СИСТЕМА АКТИВНОГО УПРАВЛЕНИЯ ПЕРЕПУСКНЫМ РАСХОДОМ ДЛЯ УПЛОТНЕНИЯ В ГАЗОТУРБИННОМ ДВИГАТЕЛЕ Российский патент 2018 года по МПК F01D11/06 F01D5/08 

Описание патента на изобретение RU2653267C2

Ссылка на сопутствующую заявку

В настоящей заявке испрашивается приоритет по предварительной заявке на патент США № 61/771,151, поданной 1 марта 2013 года, которая полностью включена в настоящее описание.

Заявление об исследовании или разработке, спонсируемом из федеральных средств

Создание настоящего изобретение частично поддерживалось Министерством энергетики США по Программе создания усовершенствованной турбины, контракт № DE-АС26-05ТЕ42644. Соответственно, правительство Соединенных Штатов может иметь определенные права на это изобретение.

Область изобретения

Настоящее изобретение направлено по существу на газотурбинные двигатели и, более конкретно, на систему активного управления перепускным расходом сжатого воздуха вокруг одного или более уплотнения между статором и узлом ротора первой ступени для подачи продувочного воздуха в полость обода.

Предпосылки

Промышленные газотурбинные двигатели части имеют ротор с вращающимися лопатками первой ступени турбины и статор со стационарными лопатками первой ступени статора, расположенные после камеры сгорания. Между статором и примыкающим ротором обычно установлено уплотнение для образования уплотнения для полости обода, которая имеется между статором и ротором. Продувочный воздух подается в полость обода через перепускной канал и через утечку через уплотнение. Основной проблемой такой конструкции является износ уплотнения и, следовательно, увеличение расхода утечки. Расход через перепускной канал остается постоянным, при условии, что давление нагнетания не меняется. Поэтому, по мере увеличения расхода утечки через уплотнения расход охлаждающего воздуха, поступающего в полость обода по обоим каналам, т.е., через уплотнение и по перепускному каналу, увеличивается. Таким образом, имеется необходимость учитывать износ уплотнения и дополнительный расход утечки в полость обода, чтобы общий расход охлаждающего воздуха в полость обода не был избыточным.

Краткое описание изобретения

Раскрывается система активного управления перепускным расходом для управления перепуском сжатого воздуха на основе расхода утечки сжатого воздуха, текущего через внешнее балансирующее уплотнение, расположенное между статором и ротором первой ступени газовой турбины в газотурбинном двигателе. Система активного управления перепускным расходом является регулируемой системой, в которой может применяться одно или более дозирующее устройство для управления расходом перепускного сжатого воздуха по мере изменения со временем расхода сжатого воздуха из-за износа внешних балансирующих уплотнений между полостью обода и охлаждающей полостью. По меньшей мере в одном варианте измерительное устройство может иметь кольцевой элемент, в котором выполнено по меньшей мере одно дозирующее отверстие, проходящее сквозь него. Такое дозирующее устройство может быть установлено на выходе перепускного канала и может регулироваться так, чтобы совмещение дозирующего отверстия с выходом было регулируемым для изменения площади сечения отверстия, образованного совмещенными частями выхода перепускного канала и дозирующего отверстия, для увеличения или уменьшения отверстия, образованного совмещенными частями и изменения расхода сжатого воздуха через дозирующее устройство.

В по меньшей мере одном варианте система активного управления перепускным расходом может содержать узел статора, расположенный рядом с ротором первой ступени, благодаря чему канал для сжатого воздуха размещается между частью узла статора и валом ротора. Одно или более внешнее балансирующее уплотнение может быть выполнено с возможностью по меньшей мере уменьшать часть горячих газов, текущих в охлаждающую полость. В по меньшей мере одном варианте внешнее балансирующее уплотнение может быть лабиринтным уплотнением, сформированным из множества зубьев, скомбинированным со щеточным уплотнением, уплотняющим полость обода относительно охлаждающей полости. Внешнее балансирующее уплотнение может быть расположено на радиально внутреннем конце полости обода между полостью обода и охлаждающей полостью.

Один или более перепускной канал может проходить от впуска, сообщающегося по текучей среде с каналом для сжатого воздуха, расположенным перед внешним балансирующим уплотнением до выпуска, сообщающегося по текучей среде с каналом для сжатого воздуха, расположенным после внешнего балансирующего уплотнения. Система активного управления перепускным расходом также может содержать одно или более дозирующее устройство, выполненное с возможностью регулировки для регулирования расхода охлаждающих текучих сред через перепускной канал для согласования с изменением потока сжатого воздуха через внешнее балансирующее уплотнение по мере износа этого внешнего балансирующего уплотнения во время работы газотурбинного двигателя.

Дозирующее устройство может быть сформировано из кольцевого элемента, имеющего одно или более дозирующее отверстие, проходящее сквозь него. Дозирующее устройство может быть установлено на выпуске перепускного канала и может быть регулируемым так, чтобы совмещение дозирующего отверстия с выпуском регулировалось для изменения площади сечения отверстия, образованного совмещенными частями выпуска перепускного канала и дозирующего отверстия дозирующего устройства. В по меньшей мере одном варианте дозирующее устройство может содержать множество отверстий, проходящих сквозь по меньшей мере одно дозирующее устройство. В одном варианте множество дозирующих отверстий может быть расположено равноудаленно друг от друга. Множество дозирующих отверстий может быть расположено в дозирующем устройстве так, чтобы каждое из дозирующих отверстий совмещалось с перепускным каналом в открытом состоянии.

Система активного управления перепускным расходом также может содержать систему управления положением для управления положением дозирующего устройства относительно выпуска перепускного канала. В по меньшей мере одном варианте система управления положением может содержать кулачковый регулятор, имеющий внутренний паз для приема штифта, который удерживает дозирующее устройство относительно выпуска перепускного канала. Штифт может быть выполнен с возможностью перемещения в пазе для изменения положения дозирующего устройства относительно выпуска перепускного канала. В по меньшей мере одном варианте система управления положением также может содержать один или более управляющий рычаг для изменения совмещения дозирующего устройства с выпуском перепускного канала. Система управления положением может содержать один или более датчик, выполненных с возможностью измерять количество расхода утечки через дозирующее устройство. В других вариантах можно использовать один или более датчик для измерения отношения давлений между входом и выходом дозирующего устройства. Система управления положением может содержать контроллер, поддерживающий связь с датчиком и с двигателем так, чтобы контроллер управлял работой двигателя для управления совмещением дозирующего устройства с выпуском перепускного канала на основе данных, полученных от датчика.

В еще одном варианте система активного управления перепускным расходом для внешнего балансирующего уплотнения может содержать узел статора, расположенный рядом с ротором первой ступени, благодаря чему канал для сжатого воздуха расположен между частью узла статора и валом ротора. Система активного управления перепускным расходом также может содержать одно или более внешнее балансирующее уплотнение, выполненное с возможностью по меньшей мере уменьшать течение части горячих газов в охлаждающую полость. Один или более перепускной канал может проходить от впуска, сообщающегося по текучей среде с каналом сжатого воздуха перед внешним балансирующим уплотнением, до выпуска, сообщающегося по текучей среде с каналом для сжатого воздуха после балансирующего уплотнения. Система активного управления перепускным расходом может содержать одно или более дозирующее устройство, выполненное с возможностью регулировки для регулирования расхода охлаждающих текучих сред через перепускной канал для согласования с изменением потока сжатого воздуха через внешнее балансирующее уплотнение по мере износа этого внешнего балансирующего уплотнения во время работы газотурбинного двигателя.

Дозирующее устройство может содержать один или более клапан, сформированный из одного или более пальца, выполненного с возможностью перемещения между открытым и закрытым положениями, в котором палец по меньшей мере частично делит пополам перепускной канал. Такое дозирующее устройство также может содержать один или более кулачок, находящийся в зацеплении с пальцем для перемещения мальца между открытым и закрытым положениями. В по меньшей мере одном варианте кулачок может быть сформирован с кольцевым выступом, расположенным в контакте с головкой пальца. Палец также может содержать одно или более отверстие, расположенное в стержне пальца так, чтобы отверстие совмещалось с перепускным каналом, когда палец находится в открытом положении. Система активного управления перепускным расходом также может содержать синхронизирующее кольцо, сообщающееся с пальцем через один или более клапанный рычаг, проходящий от пальца к синхронизирующему кольцу. Клапанный рычаг может быть шарнирно прикреплен к синхронизирующему кольцу. Синхронизирующее кольцо может быть прикреплено к одному или более кулачку, находящемуся в зацеплении с пальцем для перемещения пальца между открытым и закрытым положениями через по меньшей мере один клапанный рычаг. Синхронизирующее кольцо может быть цилиндрическим с шарнирно прикрепленным к нему множеством клапанных рычагов. В другом варианте синхронизирующее кольцо также может содержать множество кулачков, выполненных из пазов, содержащихся в синхронизирующем кольце. Множество кулачков может быть не параллельно и не ортогонально оси, тангенциальной к изогнутой средней линии синхронизирующего кольца. Эти и другие варианты будут более подробно описаны ниже.

Краткое описание чертежей

Приложенные чертежи, которые включены в настоящее описание и составляют его часть, иллюстрируют варианты предлагаемого изобретения и, вместе с описанием, раскрывают принципы настоящего изобретения.

Фиг. 1 - сечение газотурбинного двигателя с системой активного управления перепускным сжатым воздухом вокруг одного или более уплотнения между полостью обода и охлаждающей полостью.

Фиг. 2 - фрагмент сечения системы активного управления перепускным расходом, расположенной в первой ступени ротора и статора в промышленном газотурбинном двигателе по линии 2-2.

Фиг. 3 - вид сверху кулачкового регулятора в положении ноль градусов, в котором отверстие открыто на 100%.

Фиг. 4 - вид сверху кулачкового регулятора в положении двадцать градусов, в котором отверстие открыто менее чем на 100%.

Фиг. 5 - сечение части дозирующего устройства с дозирующими отверстиями совмещенными в положении ноль градусов (слева) и с проходами для потока, смещенными на двадцать градусов (справа).

Фиг. 6 - детальный вид датчика системы управления положением системы активного управления перепускным расходом.

Фиг. 7 - сечение части альтернативного варианта дозирующего устройства, все дозирующие отверстия которого выставлены в ноль градусов, благодаря чему отверстие открыто на 100%.

Фиг. 8 - детальный вид в сечении по линии 2-2 другого варианта системы активного управления перепускным расходом, расположенной в роторе и статоре первой ступени в промышленном газотурбинном двигателе.

Фиг. 9 - сечение части другого варианта дозирующего устройства с дозирующими отверстиями, сгруппированными для образования наборов дозирующих отверстий на дозирующем устройстве.

Фиг. 10 - детальный вид в сечении по линии 2-2 еще одного варианта системы активного управления перепускным расходом, расположенной в роторе и статоре первой ступени в промышленном газотурбинном двигателе.

Фиг. 11 - детальное сечение по линии 11-11 на фиг. 10 другого варианта дозирующего устройства в открытом положении.

Фиг. 12 - детальное сечение варианта дозирующего устройства по фиг. 11 в закрытом положении по линии 11-11 на фиг. 10.

Фиг. 13 - детальное сечение другого варианта дозирующего устройства по линии 11-11 на фиг. 10.

Фиг. 14 - детальное сечение варианта дозирующего устройства по линии 11-11 на фиг. 10.

Фиг. 15 - вид спереди синхронизирующего кольца с частью клапанного рычага, находящегося в пазу, образующем кулачок, когда клапан находится в открытом положении, в сечении по линии 15-15 на фиг. 22.

Фиг. 16 - вид спереди синхронизирующего кольца с частью клапанного рычага, находящегося в пазу, образующем кулачок, когда клапан находится в нейтральном положении, в сечении по линии 15-15 на фиг. 22.

Фиг. 17 - вид спереди синхронизирующего кольца с частью клапанного рычага, находящегося в пазу, образующем кулачок, когда клапан находится в закрытом положении, в сечении по линии 15-15 на фиг. 22.

Фиг. 18 - вид сбоку синхронизирующего кольца с частью клапанного рычага, находящегося в пазу, образующем кулачок, когда клапан находится в открытом положении, в сечении по линии 18-18 на фиг. 22.

Фиг. 19 - вид сбоку синхронизирующего кольца с частью клапанного рычага, находящегося в пазу, образующем кулачок, когда клапан находится в нейтральном положении, в сечении по линии 18-18 на фиг. 22.

Фиг. 20 - вид сбоку синхронизирующего кольца с частью клапанного рычага, находящегося в пазу, образующем кулачок, когда клапан находится в закрытом положении, в сечении по линии 18-18 на фиг. 22.

Фиг. 21 - частичный вид сбоку синхронизирующего кольца по фиг. 23.

Фиг. 22 - частичный вид в перспективе синхронизирующего кольца по фиг. 23.

Фиг. 23 - вид в перспективе варианта синхронизирующего кольца и клапана системы управления положением клапана.

Фиг. 24 - детальный вид в перспективе синхронизирующего кольца, клапанного рычага, и клапана системы управления положением клапана, в сечении по линии 24-24 на фиг. 22.

Фиг. 25 - детальный виз в перспективе другого варианта синхронизирующего кольца, клапанного рычага, и клапана системы управления положением клапана, в сечении по линии 24-24 на фиг. 22.

Подробное описание изобретения

Как показано на фиг. 1-25, раскрывается система 10 активного управления перепускным расходом для управления перепускным сжатым воздухом на основе расхода утечки сжатого воздуха через внешнее балансирующее уплотнение 12 между статором 18 и ротором 20 первой ступени газовой турбины 21 в газотурбинном двигателе. Система 10 активного управления перепускным расходом является регулируемой системой, в которой можно использовать одно или более дозирующее устройство 14 для управления расходом перепускного сжатого воздуха по мере изменения со временем расхода сжатого воздуха через уплотнение при износе внешнего балансирующего уплотнения 122 между полостью 62 обода и охлаждающей полостью 25. В по меньшей мере одном варианте дозирующее устройство 14 может содержать кольцевой элемент 22, имеющий по меньшей мере одно дозирующее отверстие 24, проходящее сквозь него. Дозирующее устройство 14 может быть расположено у выпуска 26 перепускного канала 28 и может регулироваться так, чтобы совмещение дозирующего отверстия 24 с выпуском 26 было регулируемым для изменения площади сечения отверстия 44, образованного совмещенными частями выпуска 26 перепускного канала 28 и дозирующего отверстия 24, увеличивая или уменьшая отверстие 44, образованное совмещенными частями, тем самым изменяя расход сжатого воздуха через дозирующее устройство 14. В другом варианте, как показано на фиг. 8, дозирующее устройство 14 может быть расположено между выпуском 26 перепускного канала 28, и впуском 40, или на впуске 40.

Как показано на фиг. 1, система 10 активного управления перепускным расходом для внешнего балансирующего уплотнения 12 может содержать узел 18 статора, расположенный рядом с валом 23 ротора. Узел 18 статора может иметь любую подходящую конфигурацию. Один или более канал 16 для сжатого воздуха может быть сконфигурирован для по меньшей мере уменьшения расхода горячих газов, проникающих в охлаждающую полость 25. В по меньшей мере одном варианте внешнее балансирующее уплотнение 12 может предотвратить засасывание всех горячих газов в охлаждающую полость 25. Внешнее балансирующее уплотнение 12 может быть, помимо прочего, лабиринтным уплотнением, щеточным уплотнением или лепестковым уплотнением. В по меньшей мере одном варианте внешнее балансирующ9ее уплотнение 12 может быть лабиринтным уплотнением, сформированным множеством зубьев 30 в комбинации с щеточным уплотнением, уплотняющим полость 62 обода относительно охлаждающей полости 25. Внешнее балансирующее уплотнение 12 может быть расположено на радиально внутреннем конце полости 62 обода между полостью 62 обода и охлаждающей полостью. В по меньшей мере некоторых вариантах зубья 30 могут существенно уменьшать, если не полностью устранять, поток горячих газов через уплотнение 12 в охлаждающую полость 25. Внутреннее балансирующее уплотнение 36 может быть расположено радиально внутри от внешнего балансирующего уплотнения 12 и может быть, помимо прочего, лабиринтным уплотнением, щеточным уплотнением или лепестковым уплотнением. В по меньшей мере одном варианте внутреннее балансирующее уплотнение 36 может содержать множество зубьев 30, проходящих от первой стороны 32 канала 16 для сжатого воздуха к второй стороне 34 канала 16 для сжатого воздуха.

Система 10 активного управления перепускным расходом также может содержать один или более перепускной канал 28, проходящий от впуска 40, сообщающегося по текучей среде с каналом 16 для сжатого воздуха перед внешним балансирующим уплотнением 12, до выпуска 26, сообщающегося с каналом 16 для сжатого воздуха после внешнего балансирующего уплотнения 12. В по меньшей мере одном варианте перепускной канал 28 может проходит внутри части узла 18 статора. Как показано на фиг. 2, перепускной канал 28 может быть расположен так, чтобы впуск 40 перепускного канала 28 находился в боковой части канала 16 для сжатого воздуха перед внешним балансирующим уплотнением 12, а выпуск 26 может быть расположен в полости 62 обода после внешнего балансирующего уплотнения 12. Перепускной канал 28 может быть сформирован как любая подходящая структура. В по меньшей мере одном варианте перепускной канал 28 может быть цилиндрическим каналом. В другом варианте перепускной канал 28 может быть каналом тороидальной формы. В еще одном варианте перепускной канал 28 может быть выполнен из множества перепускных каналов, расположенных по окружности вокруг проходящего по окружности узла 18 статора.

Система 10 активного управления перепускным расходом также может содержать одно или более дозирующее устройство 14, выполненное с возможностью регулировки для регулирования расхода охлаждающих текучих сред через перепускной канал 28 для согласования с изменением потока сжатого воздуха через внешнее балансирующее уплотнение 12 по мере износа этого внешнего балансирующего уплотнения 12 во время работы газотурбинного двигателя. В по меньшей мере одном варианте дозирующее устройство 14 может быть кольцевым элементом 22, содержащим одно или более дозирующее отверстие 24, проходящее сквозь него. Дозирующее устройство 14 может быть расположено у выпуска 26 перепускного канала 28 и может регулироваться так, чтобы совмещение дозирующего отверстия 24 с выпуском 26 могло регулироваться для изменения площади сечения отверстия 44, образованного совмещенными частями выпуска 26 перепускного канала 28 и дозирующего отверстия 24 дозирующего устройства 14. В по меньшей мере одном варианте дозирующее устройство 14 может содержать множество дозирующих отверстий 24, проходящих сквозь дозирующее устройство 14. В по меньшей мере одном варианте множество дозирующих отверстий 24 может быть расположено равноудаленно друг от друга, а в других вариантах множество дозирующих отверстий 24 может быть расположено в других конфигурациях относительно друг друга. Множество дозирующих отверстий 24 может быть расположено в дозирующем устройстве 14 так, чтобы каждое из дозирующих отверстий 24 совмещалось с перепускным каналом 28 в открытом состоянии, как показано на фиг. 7. В другом варианте, как показано на фиг. 9, дозирующие отверстия 24 дозирующего устройства 14 могут быть сгруппированы в наборы дозирующих отверстий 24 так, чтобы расстояние между каждым набором, на котором отсутствуют дозирующие отверстия, было больше, чем расстояние между дозирующими отверстиями 24 в каждом наборе. В каждом наборе расстояния между дозирующими отверстиями 24 могут быть одинаковыми или разными. Соседние наборы дозирующих отверстий 24 могут иметь идентичные расстояния между дозирующими отверстиями 24 или разные расстояния между ними.

В по меньшей мере одном варианте дозирующие отверстия 24 могут быть скошены или наклонены, как показано на фиг. 7, относительно перепускного канала 28. В частности, дозирующие отверстия 24 могут быть скошены так, чтобы сжатые газы, текущие через дозирующие отверстия 24, придавали, по меньшей мере частично, направленный по окружности вектор потоку сжатых газов. Благодаря скошенным дозирующим отверстиям 24 повышаются характеристики за счет завихрения перепускного потока, выходящего из перепускного канала 28 в полость 62 ротора.

Система 10 активного управления перепускным расходом может также содержать систему 46 управления положением для управления положением дозирующего устройства 14 относительно выпуска 26 перепускного канала 28. Система 46 управления положением может быть, помимо прочего, ручной системой, системой с приводом от двигателя, и автоматически регулируемой системой. В по меньшей мере одном варианте, как показано на фиг. 3 и 4, система 46 управления положением может быть кулачковым регулятором 48, имеющим внутренний паз 50 для приема штифта 52, который удерживает дозирующее устройство 14 относительно выпуска 26 перепускного канала 28, при этом штифт 52 выполнен с возможностью перемещения в пазу 50 для изменения положения дозирующего устройства 14 относительно выпуска 26 перепускного канала 28. В по меньшей мере одном варианте кулачковый регулятор 48 может быть расположен так, чтобы дозирующее отверстие 24 было смещено относительно выпуска 26 перепускного канала 28, что можно назвать смещение кулачкового регулятора на двадцать градусов, как показано на фиг. 4. Система 46 управления положением также может содержать один или более управляющий рычаг 54 для изменения совмещения дозирующего устройства 14 с выпуском 26 перепускного канала. Управляющий рычаг 54 может иметь любую подходящую конфигурацию, позволяющую регулировать положение дозирующего устройства 14 относительно выпуска 26 во время простоя, когда двигатель остановлен, или во время работы, или в обоих этих случаях. В еще одном варианте система 10 управления положением также может содержать один или более двигатель 56, применяемый для изменения совмещения дозирующего устройства 14 с выпускном 26 перепускного канала 28. Двигатель может быть, помимо прочего, электродвигателем, например, помимо прочего, шаговым электродвигателем, гидравлическим двигателем, пневматическим двигателем или пьезоэлектрическим двигателем.

Система 46 управления положением также может содержать один или более датчик 58, выполненный с возможностью измерять величину расхода утечки через дозирующее устройство 14. Датчик 58 может быть любым подходящим датчиком, выполненным с возможностью измерять давление, такое как, помимо прочего, давление на выходе перед завихрителем. Датчик 58 может измерять перепад давления на дозирующем устройстве 14 или массовый расход. В по меньшей мере одном варианте системы 10 активного управления перепускным расходом система 46 управления положением также может содержать контроллер 60, поддерживающий связь с датчиком 58 и двигателем 56 так, чтобы контроллер 60 управлял работой двигателя 56 для управления совмещением дозирующего устройства 14 с выпуском 26 перепускного канала 28 по меньшей мере частично на основании данных, полученных от датчика 58. Контроллер 60 может быть, помимо прочего, логической системой управления газотурбинным двигателем, компонентом логической системы управления газотурбинным двигателем, любым микроконтроллером, программируемым контроллером, компьютером, персональным компьютером (ПК), сервером, клиентским компьютером, планшетным компьютером, ноутбуком, настольным компьютером, системой управления или любой машиной, способной выполнять набор команд (последовательно или иным способом), которые определяют действия, которые должны быть выполнены контроллером 60. Далее, хотя на чертежах показан единственный контроллер 60, термин "контроллер" также должен пониматься как включающий любое количество контроллеров, которые индивидуально или совместно выполняют набор (или множество наборов) команд для выполнения любого одного или более из описываемых здесь способов.

Во время работы сжатый воздух проходит от компрессора в канал 16 для сжатого воздуха. Сжатый воздух по существу не имеет возможности попасть в полость 62 обода через внешнее балансирующее уплотнение 12 и горячий газ по существу не имеет возможности всасываться в охлаждающую полость 25 из полости 62 обода. Дозирующее устройство 14 можно использовать для отвода сжатого воздуха в полость 62 обода для выдувания горячего газа из полости 62 обода, когда внешне балансирующее уплотнение 12 препятствует прохождению потока горячего газа в охлаждающую полость 25 и в канал 16 для сжатого воздуха. По мере того, как внешнее балансирующее уплотнение 12 изнашивается и становится менее эффективным, и утечка сжатого воздуха увеличивается, дозирующее устройство 14 можно отрегулировать так, чтобы выпускать меньше сжатого воздуха из выпуска 26. Расход сжатого воздуха через дозирующее устройство 14 можно отрегулировать, регулируя дозирующее устройство 14 так, чтобы меньшая площадь сечения дозирующих отверстий 24 совмещалась с выпуском 26 перепускного канала 28. Положение дозирующего устройства 14 можно регулировать, когда газотурбинный двигатель работает, или во время его простоя, когда двигатель не работает. Положение дозирующего устройства 14 можно регулировать вручную, например, используя управляющий рычаг 54 и кулачковый регулятор 48, одним или более двигателем 56, автоматической системой, как описано выше, с контроллером 60, двигателем 56 и датчиком 58, или с помощью любой комбинации этих систем.

В другом варианте, как показано на фиг. 10-12, система 10 активного управления перепускным расходом может содержать дозирующее устройство 14, сформированное из одного или более клапана 70, состоящего из одного или более пальца 72, каждый из которых управляется кулачком 74. Каждый клапан 70 может быть выполнен с возможностью осевого перемещения вдоль продольной оси 76 пальца 72 между открытым положением, показанным на фиг. 11, и закрытым положением, показанным на фиг. 12. Положением клапана 70 можно управлять кулачком 74, при вращении которого положение головки 78 пальца 72 изменяется относительно перепускного канала 28. В по меньшей мере одном варианте кулачок 74 может быть выполнен из кольцевого выступа 86 с отверстием 88, в которое вставлен палец 72. Кольцевой выступ 86 может быть по существу цилиндрическим и может вращаться для перемещения пальца 72 между закрытым и открытым положениями и наоборот.

Палец 72 может содержать одно или более отверстие 60. Отверстие 80 может быть расположено в пальце, а палец может быть повернут так, чтобы в открытом положении, как показано на фиг. 11, отверстие 80 можно было совместить с перепускным каналом 28, тем самым открывая путь для потока газов через палец 72 и через перепускной канал 28. Отверстие 80 может быть цилиндрическим или иметь другую форму сечения. Отверстие 80 может быть расположено в пальце, а палец 72 может быть повернут так, чтобы в закрытом положении, показанном на фиг. 12, отверстие 80 могло быть по меньшей мере частично выведено из совмещения с перепускным каналом 28, тем самым по меньшей мере частично блокируя расход газов сквозь палец 72 и через перепускной канал 28. В по меньшей мере одном варианте отверстие 80 может быть расположено в пальце, а палец 72 может быть повернут так, чтобы в закрытом положении, как показано на фиг. 12, отверстие 80 было выведено из совмещения с перепускным каналом 28, тем самым полностью блокируя расход газов через палец 72 и перепускной канал 28.

В другом варианте система 10 активного управления перепускным расходом может содержать дозирующее устройство 14, сформированное из одного или более клапана 70, содержащего один или более палец 72, каждый из которых управляется кулачком 74, как показано на фиг. 13 и 14. Каждый клапан 70 может быть выполнен с возможностью перемещения в осевом направлении вдоль продольной оси 76 пальца 72 между открытым положением, показанным на фиг. 14, и закрытым положением, показанным на фиг. 13. В закрытом положении, показанном на фиг. 13, палец 72 может по меньшей мере частично входить в перепускной канал 28 и, по меньшей мере в одном варианте, может полностью проходить в перепускной канал 28. В открытом положении, как показано на фиг. 14, палец 72 может быть сдвинут вдоль продольной оси 76 пальца 72 так, что палец 72 больше не блокирует перепускной канал 28. Как показано на фиг. 17, конец 84 пальца 72 может находиться в перепускном канале 28 или может полностью быть извлечен из перепускного канала 28. В пальце 72 может отсутствовать отверстие 80, и палец 72 может быть сплошным, чтобы блокировать перепускной канал 28. Сплошной палец 72, как показано на фиг. 13 и 14 также может использоваться в варианте, показанном на фиг. 18-20.

Как показано на фиг. 21-23 и 25, один или более клапан 70 может управляться системой 82 управления положением клапана. В по меньшей мере одном варианте система 82 управления положением клапана может быть выполнена с возможностью одновременно управлять множеством клапанов 70. Как таковая система 82 управления положением клапана может одновременно перемещать множество клапанов между открытым положением, показанным на фиг. 11, им закрытым положением, показанным на фиг. 12, и наоборот. Как показано на фиг. 25, система 82 управления положением клапана может содержать синхронизирующее кольцо 90, соединенное с каждым из кулачков 74, поддерживающих клапаны 70, через клапанные рычаги 92 для управления одновременным движением клапанов 70 через движение синхронизирующего кольца 90. Когда синхронизирующее кольцо 90 поворачивается в периферийном направлении вокруг продольной оси газовой турбины 21, клапанный рычаг 92 поворачивает кулачок 74, к которому он прикреплен, тем самым заставляя палец 72 подниматься или опускаться. Подъем или опускание пальца 72 приводит к открыванию или закрыванию перепускного канала 28. Синхронизирующее кольцо 90, как показано на фиг. 21-23, может иметь подходящую форму и размер. Синхронизирующее кольцо 90 может составлять непрерывную окружность или часть окружности. Положением синхронизирующего кольца 90 может управлять один или более привод 94, как показано на фиг. 21 и 22. Привод 94 может быть гидравлическим, пневматическим или другим подходящим устройством. Привод 94 может быть соединен со стационарной частью газотурбинного двигателя, а другая часть привода 94 может быть соединена с синхронизирующим кольцом 90.

В другом варианте, показанном на фиг. 13-24, система 10 активного управления перепускным расходом может содержать дозирующее устройство 14, сформированное из одного или более клапана 70, который управляется через синхронизирующее кольцо 90. Синхронизирующее кольцо 90 может содержать кулачок 74, соответствующий каждому клапану 70. В по меньшей мере одном варианте кулачок 74 может быть образован пазом 96, соответствующим каждому клапану 70. Каждый клапан 70 может иметь клапанный рычаг 92, проходящий от клапана 70 до синхронизирующего кольца. Клапанный рычаг 92 может быть прикреплен к головке 78 пальца 72, образующего клапан 70, и может проходить в паз 96. Клапанный рычаг 92 может удерживаться в пазу 96 с возможностью скольжения так, что клапанный рычаг 92 может скользить от первого конца 90 ко второму кольцу 100 паза 96. Паз 96 проходит не по касательной к изогнутой средней линии синхронизирующего кольца. Вместо этого паз 96 наклонен так, что он проходит не ортогонально и не параллельно к оси 102, являющейся касательной к изогнутой средней линии 104 синхронизирующего кольца 90. Когда паз 96 выполнен описанным образом, система 82 управления положением клапана может перемещать один или более клапан 70 между открытым положением, как показано на фиг. 17 и 20, номинальным положением, как показано на фиг. 16 и 19, и закрытым положением, как показано на фиг. 15 и 18, или наоборот. Таким образом, вращение синхронизирующего кольца 90 заставляет каждый палец 72, связанный с синхронизирующим кольцом 90 через клапанный рычаг 92, смещаться в радиальном направлении внутрь или наружу, между открытым и закрытым положениями, показанными на фиг. 15-20. Клапанный рычаг 92 может иметь любую подходящую форму и размер. Каждый паз 96 может быть сконфигурирован одинаково с другими или, по меньшей мере в одном варианте пазы 96 могут быть расположены различно для создания требуемого эффекта на расход газов через перепускной канал 28.

В по меньшей мере одном варианте система 10 активного управления перепускным расходом может применяться для управления частью перепускных каналов 28, расположенных по окружности вокруг двигателя. Например, и не как ограничение, система 10 активного управления перепускным расходом может управлять расходом через набор перепускных каналов 28 на любой боковой стороне газовой турбины 21, но не управлять расходом газов через перепускные каналы сверху и снизу газовой турбины 21.

Настоящее описание приведено для целей иллюстрации, пояснения и описания вариантов настоящего изобретения. Специалистам очевидны изменения и замены, которые можно внести в эти варианты, не выходя за пределы объема изобретения или изобретательской идеи.

Похожие патенты RU2653267C2

название год авторы номер документа
АКТИВНОЕ УПРАВЛЕНИЕ ПЕРЕПУСКНЫМ ПОТОКОМ ДЛЯ УПЛОТНЕНИЯ В ГАЗОТУРБИННОМ ДВИГАТЕЛЕ 2014
  • Эберт Тодд А.
  • Киммель Кит Д.
RU2652958C2
Комбинированная дизель-газотурбинная установка 1985
  • Тетюшин Георгий Андреевич
SU1567804A1
ДОЗИРУЮЩИЙ КЛАПАН СО ВСТРОЕННОЙ ФУНКЦИЕЙ СБРОСА ДАВЛЕНИЯ И ПОДПИТКИ 2006
  • Смит Дейвид П.
  • Мейтер Дэниэл Т.
  • Ларк Уэйн У.
RU2427022C2
ДОЗИРУЮЩЕЕ УСТРОЙСТВО ДЛЯ ДОЗИРОВАНИЯ ТОПЛИВА 2009
  • Койзен Гюнтер
  • Ройзинг Фолькер
  • Штайн Штефан
RU2490483C2
ГИДРОРЕАКТИВНЫЙ ДВИГАТЕЛЬ 1999
  • Григорчук В.С.
RU2164625C1
РУЧНОЕ УСТРОЙСТВО ДЛЯ ВЫПУСКА СРЕД 1990
  • Лотар Граф[De]
  • Карл-Гейнц Фухс[De]
  • Лео Мэрте[De]
RU2032482C1
НАСОСЫ ДЛЯ РАСТВОРА МОЧЕВИНЫ, СОДЕРЖАЩИЕ ОБВОДНОЙ КАНАЛ УТЕЧКИ 2012
  • Мунтиан Джордж
  • Павар Начикет
  • Инала Кундана
  • Холл Стив
  • Апевокин Стефани
  • Госмелин Синтия
  • Майер Эндрю
  • Бурке Джим Ф.
  • Хайхелбех Джон
RU2573070C2
БЕЗМАСЛЯНЫЙ ВОЗДУШНЫЙ КОМПРЕССОР ДЛЯ РЕЛЬСОВЫХ ТРАНСПОРТНЫХ СРЕДСТВ 2012
  • Мур Роланд С.
  • Казакис Майкл В.
  • Форд Антьон Т.
  • Доссаджи Муртаза Р.
RU2587019C2
ИНГАЛЯТОР СО СТРУЙНЫМ КОНТРОЛЕМ НА ОСНОВЕ СКОРОСТИ ВХОДА И ОТНОСЯЩИЕСЯ К НЕМУ СПОСОБЫ ПРИМЕНЕНИЯ 2007
  • Харрингтон Стивен М.
  • Гэйлорд Дуглас
  • Золлингер Крис
  • Ривера Дэвид А.
  • Корнефф Нил А.
  • Уайлдэй Ребекка А.
RU2432190C2
ГИДРАВЛИЧЕСКИЙ БУРИЛЬНЫЙ ЯСС 1991
  • Уоррен Эскью[Us]
RU2025567C1

Иллюстрации к изобретению RU 2 653 267 C2

Реферат патента 2018 года СИСТЕМА АКТИВНОГО УПРАВЛЕНИЯ ПЕРЕПУСКНЫМ РАСХОДОМ ДЛЯ УПЛОТНЕНИЯ В ГАЗОТУРБИННОМ ДВИГАТЕЛЕ

Изобретение относится в основном к газотурбинным двигателям, а конкретнее – к системе активного управления перепускным расходом сжатого воздуха вокруг одного или более уплотнения между статором и узлом ротора первой ступени для подачи продувочного воздуха в полость обода. Расход сжатого воздуха через внешнее балансирующее уплотнение (12) в канале (16) для сжатого воздуха со временем изменяется с износом внешнего балансирующего уплотнения (12) между статором (18) и ротором (20). Система активного управления перепускным расходом предназначена для управления перепуском сжатого воздуха на основе расхода утечки сжатого воздуха через внешнее балансирующее уплотнение (12) между статором (18) и ротором (20) первой ступени газовой турбины (21) газотурбинного двигателя. Система активного управления перепускным расходом является регулируемой системой, в которой может применяться одно или более дозирующее устройство (14) для управления расходом перепускного сжатого воздуха. Изобретение учитывает износ уплотнения и дополнительный расход утечки в полость обода, что позволяет исключить избыточный общий расход охлаждающего воздуха в полость обода. Причём дозирующее устройство (14) может содержать клапан (70), образованный одним или более пальцем (72), выполненным с возможностью перемещения между открытым и закрытым положениями. Так, палец (72) по меньшей мере частично делит пополам перепускной канал (28) для регулирования расхода. 9 з.п. ф-лы, 25 ил.

Формула изобретения RU 2 653 267 C2

1. Система (10) активного управления перепускным расходом для внешнего балансирующего уплотнения (12), отличающаяся тем, что содержит:

узел (18) статора, расположенный рядом с ротором (20) первой ступени, в результате чего между частью узла (18) статора и валом (23) ротора проходит канал для сжатого воздуха;

по меньшей мере одно балансирующее уплотнение (12), выполненное с возможностью по меньшей мере уменьшать количество горячих газов, проходящих в охлаждающую полость (25);

по меньшей мере один перепускной канал (28), проходящий от впуска (40), сообщающегося по текучей среде с каналом (16) для сжатого воздуха перед по меньшей мере одним балансирующим уплотнением (12), до выпуска (26), сообщающегося по текучей среде с каналом (16) для сжатого воздуха после по меньшей мере одного балансирующего уплотнения (12);

по меньшей мере одно дозирующее устройство (14), выполненное с возможностью регулировки для регулирования расхода охлаждающих текучих сред через по меньшей мере один перепускной канал (28) для согласования с изменением потока сжатого воздуха через по меньшей мере одно внешнее балансирующее уплотнение (12) по мере износа внешнего балансирующего уплотнения (12) при работе газотурбинного двигателя; и

в которой по меньшей мере одно дозирующее устройство (14) содержит по меньшей мере один клапан (70), образованный по меньшей мере одним пальцем (72), выполненным с возможностью перемещения между открытым и закрытым положениями, в которых этот по меньшей мере один палец (72) по меньшей мере частично делит пополам по меньшей мере один перепускной канал (28).

2. Система по п. 1, отличающаяся тем, что по меньшей мере одно дозирующее устройство (14) далее содержит по меньшей мере один кулачок (74), находящийся в зацеплении с по меньшей мере одним пальцем (72) для перемещения этого по меньшей мере одного пальца (72) между открытым и закрытым положениями.

3. Система по п. 1, отличающаяся тем, что по меньшей мере один кулачок (74) выполнен в форме кольцевого выступа (86), расположенного в контакте с головкой по меньшей мере одного пальца (72).

4. Система по п. 1, отличающаяся тем, что этот по меньшей мере один палец (72) далее содержит по меньшей мере одно отверстие (80), расположенное в стержне по меньшей мере одного пальца (72) и расположенное так, чтобы это по меньшей мере одно отверстие (80) совмещалось с по меньшей мере одним перепускным каналом (28), когда этот по меньшей мере один палец (72) находится в открытом положении.

5. Система по п. 1, далее отличающаяся тем, что содержит синхронизирующее кольцо (90), связанное с по меньшей мере одним пальцем (72) через по меньшей мере один клапанный рычаг (92), проходящий от по меньшей мере одного пальца до синхронизирующего кольца (90).

6. Система по п. 5, отличающаяся тем, что этот по меньшей мере один клапанный рычаг (92) шарнирно прикреплен к синхронизирующему кольцу (90).

7. Система по п. 5, отличающаяся тем, что синхронизирующее кольцо (90) прикреплено к по меньшей мере одному кулачку (74), находящемуся в зацеплении с по меньшей мере одним пальцем (72) для перемещения этого по меньшей мере одного пальца (72) между открытым и закрытым положениями через по меньшей мере один клапанный рычаг (92).

8. Система по п. 5, отличающаяся тем, что синхронизирующее кольцо (90) является цилиндрическим с множеством клапанных рычагов (92), шарнирно прикрепленных к нему.

9. Система по п. 5, отличающаяся тем, что синхронизирующее кольцо (90) далее содержит множество кулачков (74), выполненных в форме пазов, находящихся внутри синхронизирующего кольца (90).

10. Система по п. 9, отличающаяся тем, что по меньшей мере один из множества кулачков (74) проходит не параллельно и не ортогонально оси (102), касательной к изогнутой средней линии (104) синхронизирующего кольца (90).

Документы, цитированные в отчете о поиске Патент 2018 года RU2653267C2

US 20110247346 A1, 13.10.2011
US 4708588 A1, 24.11.1987
Способ приготовления рыбной муки 1959
  • Гончаров М.П.
  • Кондаков Ю.А.
  • Трещева В.И.
SU122447A1
ОХЛАЖДАЕМАЯ ГАЗОВАЯ ТУРБИНА 1996
  • Цаплин Михаил Иванович
RU2117163C1
ЩЕТОЧНОЕ УПЛОТНЕНИЕ 2003
  • Васильев Валентин Сергеевич
RU2269047C2

RU 2 653 267 C2

Авторы

Эберт Тодд А.

Киммелл Кейт Д.

Даты

2018-05-07Публикация

2014-03-03Подача