Способ моделирования нарушений в организме лабораторных животных, вызванных воздействием шума в постконтактном периоде Российский патент 2018 года по МПК G09B23/28 

Описание патента на изобретение RU2655545C1

Изобретение относится к области медицины, а именно к экспериментальной медицине.

Авторами (Андреева-Галанина Е.Ц. и соавт., 1972) в эксперименте на животных установлено, что под влиянием шума активизируется ретикулярная формация мозгового ствола и диэнцефальная область, при раздражении подкорковых образований появляются глубокие биохимические сдвиги в клетках рецепторного аппарата, происходит перенапряжение тормозных процессов в коре и подкорковых слуховых центрах, что приводит к последующим нарушениям в других звеньях слухового анализатора, истощению и перерождению клеток звуковоспринимающего аппарата, а морфологически определяется в виде дистрофических и атрофических изменений [2]. Разработанные ранее экспериментальные модели касались, прежде всего, вопросов гигиенического нормирования физических факторов, что не позволяло в полной мере подойти к раскрытию механизмов патогенеза профессиональных заболеваний, вызванных воздействием физических факторов. За последние годы экспериментальных исследований по данной проблеме практически не проводилось, за исключением отдельных, весьма немногочисленных работ.

Известны модели патологии сердечно-сосудистой, двигательной и других систем организма после воздействия шума [3,9]. Другими авторами изучались поведенческие реакции в открытом поле у белых крыс после воздействия вибрации и шума [1].

Авторами выполнена серия исследований для оценки влияния шума на организм белых беспородных крыс сразу после окончания воздействия. Данная модель предназначается для изучения воздействия шума сразу после окончания воздействия [6,7]. Животные подвергались воздействию широкополосного шума интенсивностью 100 дБА в течение 5 дней по 4 часа ежедневно на протяжении 15, 30, 60 и 120 дней, эффект воздействия изучался сразу после окончания серии экспериментов.

Прототипом для нашего способа является модель Черток А.Г. и соавт. (2006), заключавшаяся в воздействии на половозрелых белых крыс-самок шумом 86 дБ и вибрацией 72 Гц на шумовибрационном стенде по 6 часов ежедневно в течение 7 суток с целью изучения состояния сосудисто-капиллярного русла матки у крыс на 1-е, 3-й, 5-е, 10-е, 20-е, 30-е и 60-е сутки восстановительного периода [8].

Недостатком прототипа является комплексное воздействие шума и вибрации, что не дает возможности оценки изолированного воздействия шума на организм животных; отсутствие оценки функционирования нервной системы в постконтактном периоде воздействия шума, являющимся информативным для изучения и оценки течения профессиональной патологии у работавших, прекративших контакт с физическими факторами.

Задачей изобретения является получение информативной модели нарушений нервной и иммунной системы в отдаленном постконтактном периоде после воздействия шума у экспериментальных животных.

Технический результат достигается путем многократного и систематического воздействия широкополосным шумом на лабораторных животных и получения, таким образом, устойчивых изменений в центральной и периферической нервной системе и иммунологических показателей.

Способ осуществляется следующим образом:

Лабораторных животных помещают на 4 часа в экспериментальную камеру и воздействуют широкополосным шумом интенсивностью 100 дБА. Воздействие шумом проводят 5 раз в неделю в течение 30 дней. Для изучения эффектов воздействия шума в постконтактном периоде исследование систем организма животных проводят не ранее, чем через 30 дней и не позднее 120 дней после окончания шумового воздействия.

Во время проведения эксперимента осуществляется постоянный контроль за условиями микроклимата (температура воздуха, скорость движения воздуха, влажность), освещенности, параметры которых поддерживаются в оптимальном состоянии.

Предлагаемый способ был применен в эксперименте на половозрелых беспородных крысах-самцах в количестве 168 особей массой 180-260 г., полученных из собственного питомника ФГБНУ ВСИМЭИ (сертификат имеется). Опытные животные были разделены на 3 группы (по 24 особи в каждой группе): 1 группа - животные, подвергавшиеся воздействию шума в течение 30 дней, обследовались через 30 дней после воздействия (n=24); 2 группа - животные, подвергавшиеся воздействию шума в течение 30 дней (n=24), обследовались через 60 дней после воздействия (n=24); 3 группа - животные, подвергавшиеся воздействию шума в течение 30 дней (n=24), обследовались через 120 дней после воздействия (n=24). Группа сравнения представлена животными, обследованными сразу после окончания 30-дневной экспозиции шума (n=24). Учитывая длительность экспериментальных исследований, в каждой серии экспериментов в качестве контроля использовали интактных животных для каждой опытной группы (n=72). Верификацию последствий воздействия шума проводили непосредственно после прекращения контакта с шумом и трижды в постконтактном периоде. Эксперименты проводили с учетом воспроизводимости. Результаты исследований, полученные во все сроки экспериментов у животных опытных и контрольных групп сопоставимы, так как обязательным условием было использование животных одного возраста и массы, содержание их в идентичных условиях, соблюдение дозировок и стандартности методик.

Ориентировочно-исследовательскую активность, эмоциональное состояние оценивали по методу «Открытое поле». Идентификацию отдельных поведенческих паттернов (актов), проводили на основании вероятности появления того или иного акта. Оценку состояния центральной нервной системы (ЦНС) и периферической нервной системы проводили по данным регистрации электроэнцефалографии (ЭЭГ), слуховых вызванных потенциалов (СВП), соматосенсорных вызванных потенциалов (ССВП), показателей стимуляционной электронейромиографии (ЭНМГ). Для изучения изменений в иммунной системе определяли в сыворотке крови содержание цитокинов: интерлейкина-1β (IL-1β), интерлейкина-10 (IL-10) и фактора некроза опухоли-α (TNF-α) методом ИФА с помощью тест-систем BenderMedSystems (Austria). Статистическая обработка данных выполнялась с помощью пакета прикладных программ «Statistica 6.0» с использованием параметрических и непараметрических методов статистической обработки.

По данным анализа ЭНМГ - показателей у экспериментальных животных регистрируются статистически значимые различия с данными контрольной группы через 30 дней после действия шума. В опытной группе отмечается увеличение длительности и латентного периода М-ответа (табл. 1). Через 60, 120 дней после воздействия шума у экспериментальных животных сохраняется возрастание латентного периода М-ответа при сравнении с данными контроля.

По данным регистрации ССВП установлены статистически значимые различия с данными контрольной группы, заключающиеся в увеличении латентного периода коркового компонента, у группы экспериментальных животных в 30-дневном постконтактном периоде, которые сохраняются через 60 и 120 дней (табл. 2).

В постконтактном периоде воздействия шума отмечаются выраженные изменения в ЦНС в виде перераспределения основных ритмов ЭЭГ в сторону депрессии доли медленноволновой тетта- и дельта-активности и доминирования быстроволновых бета1- и бета 2-ритмов (табл. 4). Регистрация СВП позволила выявить тенденцию к увеличению латентности пика Р1 на протяжении всего постконтактного периода и статистически значимое удлинение латентности пика Р2 спустя 30 и сохранение данной направленности через 60 дней периода восстановления.

Амплитуда пика Р1 СВП значительно снизилась на 30-ый и 60-ый дни постконтактного периода, а к 120 дню наблюдения достигла значений группы животных, обследованной сразу после окончания воздействия шумом. Амплитудные значения пика Р2 характеризовались достоверным уменьшением через 60 дней до 120-дневного восстановительного периода. Сохранение изменений ЭЭГ у белых крыс опытных групп в динамике постконтактного периода свидетельствуют о стойком дестабилизирующем эффекте шумового воздействия на ЦНС белых крыс.

При обследовании в тесте «Открытого поля» до проведения эксперимента различий в поведении животных опытных и контрольных групп не выявлено. Сравнительный анализ поведенческой активности животных опытных и контрольных групп показывает, что в 120-дневном постконтактном периоде воздействия шума у крыс опытной группы наблюдается снижение спонтанной двигательной активности («локомоция»), исследовательской активности («норка»), увеличение паттернов поведения, характеризующих негативно-эмоциональное поведение животных («движение на месте», «стойки», «сидит»). Нарушения ориентировочно-исследовательского поведения, включая двигательную активность и эмоциональность животных сохраняются у животных в постконтактном периоде воздействия шума (табл. 3). Показатели поведения животных в «Открытом поле» являются вариабельными, и наблюдавшиеся некоторые изменения поведенческих реакций у интактных животных между собой при тестировании в разные сроки эксперимента можно объяснить различиями в сезонности обследования, колебаниями атмосферного давления, температуры окружающей среды.

В динамике постконтактного периода воздействия шумом происходили изменения в содержании провоспалительных IL-1β и TNF-α. IL-1β является основным медиатором воспалительных реакций, в том числе при повреждении ткани, и пусковым фактором роста и пролиферации клеток. Он также служит ко-фактором активации В-клеток [5]. В патогенезе заболеваний важная роль отводится дисбалансу про- и противовоспалительных цитокинов [4,10]. Нарушение продукции и процесса рецепции цитокинов способно приводить к различным заболеваниям. Развивающийся при заболеваниях цитокиновый дисбаланс, в свою очередь, способен выступать фактором, отягощающим их течение.

Установлено, что в постконтактном периоде происходит достоверное увеличение IL-1β через 30, 60 и 120 дней после окончания воздействия по отношению к группе сравнения. В то же время, концентрация TNF-α после прекращения контакта с шумом оставалась низкой спустя 30, 60 и 120 дней относительно группы сравнения. Значения показателя противовоспалительного IL-10 не повышались как на начальных, так и на последних этапах наблюдения в постконтактном периоде (табл. 5).

Анализ изменений цитокинового профиля после воздействия шума позволил выявить сохранение нарушений в балансе цитокинов в постконтактном периоде. Результаты свидетельствуют о значительном нарушении цитокиновой регуляции в формировании иммунного ответа организма в постконтактный период после воздействия шума.

Таким образом, нарушения в организме лабораторных животных, вызванные воздействием шума в постконтактном периоде характеризуются по результатам ЭНМГ увеличением длительности и латентного периода М-ответа в постконтактном периоде (30, 60, 120 дней); удлинением латентного периода коркового компонента ССВП, сохраняющегося по 30-, 60- и 120-дневный период восстановления. Нарушения в виде снижения амплитуды и нарастания латентности СВП, а также перераспределение ритмов со сменой медленноволновой активности на доминирование быстроволнового диапазона у белых крыс в динамике постконтактного периода воздействия шума, свидетельствуют о длительно протекающих стойких дестабилизирующих процессах в головном мозге животных, подверженных воздействию шума. Изменения поведенческой активности у белых крыс опытной группы в виде снижения количества показателей исследовательского поведения: «локомоция» и «норка», а также увеличения паттернов поведения, характеризующих негативно-эмоциональное поведение животных: «движение на месте», «стойки», «сидит», подтверждают нарушение целостности структуры поведения животных и сохраняются вплоть до 120-дневного постконтактного периода воздействия шума. Повышение содержания IL-1β и снижение уровня TNF-α в сыворотке крови белых крыс и сохранение данных изменений в динамике свидетельствует о стойкости сформировавшихся повреждений в иммунной системе животных.

Таким образом, предлагаемый способ моделирования отдаленных последствий шумового воздействия позволяет получить у животных стойкие изменения в нервной и иммунной системах с целью проведения исследований по изучению патологических состояний животных и человека, а также разработки технологий лечения и профилактики шумового воздействия.

Литература

1. Абдулкина Н.Г., Зайцев К.В., Жукова О.Б., Гостюхина А.А., Воробьев B.А., Зайцев А.А. Ориентировочно-исследовательское поведение у крыс при вибрационно-шумовом воздействии. Медицина и образование в Сибири. - №6. - 2015.

2. Андреева-Галанина Е.Ц., Алексеев С.В., А.В. Кадыскин, Суворов Г.А. Шум и шумовая болезнь / Монография, под ред. Е.Ц. Андреевой-Галаниной. - Ленинград: «Медицина», 1972. - 302 с.

3. Власов В.Н., Самыкина Л.Н., Шумилина А.В. и др. Постановка экспериментальных исследований по оценке сочетанного действия химических веществ, общей вибрации и шума на сердечно-сосудистую систему / Пособие для врачей. - Самара-Тольятти, 2006. - 32 с.

4. Кашаева Л.Н., Карзакова Л.М., Саперова В.Н. [и др.] Изучение цитокинового статуса при церебральном инсульте // Иммунология. - 2005. - №3. - C. 161-164.

5. Кетлинский С.А., Симбирцев А.С. Цитокины. СПб.: ООО «Издательство Фолиант», 2008. - 552 с.

6. Панков В.А., Катаманова Е.В., Кулешова М.В., Титов Е.А., Картапольцева Н.В., Лизарев А.В., Якимова Н.Л. Динамика формирования изменений в центральной нервной системе при воздействии шума в эксперименте / Международный журнал прикладных и фундаментальных исследований. 2014. №11-3. С. 464-468.

7. Титов Е.А., Новиков М.А., Панков В.А., Рукавишников B.C. Альтерация ткани головного мозга белых крыс при воздействии шума в динамике эксперимента / В сборнике: Инновационные научные исследования: теория, методология, практика сборник статей победителей III международной научно-практической конференции. 2016. - С. 231-233.

8. Черток А.Г., Беспалова Е.В., Немков Ю.К. Влияние шумовибрационного воздействия на микроциркуляторное русло матки в эксперименте // Тихоокеанский медицинский журнал. - 2006. - №3. - С. 70-72.

9. Унанян Л.С, Соцкий О.П., Хачатрян Л.Г., Ширинян Э.А., Мелконян М.М. Окислительная модификация белков сыворотки крови белых крыс под влиянием шума и b2-адреноблокаторов. Биологический журнал Армении. - 2010. - 1(62). - С. 79-83.

10. Sivalingam S.P., Thumboo J., Vasoo S., Thio S.T., Tse C, Fong K.Y. In vivo Pro- and Antiinflammatory Cytokines in Normal and Patients with Rheumatoid Arthritis // Ann. Acad. Med. Singapore. - 2007. - Vol. 36, N 2. - P. 96-94.

Примечание: * - различия статистически значимы по сравнению с контрольной группой белых крыс при р<0,05, количество животных в каждой группе равно 8.

Примечание: * - различия статистически значимы по сравнению с контрольной группой белых крыс при р<0,05, количество животных в каждой группе равно 8.

Примечание: * - различия статистически значимы по сравнению с контрольной группой белых крыс при р<0,05; ^ - различия статистически значимы между показателями опытной группы и группы сравнения при р<0,05, количество животных в каждой группе равно 24.

Примечание: * - по сравнению с группой сравнения при р<0,05; • - между сроком 30 и 60 дней при р<0,05; ♦ - между сроком 60 и 120 дней при р<0,05; количество животных в каждой группе равно 8.

Примечание: * - по сравнению с группой сравнения при р<0,05; • - между сроком 30 и 60 дней при р<0,05; ♦ - между сроком 60 и 120 дней при р<0,05; А - между 30 и 120 дней различия достоверны при р<0,05; количество животных в каждой группе равно 8.

Похожие патенты RU2655545C1

название год авторы номер документа
Способ моделирования отдаленных последствий воздействия вибрации на лабораторных животных 2016
  • Панков Владимир Анатольевич
  • Кулешова Марина Владимировна
  • Катаманова Елена Владимировна
  • Русанова Дина Владимировна
  • Бодиенкова Галина Михайловна
  • Курчевенко Светлана Ивановна
  • Якимова Наталья Леонидовна
  • Лизарев Александр Викторович
  • Рукавишников Виктор Степанович
RU2626719C1
СПОСОБ ДИАГНОСТИКИ ПОРАЖЕНИЯ ПЕРИФЕРИЧЕСКИХ НЕРВОВ У ЛАБОРАТОРНЫХ ЖИВОТНЫХ В РАННЕМ ПОСТКОНТАКТНОМ ПЕРИОДЕ ВОЗДЕЙСТВИЯ СУЛЕМЫ 2012
  • Русанова Дина Владимировна
  • Соседова Лариса Михайловна
  • Якимова Наталья Леонидовна
RU2494671C1
СПОСОБ МОДЕЛИРОВАНИЯ ОТДАЛЕННОЙ ТОКСИЧЕСКОЙ ЭНЦЕФАЛОПАТИИ 2007
  • Соседова Лариса Михайловна
  • Якимова Наталья Леонидовна
  • Хамуев Геннадий Дмитриевич
  • Титов Евгений Алексеевич
  • Рукавишников Виктор Степанович
RU2341828C1
СПОСОБ ДИАГНОСТИКИ ОТДАЛЕННОЙ ТОКСИЧЕСКОЙ ЭНЦЕФАЛОПАТИИ У ЭКСПЕРИМЕНТАЛЬНЫХ ЖИВОТНЫХ 2007
  • Рукавишников Виктор Степанович
  • Соседова Лариса Михайловна
  • Якимова Наталья Леонидовна
RU2383060C2
БИСАМИДНОЕ ПРОИЗВОДНОЕ ДИКАРБОНОВОЙ КИСЛОТЫ В КАЧЕСТВЕ СРЕДСТВА, СТИМУЛИРУЮЩЕГО РЕГЕНЕРАЦИЮ ТКАНЕЙ И ВОССТАНОВЛЕНИЕ СНИЖЕННЫХ ФУНКЦИЙ ТКАНЕЙ 2015
  • Небольсин Владимир Евгеньевич
  • Рыдловская Анастасия Владимировна
  • Дыгай Александр Михайлович
  • Боровская Татьяна Геннадьевна
RU2647438C2
СПОСОБ КОРРЕКЦИИ АГРЕССИВНОГО ПОВЕДЕНИЯ, ВЫЗВАННОГО ХРОНИЧЕСКИМ УМЕРЕННЫМ СТРЕССОМ 2019
  • Тюренков Иван Николаевич
  • Багметова Виктория Владимировна
  • Васильева Ольга Сергеевна
  • Макаренко Сергей Валентинович
  • Остроглядов Евгений Сергеевич
RU2714934C1
СПОСОБ МОДЕЛИРОВАНИЯ ГИПОКСИЧЕСКОЙ ЭНЦЕФАЛОПАТИИ В ПРЕНАТАЛЬНЫЙ ПЕРИОД У МЕЛКИХ ЛАБОРАТОРНЫХ ЖИВОТНЫХ 2012
  • Соседова Лариса Михайловна
  • Вокина Вера Александровна
  • Рукавишников Виктор Степанович
RU2497202C1
СПОСОБ КОРРЕКЦИИ ПРОЦЕССОВ ЛИПОПЕРОКСИДАЦИИ ПРИ АКУСТИЧЕСКОЙ НАГРУЗКЕ В ЭКСПЕРИМЕНТЕ 2023
  • Симонова Наталья Владимировна
  • Штарберг Михаил Анатольевич
  • Панфилов Степан Владимирович
  • Затворницкий Виталий Алексеевич
  • Архипова Мария Игоревна
  • Шарапова Марина Олеговна
  • Лашин Антон Павлович
RU2806662C1
Средство, обладающее детоксикационной активностью при алкогольной интоксикации 2021
  • Шушпанова Тамара Владимировна
  • Новожеева Татьяна Петровна
  • Бохан Николай Александрович
  • Новицкая Лилия Николаевна
  • Удут Владимир Васильевич
  • Смагина Мария Ивановна
  • Матвеенко Анна Викторовна
  • Мелешко Марина Владимировна
  • Коломиец Наталья Эдуардовна
RU2787997C1
ГЕННО-ИНЖЕНЕРНАЯ КОНСТРУКЦИЯ ДЛЯ СТИМУЛЯЦИИ ПОСТТРАВМАТИЧЕСКОЙ РЕГЕНЕРАЦИИ ПЕРИФЕРИЧЕСКИХ НЕРВОВ 2019
  • Стамбольский Дмитрий Викторович
  • Карагяур Максим Николаевич
  • Семина Екатерина Владимировна
  • Балабаньян Вадим Юрьевич
  • Ростовцева Александра Ивановна
  • Калинина Наталья Игоревна
  • Акопян Жанна Алексеевна
  • Ткачук Всеволод Арсеньевич
RU2719013C1

Реферат патента 2018 года Способ моделирования нарушений в организме лабораторных животных, вызванных воздействием шума в постконтактном периоде

Изобретение относится к экспериментальной медицине и касается моделирования отдаленных последствий шумового воздействия. Для этого животных подвергают воздействию широкополосного шума интенсивностью 100 дБА ежедневно в течение 4 часов, 5 раз в неделю на протяжении 30 дней. Затем для дальнейших исследований используют животных в период с 30 по 120 день после прекращения воздействия шума. Способ позволяет получить стойкие изменения в нервной и иммунной системах в постконтактный период, что может быть использовано при разработке технологий лечения и профилактики шумового воздействия. 5 табл.

Формула изобретения RU 2 655 545 C1

Способ моделирования отдаленных последствий воздействия шума на лабораторных животных, включающий многократное и систематическое воздействие шума на лабораторных животных, отличающийся тем, что самцов половозрелых белых беспородных крыс подвергают воздействию широкополосного шума интенсивностью 100 дБА по 4 часа ежедневно 5 дней в неделю в течение 30 дней, и для дальнейших исследований используют животных в период с 30 по 120 день после прекращения контакта с шумом.

Документы, цитированные в отчете о поиске Патент 2018 года RU2655545C1

ПАНКОВ В.А
и др
Динамика формирования изменений в центральной нервной системе при воздействии шума в эксперименте
Международный журнал прикладных и фундаментальных исследований
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
Походная разборная печь для варки пищи и печения хлеба 1920
  • Богач Б.И.
SU11A1
С
Телефонная трансляция 1922
  • Коваленков В.И.
SU464A1
СПОСОБ МОДЕЛИРОВАНИЯ ОТДАЛЕННОЙ ТОКСИЧЕСКОЙ ЭНЦЕФАЛОПАТИИ 2007
  • Соседова Лариса Михайловна
  • Якимова Наталья Леонидовна
  • Хамуев Геннадий Дмитриевич
  • Титов Евгений Алексеевич
  • Рукавишников Виктор Степанович
RU2341828C1
СПОСОБ МОДЕЛИРОВАНИЯ ДЕЙСТВИЯ РАЗЛИЧНЫХ КОНЦЕНТРАЦИЙ ОЗОНО-КИСЛОРОДНОЙ СМЕСИ, ВВОДИМОЙ В БРЮШНУЮ ПОЛОСТЬ, В ЭКСПЕРИМЕНТЕ 2011
  • Малков Алексей Борисович
  • Винник Юрий Семёнович
  • Зыкова Лариса Дмитриевна
  • Сергеева Екатерина Юрьевна
  • Теплякова Ольга Валерьевна
  • Шестакова Людмила Анатольевна
RU2456676C1
CN 103156696 A, 19.06.2013
PIERSON MG Ontogenetic features of audiogenic seizure susceptibility induced in immature rats by noise
Epilepsia
Циркуль-угломер 1920
  • Казаков П.И.
SU1991A1

RU 2 655 545 C1

Авторы

Панков Владимир Анатольевич

Якимова Наталья Леонидовна

Кулешова Марина Владимировна

Катаманова Елена Владимировна

Русанова Дина Владимировна

Бодиенкова Галина Михайловна

Курчевенко Светлана Ивановна

Лизарев Александр Викторович

Рукавишников Виктор Степанович

Даты

2018-05-28Публикация

2017-04-24Подача