Устройство для диагностирования авиационного двигателя в наземных условиях Российский патент 2018 года по МПК G01M15/14 

Описание патента на изобретение RU2653645C1

Изобретение относится к контрольно-диагаостическому оборудованию и может быть использовано для контроля состояния двигателей самолетов в наземных условиях, а также двигателей вертолетов и беспилотных летательных аппаратов.

Известна система автоматизированного контроля авиационного газотурбинного двигателя (ГТД) в наземных условиях в составе самолета, включающая электронный пульт контроля и управления, соединенный электрическими кабелями с датчиками контроля параметров работы ГТД, а также с блоками контроля и управления авиационного ГТД в составе самолета, при этом система дополнительно оснащена диагностическим комплексом, содержащим блок исходных характеристик двигателя в состоянии поставки на самолет, блок сравнения фактических характеристик с исходными и блок выдачи результатов сравнения на дисплей электронного пульта контроля и управления (см. патент РФ на полезную модель №76390, кл. F01D 17/02, 2008 г.).

Недостатком известной системы автоматизированного контроля авиационного ГТД является необходимость принятия субъективного решения о воздействии на контролируемый двигатель при наличии сигнала рассогласования между исходными и измеренными характеристиками двигателя, поступающего оператору от диагностического комплекса, что снижает точность диагностирования и область применения данной системы.

Известна система автоматического контроля и диагностики авиационного ГТД в наземных условиях в составе самолета, содержащая персональный компьютер с монитором, имеющий возможность соединения с контролируемым двигателем через блок согласования. В персональный компьютер встроен диагностический комплекс, в который поступает информация с диагностируемого ГТД.

В диагностическом комплексе эта информация в блоке расчетов и сравнения проходит сравнение с содержащейся в блоке исходных характеристик информацией о характеристиках данного экземпляра авиационного ГТД по состоянию поставки его на самолет и адаптивной математической моделью, построенной на данных основных (газодинамических) параметров двигателя и широкополосных вибрационных сигналов, а также автоматически осуществляется расчет компонентов трендового контроля и диагностика технического состояния с выработкой информационных сообщений, поступающих на монитор персонального компьютера и сигналов рассогласования для корректировки адаптивной математической модели (см. патент РФ на полезную модель №132134, кл. F01D 17/02, 2013 г.).

Использование данной системы в наземных условиях в составе самолета, в отличие от приведенной выше, позволяет повысить точность диагностирования за счет исключения субъективного фактора при принятии решения о воздействии на двигатель, сократить время контроля и снизить расходы по эксплуатации авиационной техники. Однако использование при проведении диагностики только штатных (полетных и наземных) газодинамических и вибрационных параметров двигателя, не позволяет детально оценить индивидуальное состояние каждого конкретного узла и агрегата и системы автоматического управления (САУ) двигателя, не позволяет прогнозировать их поведение после возникновения нештатных ситуаций. Это возможно только путем загрузки в САУ диагностического и тестового программного обеспечения, обеспечивающего ее поэлементное диагностирование не только по штатным, но и по нештатным наборам параметров и состояний.

Известно наземное информационно-диагностическое средство для обслуживания авиационного двигателя, содержащее устройство оперативного контроля, предназначенное для обработки сигналов от бортового устройства регистрации, блок концентрации сигналов, поступающих от, по меньшей мере, двух штатных датчиков двигателя и, по меньшей мере, двух датчиков, дополнительно устанавливаемых на двигатель через устройства согласования, предназначенные для преобразования сигналов от штатных датчиков и дополнительных датчиков и от бортового устройства регистрации в цифровой код и для соединения как минимум одного из датчиков с входом блока концентрации сигналов, выход которого соединен с устройством оперативного контроля (см. патент РФ на полезную модель №58233, кл. G05B 15/02, 2006 г.) - наиболее близкий аналог.

В результате анализа известного решения необходимо отметить, что для него характерны недостаточная точность и достоверность диагностирования авиационного двигателя в связи с отсутствием информации о состоянии САУ двигателем и о состоянии системной шины САУ, обеспечивающей информационный обмен между узлами и агрегатами САУ. Кроме того, при использовании известного решения невозможно прогнозирование технического состояния двигателя и САУ вследствие отсутствия возможности загрузки в электронную систему управления алгоритмов и программного обеспечения (ПО) углубленного диагностирования узлов и агрегатов, позволяющего оценить не только состояние двигателя и САУ в целом, но и индивидуально протестировать каждый из узлов и агрегатов, что снижает функциональные возможности известного средства.

Техническим результатом заявленного изобретения является расширение функциональных возможностей устройства за счет обеспечения не только диагностирования, но и прогнозирования технического состояния двигателя и системы его управления, а также повышение достоверности и точности диагностирования за счет более точного определения текущего технического состояния двигателя и его САУ, а также прогнозирования изменения их состояния в процессе эксплуатации.

Указанный технический результат достигается тем, что в устройстве для диагностирования авиационного двигателя в наземных условиях, содержащем блок оперативного контроля, связанный через аппаратно-программный интерфейс с выходом блока концентрации сигналов, имеющего возможность соединения входом через разъем с установленными на двигатель датчиками диагностируемых параметров, новым является то, что устройство оснащено подключенными к входам блока оперативного контроля аппаратным ключом доступа и блоком-носителем версий бортового управляющего и диагностического программного обеспечения, а также блоком адаптера шины - загрузчиком, своим входом связанным через аппаратно-программный интерфейс с блоком оперативного контроля, при этом блок оперативного контроля через аппаратно-программный интерфейс и выход блока адаптера шины-загрузчика через разъем имеют возможность соединения с системной цифровой шиной блоков управления и регистрации параметров двигателя.

Включение в состав устройства блока адаптера шины - загрузчика позволяет по сигналу от блока оперативного контроля перевести блоки управления и регистрации параметров двигателя в режим загрузки и записать в них с блока-носителя версий бортового управляющего и диагностического ПО алгоритмы углубленного диагностирования двигателя и его САУ, а наличие связи блока адаптера шины - загрузчика с системной цифровой шиной блока управления и регистрации параметров двигателя позволяет существенно увеличить объем информации о состоянии каждого индивидуального блока и агрегата системы управления, поступающей в блок оперативного контроля. Аппаратный ключ доступа обеспечивает предотвращение несанкционированного доступа к функциям записи диагностического ПО в блоки управления и регистрации параметров двигателя, что позволяет полностью исключить возможность влияния третьих лиц на точность диагностирования.

Сущность заявленного изобретения поясняется чертежом, на котором представлена структурная схема устройства для диагностирования авиационного двигателя в наземных условиях.

Устройство для диагностирования авиационного двигателя в наземных условиях (см. чертеж) содержит блок оперативного контроля 1, к первому входу которого подключен аппаратный ключ доступа 2, а ко второму - блок-носитель 3 версий бортового управляющего и диагностического ПО.

Блок оперативного контроля 1 связан через аппаратно-программный интерфейс 4 с выходом блока 5 концентрации сигналов и с входом блока 6 адаптера шины - загрузчика. Позициями 7 и 8 обозначены разъемы, а позицией 9 - датчики.

Блок оперативного контроля 1 через аппаратно-программный интерфейс 4, а также выход блока 6 адаптера шины - загрузчика через разъем 8 связаны с системной цифровой шиной блоков 10 управления и регистрации параметров двигателя 11 и его САУ.

Блок 5 концентрации сигналов через разъем 7 имеет возможность соединения своим входом с датчиками 9, устанавливаемыми на двигатель 11 для проведения диагностирования.

Заявленное устройство скомпоновано из известных блоков и агрегатов.

В качестве блока оперативного контроля 1 может быть использован, например, промышленный защищенный ноутбук ЕС-1866 фирмы «TS Computers» (http://www.ts.ru/sm7020t.html), оснащенный стандартными блоками вторичного питания на 27 В и 220 В.

В качестве аппаратного ключа доступа 2 может быть использовано, например, устройство для защиты информации на ПК и накопителях «Цифровой страж Кеу_Р1» фирмы «Мультиклет» (www.multiclet.com).

В качестве блока-носителя 3 версий бортового управляющего и диагностического ПО может быть использован, например, защищенный промышленный твердотельный накопитель информации для тяжелых условий эксплуатации фирмы «TS Computers)) (http://www.ts.ru/sm7020t.html).

В качестве аппаратно-программного интерфейса 4 может быть использован, например, блок конвертора каналов 03.КЕУР.467125.007 производства НПП «Дозор» ОАО «Концерн КЭМЗ». Блок конвертора каналов представляет собой одноплатное микропроцессорное устройство в алюминиевом корпусе, содержащее коммуникационный модуль со встроенным источником питания. Модуль выполнен на микросхеме 1986ВЕ91Т фирмы «ПКК Миландр» (http://www.milandr.com). Функционально аппаратно-программный интерфейс 4 выполняет электрическое и логическое преобразование сигналов интерфейса USB блока оперативного контроля 1 в сигналы интерфейсов CAN блока концентрации сигналов 5 и блока адаптера шины - загрузчика 6, а также в логические сигналы управления режимами загрузки блоков 10 управления и регистрации параметров.

В качестве блока 5 концентрации сигналов может быть использован, например, блок СБИ-С5 КЕУР.466369.004 производства НПП «Дозор» ОАО «Концерн КЭМЗ». Блок СБИ-С5 представляет собой двухплатное микропроцессорное устройство в алюминиевом корпусе, содержащее вычислительный модуль со встроенным источником питания и модуль преобразования сигналов датчиков. Вычислительный модуль выполнен на микросхеме 1986ВЕ91Т фирмы «ПКК Миландр» (http://www.milandr.com). Модуль преобразования сигналов датчиков выполнен на микросхеме 5503ХМ1У-651 ГАВЛ.431260.651Д производства НПК «Технологический центр» (г. Зеленоград). Функционально модуль выполняет аналого-цифровое преобразование сигналов четырех датчиков давления и двух датчиков вибраций и передачу их в аппаратно-программный интерфейс 4.

В качестве блока 6 адаптера шины - загрузчика может быть использован, например, блок адаптера шины - загрузчика КЕУР.467125.016 производства ОАО «Концерн КЭМЗ». Блок 6 адаптера шины - загрузчика представляет собой одноплатное микропроцессорное устройство в алюминиевом корпусе, содержащее коммуникационный модуль со встроенным источником питания. Блок выполнен на микросхеме 1986 ВЕ91Т фирмы «ПКК Миландр» (http://www.milandr.com). Функционально блок выполняет логическое преобразование сигналов интерфейса CAN аппаратно-программного интерфейса 4 в сигналы интерфейсов CAN системной цифровой шины блоков 10 управления и регистрации параметров с поддержкой логических сигналов управления загрузкой и контрольным считыванием ПО блоков 10. Блоки 10 не являются элементами заявленного изобретения, они являются штатными элементами двигателя и, естественно, не устанавливаются специально на двигатель для проведения его диагностирования. Датчики 9 и разъемы 7 и 8 являются стандартными.

Естественно, что приведенными выше блоками и агрегатами не ограничиваются возможности компоновки заявленного устройства.

Устройство для диагностирования авиационного двигателя в наземных условиях работает следующим образом.

При подготовке устройства к работе на двигатель 11 устанавливают датчики 9, причем в топливные и масляные магистрали из комплекта диагностического оборудования двигателя (или устройства) могут быть одновременно установлены до четырех различных датчиков давления, а на подшипники двигателя - до двух датчиков вибраций. Через разъем 7 выходы всех датчиков подключают к входу блока 5 концентрации сигналов. К первому входу блока оперативного контроля 1 подключают аппаратный ключ доступа 2, а ко второму - блок-носитель 3 версий бортового управляющего и диагностического программного обеспечения. Выход блока 5 концентрации сигналов подключают через аппаратно-программный интерфейс 4 к блоку оперативного контроля 1. Вход блока 6 адаптера шины - загрузчика подключают через аппаратно-программный интерфейс 4 к блоку оперативного контроля 1. Аппаратно-программный интерфейс 4 и выход блока 6 адаптера шины - загрузчика через бортовой разъем 8 подключают к системной цифровой шине штатно установленных на двигателе 11 блоков 10 управления и регистрации параметров.

Устройство готово к работе.

Проведение диагностирования двигателя возможно по двум направлениям:

- штатное диагностирование, при котором используется бортовое программное обеспечение, штатно загруженное в блоки 10 управления и регистрации параметров;

- углубленное диагностирование, при котором по командам оператора блок оперативного контроля 1 через аппаратно-программный интерфейс 4 и блок 6 адаптера шины - загрузчик загружает с блока-носителя 3 версий бортового управляющего и диагностического программного обеспечения в блоки 10 управления и регистрации параметров необходимые версии тестового, диагностического и управляющего ПО.

Для исключения несанкционированного доступа к работам по загрузке различных версий программного обеспечения блок оперативного контроля 1, во-первых, проверяет наличие подключения аппаратного ключа доступа 2, во-вторых, по логину и паролю проверяет наличие допуска данного оператора к процедурам загрузки, в-третьих, посредством дискретных сигналов, формируемых на выходе аппаратно-программного интерфейса 4, обеспечивает перевод системной цифровой шины в режим загрузки всех или выбранных оператором блоков 10 управления и регистрации параметров, в-четвертых через блок 6 адаптера шины - загрузчик загружает требуемую версию управляющего и диагностического программного обеспечения с последующим контролем корректности загрузки путем перевода системной цифровой шины в режим считывания загруженного кода и его сравнения с исходной копией кода.

При штатном диагностировании блок оперативного контроля 1 считывает поступившие из блока 5 концентрации сигналов через аппаратно-программный интерфейс 4 показания датчиков 9, а также данные, циркулирующие по системной цифровой шине, и проверяет полученные данные на их соответствие требуемым уставкам или их нахождение в пределах допусков по отношению к параметрам статической и динамической моделей двигателя, что соответствует работе наиболее близкого аналога. Такой режим, во-первых, в ряде случаев позволяет выявить лишь наличие в системе в целом некорректно выполняемых в штатных условиях функций, но не позволяет выявить конкретный узел или агрегат, нарушения в работе которого вызвали данную некорректную работу. Во-вторых, такой режим не позволяет анализировать работу САУ в нештатных ситуациях, например, вызванных частичной деградацией параметров конкретного узла, или в случае отказов компонент САУ двигателя и самолета после воздействия обычных или специальных поражающих факторов.

При углубленном диагностировании блок оперативного контроля 1 по-прежнему считывает из блока 5 концентрации сигналов показания датчиков 9, а также данные, циркулирующие по системной цифровой шине, но благодаря загрузке в блоки 10 управления и регистрации параметров диагностического, управляющего и тестового ПО, оператор получает возможность перевести всю систему в состояния, недостижимые при ее штатной работе, например после воздействий внешних факторов, а также обычных и специальных поражающих факторов и проверить качество работы системы с учетом фактической деградации характеристик ее узлов и агрегатов. Оператор также может перевести отдельные агрегаты в диагностические и тестовые режимы, которые недостижимы при штатной работе системы, но вполне возможны после некоторого времени эксплуатации системы вследствие деградации характеристик узлов и агрегатов. В таких режимах диагностирования возможно выполнить идентификацию и уточнение моделей отдельных узлов и агрегатов, провести проверку запасов устойчивости контуров динамического регулирования, запасов по величинам временных задержек логических и цифровых каналов управления, запасов по величинам шумов измерения и управления и др.

Проведение такого углубленного диагностирования позволяет не только оценить общее текущее состояние системы, но и повысить достоверность и точность диагностирования за счет индивидуального диагностирования каждого из узлов и агрегатов и тем самым прогнозировать техническое состояния двигателя и системы его управления на заданный период эксплуатации (например, на заданное число полетов).

Использование заявленного устройства повышает безопасность эксплуатации авиационных ГТД и двигателей других летательных аппаратов с электронными САУ.

Похожие патенты RU2653645C1

название год авторы номер документа
НАЗЕМНАЯ ИНФОРМАЦИОННО-ДИАГНОСТИЧЕСКАЯ СИСТЕМА ДЛЯ ОСУЩЕСТВЛЕНИЯ БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ С ЭЛЕКТРОННОЙ СИСТЕМОЙ УПРАВЛЕНИЯ ПО ПРОГНОЗУ ЕГО ТЕХНИЧЕСКОГО СОСТОЯНИЯ 2015
  • Антонец Константин Николаевич
  • Сиротин Николай Николаевич
RU2599415C1
УСТРОЙСТВО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СИЛОВОЙ УСТАНОВКИ (ВАРИАНТЫ) 2015
  • Бебутов Георгий Георгиевич
  • Пемов Александр Владимирович
  • Попович Константин Федорович
  • Школин Владимир Петрович
RU2592467C1
УСТРОЙСТВО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СИСТЕМ САМОЛЁТА 2022
  • Попович Константин Фёдорович
  • Бебутов Георгий Георгиевич
  • Пемов Александр Владимирович
RU2789470C1
Система испытаний авиационного газотурбинного двигателя в наземных условиях 2020
  • Медяков Олег Евгеньевич
  • Новиков Артем Владимирович
  • Самсонов Владимир Михалович
RU2742848C1
СПОСОБ НЕПРЕРЫВНОГО КОНТРОЛЯ ЦЕЛОСТНОСТИ ВОЗДУШНЫХ СУДОВ НА ВСЕХ УЧАСТКАХ ПОЛЕТА 2013
  • Бейнарович Владислав Витольдович
  • Морковкин Владимир Андреевич
  • Нечаенко Александр Геннадьевич
  • Обуховец Виктор Александрович
  • Воронин Вячеслав Владимирович
RU2542746C2
Интегрированная система регистрации данных, диагностики технического и физического состояния комплекса "человек-машина" 2017
  • Селезнев Станислав Леонидович
  • Мухин Иван Ефимович
  • Мягкоступов Сергей Павлович
  • Дмитриев Павел Валентинович
  • Заварзин Павел Павлович
  • Кизилов Михаил Георгиевич
  • Каневский Михаил Игоревич
  • Исаев Сергей Александрович
RU2650276C1
ИНТЕГРИРОВАННАЯ СИСТЕМА РЕГИСТРАЦИИ ДАННЫХ, ДИАГНОСТИКИ ТЕХНИЧЕСКОГО И ФИЗИЧЕСКОГО СОСТОЯНИЯ КОМПЛЕКСА "ЧЕЛОВЕК - МАШИНА" 2014
  • Дурнев Вадим Владимирович
  • Селезнев Станислав Леонидович
  • Мухин Иван Ефимович
  • Дмитриев Павел Валентинович
  • Кизилов Михаил Георгиевич
  • Каневский Михаил Игоревич
  • Исаев Сергей Александрович
RU2602350C2
СПОСОБ ТЕХНИЧЕСКОГО КОНТРОЛЯ И ДИАГНОСТИРОВАНИЯ БОРТОВЫХ СИСТЕМ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА С ПОДДЕРЖКОЙ ПРИНЯТИЯ РЕШЕНИЙ И КОМПЛЕКС КОНТРОЛЬНО-ПРОВЕРОЧНОЙ АППАРАТУРЫ С ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМОЙ ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Левин Марк Зелигович
  • Смирнов Владимир Александрович
  • Уланов Михаил Валерьевич
  • Давидчук Андрей Геннадиевич
  • Буравлев Дмитрий Иванович
  • Зимин Сергей Николаевич
RU2557771C1
УЧЕБНО-ТРЕНИРОВОЧНЫЙ КОМПЛЕКС АВИАЦИОННЫЙ 2004
  • Демченко О.Ф.
  • Долженков Н.Н.
  • Попович К.Ф.
  • Школин В.П.
  • Гуртовой А.И.
  • Сорокин В.Ф.
  • Кодола В.Г.
RU2250511C1
ПАНОРАМНЫЙ АВИАЦИОННЫЙ ИНДИКАТОР 2022
  • Стрелец Михаил Юрьевич
  • Апурин Андрей Николаевич
  • Баранов Александр Сергеевич
  • Грибов Дмитрий Игоревич
  • Дибин Александр Борисович
  • Дорофеев Никита Валентинович
  • Истомин Владимир Георгиевич
  • Лемищенко Денис Юрьевич
  • Бобров Сергей Викторович
RU2800102C1

Иллюстрации к изобретению RU 2 653 645 C1

Реферат патента 2018 года Устройство для диагностирования авиационного двигателя в наземных условиях

Изобретение относится к контрольно-диагностическому оборудованию и может быть использовано для наземного контроля состояния авиационных газотурбинных двигателей в составе самолета, а также двигателей вертолетов, беспилотных летательных аппаратов. Устройство оснащено подключенными к входам блока оперативного контроля аппаратным ключом доступа и блоком-носителем версий бортового управляющего и диагностического программного обеспечения, а также блоком адаптера шины - загрузчиком, своим входом связанным через аппаратно-программный интерфейс с блоком оперативного контроля, при этом блок оперативного контроля через аппаратно-программный интерфейс и выход блока адаптера шины-загрузчика через разъем имеют возможность соединения с системной цифровой шиной блоков управления и регистрации параметров двигателя. Техническим результатом заявляемого изобретения является расширение функциональных возможностей устройства и повышение достоверности диагностирования. 1 ил.

Формула изобретения RU 2 653 645 C1

Устройство для диагностирования авиационного двигателя в наземных условиях, содержащее блок оперативного контроля, связанный через аппаратно-программный интерфейс с выходом блока концентрации сигналов, имеющего возможность соединения входом через разъем с установленными на двигатель датчиками диагностируемых параметров, отличающееся тем, что устройство оснащено подключенными к входам блока оперативного контроля аппаратным ключом доступа и блоком-носителем версий бортового управляющего и диагностического программного обеспечения, а также блоком адаптера шины - загрузчиком, своим входом связанным через аппаратно-программный интерфейс с блоком оперативного контроля, при этом блок оперативного контроля через аппаратно-программный интерфейс и выход блока адаптера шины-загрузчика через разъем имеют возможность соединения с системной цифровой шиной блоков управления и регистрации параметров двигателя.

Документы, цитированные в отчете о поиске Патент 2018 года RU2653645C1

ПРИСПОСОБЛЕНИЕ К ШВЕЙНЫМ МАШИНАМ ДЛЯ ПОЛУЧЕНИЯ СПИРАЛЬНОЙ СТРОЧКИ, НАПРИМЕР, ПРИ ПРОШИВАНИИ ПОЛИРОВАЛЬНЫХ КРУГОВ ИЗ ТКАНИ 1940
  • Сергевнин И.В.
SU58233A1
НАЗЕМНАЯ ИНФОРМАЦИОННО-ДИАГНОСТИЧЕСКАЯ СИСТЕМА ДЛЯ ОСУЩЕСТВЛЕНИЯ БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ С ЭЛЕКТРОННОЙ СИСТЕМОЙ УПРАВЛЕНИЯ ПО ПРОГНОЗУ ЕГО ТЕХНИЧЕСКОГО СОСТОЯНИЯ 2015
  • Антонец Константин Николаевич
  • Сиротин Николай Николаевич
RU2599415C1
Ручной реверсивный гайковерт 1959
  • Мортиков Ю.С.
  • Толстой В.М.
  • Шулягин С.Н.
SU132134A1
Способ получения 2-фенил-4-алкохсиметилен-океазолинонов-5 1947
  • Берлин А.Я.
  • Майминд В.И.
SU76390A1
US 4821217 A1, 11.04.1989
US 5042295 A1, 27.08.1991.

RU 2 653 645 C1

Авторы

Зайцев Сергей Владимирович

Захаров Николай Анатольевич

Клепиков Владимир Иванович

Литвинова Ирина Васильевна

Мальков Игорь Васильевич

Подхватилин Дмитрий Станиславович

Филиева Людмила Арсентьевна

Шепелев Алексей Владимирович

Даты

2018-05-11Публикация

2017-08-31Подача