Способ ультразвукового неразрушающего контроля целостности резервуаров и аппаратура для его осуществления Российский патент 2018 года по МПК G01N29/04 

Описание патента на изобретение RU2655985C1

Изобретения относятся к области неразрушающего контроля целостности резервуаров нефти и других изделий методом направленных акустических волн.

Известен способ аналогичного назначения, заключающийся в том что в днище резервуара генерируют ультразвуковую волну Лэмба и принимают прошедшие через дефект и рассеянные на дефекте волны антенной решеткой. После обработки принятых сигналов определяют размеры и координаты дефекта в днище резервуара /CN 202305480, кл. G01N 29/04, G01N 29/07, 2012/.

Недостатком аналога способа является ограниченность его применения исследованиями только днища резервуара.

Известен способ аналогичного назначения, заключающийся в зондировании днища резервуара направленными ультразвуковыми волнами и приеме ультразвуковых волн, провзаимодействовавших с дефектами резервуара, по которым судят о наличии, форме и расположении дефекта в резервуаре /JPS 5975141, кл. G01N 29/38, G01N 29/44, 1984/.

Недостатком второго аналога является также ограниченность его применения контролем днища резервуара.

Известен способ аналогичного назначения, принятый за прототип, заключающийся в генерации в материале резервуара с помощью ультразвукового генератора продольных и поперечных направленных зондирующих волн, приеме отраженных от дефектов и прошедших дефекты ультразвуковых волн антенными решетками, обработке полученных на выходах антенных решеток сигналов, в результате которой определяют размеры и координаты расположения дефекта в днище резервуара /CN 101666783, кл. G01N 29/14, 2010/.

Недостатком прототипа является ограниченность его применения контролем днища резервуара.

Известна аппаратура для неразрушающего контроля целостности резервуаров, содержащая приемо-передающую акустическую систему, выполненную в виде антенной решетки пьезоэлектрических преобразователей, прикрепляемых к контролируемому участку резервуара до обеспечения сухого акустического контакта пьезоэлектрических преобразователей с поверхностью резервуара и программно-аппаратный комплекс для коммутации и интерпретации данных /CN 202305480, кл. G01N 29/04, G01N 29/07, 2012; JPS 5975141, кл. G01N 29/38, G01N 29/44 1984; CN 101666783, кл. G01N 29/14, 2010/.

Техническое решение в последнем патенте, принято за прототип аппаратуры.

Недостатком аналогов и прототипа в части аппаратуры являются слабый акустический контакт пьезоэлектрических преобразователей с поверхностью резервуара, невозможность неразрушающего контроля одновременно днища и боковой стенки резервуара и отсутствие устройства позиционирования, позволяющего изменять зону контроля.

Техническим результатом, получаемым от внедрения изобретений, в части способа и аппаратуры, является расширение эксплуатационных возможностей способа и аппаратуры за счет получения возможности одновременного или последовательного контроля днища и боковой стенки резервуара.

Кроме того в части аппаратуры техническим результатом от внедрения изобретений является повышение качества акустического сухого контакта пьезоэлектрических преобразователей с контролируемой поверхностью резервуара, а также возможность изменения контролируемой зоны резервуара с помощью устройства позиционирования при сохранении качества акустического сухого контакта пьезоэлектрических преобразователей с поверхностью резервуара.

Данный технический результат достигается за счет того, что в способе ультразвукового неразрушающего контроля целостности резервуаров, заключающемся в генерации в материале резервуара с помощью ультразвукового генератора продольных и поперечных направленных зондирующих волн, приеме отраженных от дефектов резервуара и прошедших дефекты ультразвуковых волн антенными решетками, обработке полученных на выходах антенных решеток сигналов, в результате которой определяют размеры и координаты расположения дефекта в днище резервуара, ультразвуковые волны генерируют одновременно или последовательно в днище и боковой стенке резервуара, примыкающей к днищу, причем при одновременной генерации ультразвуковых волн в днище и боковой стенке резервуара генерируют ультразвуковые волны с различными направлениями вектора колебательной скорости частиц, а при обработке полученных на выходах антенных решеток сигналов дополнительно определяют размеры и координаты расположения дефекта в боковой стенке резервуара, примыкающей к его днищу.

Технический результат также достигается за счет того, что аппаратура для ультразвукового неразрушающего контроля целостности резервуаров, содержащая приемо-передающую акустическую систему, выполненную в виде антенных решеток пьезоэлектрических преобразователей, прикрепляемых к контролируемому участку резервуара до обеспечения сухого акустического контакта пьезоэлектрических преобразователей с поверхностью резервуара, и программно-аппаратный комплекс для коммутации и интерпретации данных, дополнительно содержит устройство позиционирования, выполненное в виде гибкой подложки с пазами, а антенные решетки выполнены в виде съемных модулей пьезоэлектрических приемо-передающих преобразователей, устанавливаемых в пазы устройства позиционирования, при этом прижимное устройство выполнено в виде магнитопроводов, установленных в съемных модулях антенных решеток, а пьезоэлектрические приемо-передающие преобразователи - с возможностью переключения направления вектора колебательных смещений генерируемых и принимаемых ультразвуковых волн.

Пьезоэлектрические преобразователи в съемных модулях антенных решеток установлены в шахматном порядке.

Магнитопроводы установлены в съемных модулях антенных решеток между преобразователями в шахматном порядке.

Вокруг каждого пьезоэлектрического преобразователя антенных решеток установлены защитные манжеты.

Для усиления сухого акустического контакта пьезоэлектрических преобразователей с поверхностью резервуара, каждый из пьезоэлектрических преобразователей антенных решеток выполнен подпружиненным.

Гибкая подложка с продольными пазами выполнена из винипласта, закрепляемого на резервуаре с помощью магнитов, заделанных на подложке заподлицо с внутренней поверхностью.

Изобретения поясняются чертежами.

На фиг. 1 представлена схема аппаратуры для реализации способа; на фиг. 2, 3, 4 - схемы выполнения отдельных узлов аппаратуры; на фиг. 5 - упрощенная схема реализации способа ультразвукового неразрушающего контроля целостности резервуаров.

Аппаратура для обнаружения дефектов в резервуарах содержит приемопередающую акустическую систему, выполненную в виде пьезоэлектрических преобразователей, объединенных в съемные модули 1 антенных решеток (фиг. 1, 2, 3), прикрепляемых к стыку боковой стенки с днищем резервуара с помощью прижимного устройства в виде магнитопроводов 2 (фиг. 2) для обеспечения сухого акустического контакта пьезоэлектрических преобразователей с наружной поверхностью резервуара.

Имеется также устройство позиционирования модулей 1 антенных решеток, выполненные в виде пояса 3 с пазами 4 (фиг. 1).

Антенные решетки, выполненные в виде съемных модулей 1 (фиг. 1, 2, 3), устанавливаемых в пазы 4 пояса 3, прижимаются к поверхности резервуара с помощью магнитопроводов 2.

Для этой же цели (обеспечение необходимого усилия прижима) внутри корпуса модуля 1 каждый пьезоэлектрический приемо-передающий преобразователь 5 (фиг. 2, 3) оснащен пружинным механизмом (на чертежах не показан).

Для предотвращения попадания влаги, пыли или грязи внутрь корпуса модуля 1 вокруг каждого преобразователя 5 предусмотрена защитная манжета (на чертежах не показана).

Пьезоэлектрические преобразователи в каждом съемном модуле 1 (фиг. 2, 3) установлены в шахматном порядке. Магнитопроводы 2 в съемных модулях 1 между пьезоэлектрическими преобразователями 5 также установлены в шахматном порядке.

Это позволяет усилить технический эффект за счет увеличения прижимающего усилия каждого пьезоэлектрического преобразователя в модуле к поверхности резервуара.

Пояс 3 с пазами 4 может быть выполнен из винипласта, закрепляемого на резервуаре с помощью магнитов (на чертежах не приведены).

Прижимным устройством для обеспечения акустического контакта пьезоэлектрических приемо-передающих преобразователей 5 с поверхностью резервуара служат магнитопроводы 2 и непоказанный на чертежах пружинный механизм внутри корпуса модуля 1.

Аппаратура также содержит модуль 6 коммутации для обеспечения совместно работы модулей 1 пьезоэлектрических преобразователей (фиг. 1), который подключается к управляемому компьютеру. Совместно с компьютером модуль 6 по коммутации образуют программно-аппаратный комплекс для коммутации и интерпретации данных.

Модуль 6 коммутации соединен с пьезоэлектрическими преобразователями 5 модулей 1 проводами 7. Каждый из преобразователей 5 контактирует с протекторами 8.

Пьезоэлектрические приемо-передающие преобразователи 5 выполнены с возможностью переключения направления вектора колебательных смещений ультразвуковых волн.

Такой преобразователь, например, представлен в патенте /RU 2082163. G01N 29/24, 1997/.

Корпус 9, заполненный жидким демпфером 10, имеет крышку 11 (фиг. 4).

В корпусе 9 установлено два одинаковых пьезоэлектрических преобразователя 5. Корпус 9 также снабжен протектором 8, имеющим форму конуса или пирамиды для контактирования с наружной поверхностью резервуара.

Выводы пьезоэлектрических преобразователей 5 соединены с модулем 6 коммутации.

Модуль 6 коммутации помимо обеспечения совместной работы модулей 1пьезоэлектрических преобразователей (фиг. 1) позволяет соединить преобразователи 5 синфазно или противофазно. В первом случае излучаются продольные волны, а во втором поперечные.

На фиг. 4 горизонтальной и вертикальной стрелками представлены колебательные движения протектора 8 соответственно в направлениях x, y, а точкой - в направлении z. При таких колебаниях в различных направлениях будут генерироваться продольные и одна из поляризаций поперечных ультразвуковых волн.

С помощью описанной аппаратуры способ неразрушающего контроля целостности резервуара 12 (фиг. 5) реализуется следующим образом.

На стыке днища 13 и боковой стенки 14 резервуара 12 устанавливается приемо-передающая акустическая система 15 аппаратуры.

С помощью программно-аппаратного комплекса аппаратуры в днище 13 и боковые стенки 14 резервуара 12 акустическая система 15 направляет соответственно продольные и поперечные ультразвуковые волны, например, в днище - поперечные, а в боковые стенки - продольные.

Продольные волны 17 в боковой стенке реализуют эхо-способ. Отражаясь от дефекта 16, часть волны возвращается к акустической системе 15, неся информацию о координатах и размерах дефекта 16.

Поперечные волны 18 в днище 13 реализуют одновременно акустический, теневой способ и эхо-способ, что позволяет достоверно определить наличие и параметры дефекта 19 в днище 13 резервуара 12.

Аппаратура позволяет одновременно или последовательно исследовать как днище, так и боковые стенки резервуара и проводить контроль резервуара с различных мест установки аппаратуры при качественном акустическом сухом контакте пьезоэлектрических преобразователей с контролируемой поверхностью резервуара.

Этим достигается поставленный технический результат в части способа и аппаратуры как объектов изобретений.

Похожие патенты RU2655985C1

название год авторы номер документа
Способ ультразвукового эхо-импульсного неразрушающего контроля трубопроводов и аппаратура для его осуществления 2017
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
  • Скрынник Татьяна Владимировна
  • Горяев Юрий Анатольевич
  • Коколев Сергей Анатольевич
  • Середёнок Виктор Аркадьевич
RU2655983C1
Аппаратура для обнаружения дефектов трубопроводов 2017
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
  • Скрынник Татьяна Владимировна
  • Горяев Юрий Анатольевич
  • Коколев Сергей Анатольевич
  • Середёнок Виктор Аркадьевич
RU2655982C1
Акустическая антенна и способ ее работы 2018
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
  • Скрынник Татьяна Владимировна
  • Горяев Юрий Анатольевич
  • Седелев Юрий Анатолиевич
  • Самокрутов Андрей Анатольевич
  • Алехин Сергей Геннадьевич
  • Шевалдыкин Виктор Гаврилович
RU2733704C2
Аппаратура для контроля защитного изоляционного покрытия технологических и магистральных трубопроводов 2017
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
  • Скрынник Татьяна Владимировна
  • Горяев Юрий Анатольевич
RU2655991C1
Аппаратура для контроля технического состояния перехода магистрального трубопровода и способ ее работы 2018
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
  • Скрынник Татьяна Владимировна
  • Горяев Юрий Анатольевич
  • Седелев Юрий Анатолиевич
  • Самокрутов Андрей Анатольевич
  • Алехин Сергей Геннадьевич
  • Шевалдыкин Виктор Гаврилович
RU2731503C2
Устройство автоматизированного ультразвукового контроля сварных соединений стенки резервуаров 2019
  • Филиппов Олег Иванович
  • Братусь Артем Алексеевич
  • Ганихин Евгений Александрович
  • Колесников Олег Игоревич
  • Гейт Алексей Викторович
  • Голосов Петр Сергеевич
  • Алешин Николай Павлович
  • Григорьев Михаил Владимирович
  • Козлов Денис Михайлович
  • Крысько Николай Владимирович
  • Бритвин Владимир Александрович
  • Макаренков Константин Николаевич
RU2731165C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ТРУБОПРОВОДА И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Самокрутов Андрей Анатольевич
  • Седелев Юрий Анатолиевич
  • Ворончихин Станислав Юрьевич
  • Шевалдыкин Виктор Гавриилович
  • Алёхин Сергей Геннадиевич
  • Заец Максим Васильевич
  • Кадров Андрей Александрович
RU2629896C1
КОМПЛЕКС ДЛЯ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ИЗДЕЛИЙ И ОПТИЧЕСКОЕ ИЗМЕРИТЕЛЬНОЕ УСТРОЙСТВО КОМПЛЕКСА 2012
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гавриилович
  • Станкевич Александр Михайлович
  • Алёхин Сергей Геннадиевич
  • Авдеев Андрей Андреевич
  • Ананьев Игорь Валерьевич
  • Бишко Александр Владимирович
  • Дурейко Андрей Владимирович
  • Елькин Виталий Михайлович
  • Жуков Андрей Владимирович
  • Заец Максим Васильевич
  • Илюхин Юрий Владимирович
  • Манеев Максим Владимирович
  • Соколов Никита Юрьевич
  • Суворов Вячеслав Андреевич
  • Черкасов Владимир Константинович
RU2515957C1
СПОСОБ АКУСТИЧЕСКОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ПРОТЯЖЕННЫХ КОНСТРУКЦИЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2023
  • Рыбин Игорь Александрович
RU2825120C1
Способ контроля качества акустического контакта между ультразвуковым преобразователем и керамическим изделием при проведении ультразвуковой дефектоскопии 2022
  • Минин Сергей Иванович
  • Терехин Александр Васильевич
  • Русин Михаил Юрьевич
RU2791670C1

Иллюстрации к изобретению RU 2 655 985 C1

Реферат патента 2018 года Способ ультразвукового неразрушающего контроля целостности резервуаров и аппаратура для его осуществления

Использование: для неразрушающего контроля целостности резервуаров нефти и других изделий методом направленных акустических волн. Сущность изобретения заключается в том, что одновременно или последовательно в днище и боковые стенки резервуара направляют поперечные и продольные ультразвуковые волны, которые несут информацию о наличии дефектов в исследуемом изделии. Особенностью аппаратуры для реализации способа является возможность переключать направление вектора колебательных смещений генерируемых ультразвуковых волн и возможность перемещения акустической системы по поверхности исследуемого резервуара без изменения качества сухого акустического контакта пьезопреобразователей с поверхностью резервуара. Технический результат: расширение эксплуатационных возможностей способа и аппаратуры за счет получения возможности одновременного или последовательного контроля днища и боковой стенки резервуара, повышение качества акустического сухого контакта пьезоэлектрических преобразователей с контролируемой поверхностью резервуара, а также возможность изменения контролируемой зоны резервуара с помощью устройства позиционирования при сохранении качества акустического сухого контакта пьезоэлектрических преобразователей с поверхностью резервуара. 2 н. и 5 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 655 985 C1

1. Способ ультразвукового неразрушающего контроля целостности резервуаров, заключающийся в генерации в материале резервуара с помощью ультразвукового генератора продольных и поперечных направленных зондирующих волн, приеме отраженных от дефектов резервуара и прошедших дефекты ультразвуковых волн антенными решетками, обработке полученных на выходах антенных решеток сигналов, в результате которой определяют размеры и координаты расположения дефекта в днище резервуара, отличающийся тем, что ультразвуковые волны генерируют одновременно или последовательно в днище и боковой стенке резервуара, примыкающей к днищу, причем при одновременной генерации ультразвуковых волн в днище и боковой стенке резервуара генерируют ультразвуковые волны с различными направлениями вектора колебательной скорости частиц, а при обработке полученных на выходах антенных решеток сигналов дополнительно определяют размеры и координаты расположения дефекта в боковой стенке резервуара, примыкающей к его днищу.

2. Аппаратура для ультразвукового неразрушающего контроля целостности резервуаров, содержащая приемо-передающую акустическую систему, выполненную в виде антенных решеток пьезоэлектрических преобразователей, прикрепляемых к контролируемому участку резервуара до обеспечения сухого акустического контакта пьезоэлектрических преобразователей с поверхностью резервуара, и программно-аппаратный комплекс для коммутации и интерпретации данных, отличающаяся тем, что дополнительно введено устройство позиционирования, выполненное в виде гибкой подложки с пазами, а антенные решетки выполнены в виде съемных модулей пьезоэлектрических приемо-передающих преобразователей, устанавливаемых в пазы устройства позиционирования, при этом прижимное устройство выполнено в виде магнитопроводов, установленных в съемных модулях антенных решеток, а пьезоэлектрические приемо-передающие преобразователи - с возможностью переключения направления вектора колебательных смещений генерируемых и принимаемых ультразвуковых волн.

3. Аппаратура по п. 2, отличающаяся тем, что пьезоэлектрические преобразователи в съемных модулях антенных решеток установлены в шахматном порядке.

4. Аппаратура по п. 3, отличающаяся тем, что магнитопроводы установлены в съемных модулях антенных решеток между преобразователями в шахматном порядке.

5. Аппаратура по п. 2, отличающаяся тем, что вокруг каждого пьезоэлектрического преобразователя антенных решеток установлены защитные манжеты.

6. Аппаратура по п. 2, отличающаяся тем, что каждый из пьезоэлектрических преобразователей антенных решеток выполнен подпружиненным.

7. Аппаратура по п. 2, отличающаяся тем, что гибкая подложка с продольными пазами выполнена из винипласта, закрепляемого на резервуаре с помощью магнитов, заделанных на подложке заподлицо с внутренней поверхностью.

Документы, цитированные в отчете о поиске Патент 2018 года RU2655985C1

CN 101666783A, 10.03.2010
0
SU158686A1
0
SU158684A1
Приспособление для предохранения горючей жидкости в кухнях типа "примус" от перегревания 1923
  • Кенигсбергер Р.К.
SU24563A1
Акустический блок для ультразвукового контроля 1991
  • Бархатов Борис Владимирович
  • Пермикин Владимир Сергеевич
  • Перевалов Сергей Петрович
  • Кирсанов Юрий Яковлевич
SU1810819A1
US 20090139337A1, 04.06.2009.

RU 2 655 985 C1

Авторы

Егурцов Сергей Алексеевич

Иванов Юрий Владимирович

Скрынник Татьяна Владимировна

Горяев Юрий Анатольевич

Даты

2018-05-30Публикация

2017-07-13Подача