредности несравненно безопаснее его. Его рассеивающая способность даже превышает рассеивающую способность цианистых электролитов. Выход по току близок к 100%, немного отличается анодный процесс. Приготовление электролита довольно сложно - все компоненты растворяют отдельно, после чего растворы железистосинеродистого калия и поташа кипятят и приливают к соли серебра, находящейся в емкости, защищенной от света, после чего кипятят все три компонента в течение нескольких часов.
Следует отметить, что в качестве побочного продукта реакции в электролите образуется коричневый осадок гидроксида железа Fe(OH)3. Реакция разложения K4Fe(CN)6 с выделением гидроксида обычно никогда не идет до конца, вследствие чего часть непрореагировавшего осадка AgCl остается скрытой в коричневом осадке гидроксида железа. Это явление может служить причиной весьма существенных потерь серебра при составлении электролита. Поэтому осадок отфильтровывают и растворяют в химически чистой соляной кислоте. Жидкую часть, содержащую хлорид железа, сливают, а осадок хлорида серебра используют вновь для приготовления электролита.
Только после этого в раствор электролита приливают требуемое количество роданистого калия и сегнетовой соли, доводят электролит до заданного уровня и приступают к эксплуатации.
Таким образом, предложенный электролит серебрения состоит из цианистых комплексов серебра (образующихся из хлористого серебра и железистосинероднистого калия), цианида щелочного металла и его карбоната, который постепенно образуется в электролите.
Цианид оказывает противоположное влияние на течение катодного и анодного процессов. Допустимая катодная плотность тока и катодный выход по току тем выше, чем меньше в электролите концентрация цианида, но при этом допустимая анодная плотность тока и анодный выход по току резко снижаются. Для того чтобы избежать этого, в электролиты вводят депассиваторы анодов, которые позволяют концентрацию цианида доводить до минимума. Электролит при этом становится более устойчивым при повышенной температуре и перемешивании, плотность тока удается существенно повысить, осадки получаются мелкокристаллическими при достаточно высоком выходе по току. В качестве таких депассиваторов могут быть успешно использованы сегнетова соль [KNaC4H4O6⋅4H2O], которая при добавлении ее в электролит в количестве 10-20 г/л обеспечивает получение необходимой плотности тока в электролите и роданид калия KCNS, который достаточно стабилен в работе и дает возможность вести электролиз на высоких плотностях тока.
С повышением температуры повышаются анодный и катодный выходы по току, но одновременно ускоряется разложение цианида и накапливание карбонатов, поэтому оптимальной температурой, как показала практика, следует считать 40-50°С.
Лучшую буферную емкость имеют электролиты со значениями рН 10÷10,8. При чрезмерно высоких значениях рН анодный выход по току снижается, при этих условиях наблюдается меньшая склонность к образованию вздутий. Таким образом, получаются высокопроизводительные ванны бесцианистого электролита с малым содержанием цианида, допускающие применение высоких плотностей тока (до 8,6 А/дм2 при повышенной температуре 40-50°С и интенсивном перемешивании с созданием турбулентных потоков в ванне серебрения), в качестве депассиваторов анодов содержат роданистый калий (100-110 г/л KCNS) и сегнетову соль (10-20 г/л).
Высокий выход по току (~100%) при плотности тока 8,6 А/дм2, высокая температура (40-50°С) с рН 10.0-10.8 при интенсивном перемешивании приводят к значительному ускорению процесса серебрения, что необходимо при протаскивании медной проволоки через ванну с электролитом в течение 1.5-5 мин с использованием серебряных анодов СР999.9 и обеспечивает скорость осаждения серебра до 5.49 мкм/мин, при этом обеспечивается прочное сцепление серебряного покрытия с основой. Испытания показали, что прочность сцепления покрытия с основой не менее 300 кг/см2.
Данный состав электролита с соответствующими характеристиками успешно опробован в условиях производства ООО «Камский кабель», а полученное покрытие является пригодным для дальнейшего волочения проволоки при производстве кабельной продукции.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОХИМИЧЕСКОГО СЕРЕБРЯНОГО ПОКРЫТИЯ | 2015 |
|
RU2599471C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОХИМИЧЕСКОГО СЕРЕБРО-НАНОУГЛЕРОД-АЛМАЗНОГО ПОКРЫТИЯ | 2015 |
|
RU2599473C1 |
ЭЛЕКТРОЛИТ СЕРЕБРЕНИЯ | 2019 |
|
RU2702511C1 |
Электролит серебрения | 1979 |
|
SU829727A1 |
Способ серебрения изделий | 1980 |
|
SU885365A1 |
ЭЛЕМЕНТ КРИСТАЛЛИЗАТОРА ДЛЯ НЕПРЕРЫВНОЙ РАЗЛИВКИ МЕТАЛЛОВ, СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА НАРУЖНУЮ ПОВЕРХНОСТЬ ОХЛАЖДАЕМОЙ СТЕНКИ ЭЛЕМЕНТА КРИСТАЛЛИЗАТОРА И СПОСОБ ВОССТАНОВЛЕНИЯ СЕРЕБРЯНОГО ПОКРЫТИЯ (ВАРИАНТЫ) | 1997 |
|
RU2181315C2 |
СПОСОБ ПОЛУЧЕНИЯ КАЛИЯ ЖЕЛЕЗОСИНЕРОДИСТОГО | 1992 |
|
RU2051203C1 |
Электролит серебрения | 1980 |
|
SU905336A1 |
ЭЛЕКТРОЛИТ СЕРЕБРЕНИЯ | 2006 |
|
RU2323276C2 |
Электролит для осаждения покрытий сплавом серебро-сурьма | 1978 |
|
SU775187A1 |
Изобретение относится к области гальванотехники и может быть использовано для производства кабельной продукции. Электролит содержит хлористое серебро, железистосинеродистый калий, углекислый калий, роданистый калий, при этом он дополнительно содержит сегнетову соль при следующем соотношении компонентов, г/л: хлористое серебро 30-40; железосинеродистый калий 100-110; углекислый калий 40-60; роданистый калий 100-110; сегнетова соль 10-20. Техническим результатом изобретения является увеличение скорости осаждения серебра на непрерывно движущуюся через ванну с электролитом медную проволоку из бесцианистого раствора серебрения, позволяющее осуществлять получение посеребренной проволоки в масштабах производства кабельной продукции.
Электролит серебрения медной проволоки, содержащий хлористое серебро, железистосинеродистый калий, углекислый калий, роданистый калий, отличающийся тем, что он дополнительно содержит сегнетову соль при следующем соотношении компонентов, г/л:
БУРКАТ К.Г | |||
Серебрение, золочение, палладирование и родирование | |||
Л., Машиностроение, 1984, с | |||
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы | 1923 |
|
SU12A1 |
Способ серебрения изделий | 1980 |
|
SU885365A1 |
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА НА ОСНОВЕ СЕРЕБРА | 0 |
|
SU274602A1 |
JPS 552745 A, 10.01.1980. |
Авторы
Даты
2018-04-28—Публикация
2016-10-26—Подача