Изобретение относится к эксплуатации магистральных трубопроводов, в частности к оценке остаточного ресурса дефектных сварных стыков, выявленных при проведении внутритрубной дефектоскопии.
В настоящее время основным средством выявления дефектных сварных стыков на магистральных газопроводах (МГ) является внутритрубная дефектоскопия (ВТД).
Известно, что главный разрушающий фактор на линейной части МГ - это непроектные напряжения (первичный фактор), а дефектный сварной стык является концентратором напряжений, приближая время разрушения.
Для оценки напряженно-деформированного состояния (НДС) при определении остаточного ресурса в ОАО «Газпром» рекомендуется использовать нормативный документ [Р Газпром 2-2.3-437-2010 «Методика расчета остаточного ресурса сварных соединений линейной части газопроводов»] (аналог), согласно которому при расчете учитывают давление газа, температуру эксплуатации и изгибающий момент в случае отклонения оси трубы от прямолинейной траектории. Результаты экспериментальных измерений напряжений в процессе диагностического обследования используют для уточнения и проверки расчетного НДС.
Оценку НДС и расчет ресурса выполняют с помощью программного комплекса «Ресурс». В качестве исходных данных используют данные, приведенные в форме таблицы 1.
Из таблицы видно, что оценка напряженно-деформированного состояния - это комплексная диагностическая работа, требующая привлечения специализированной организации и создания условий для проведения комплексных измерений. Следующий этап - использование полученных данных в расчетах программного комплекса «Ресурс» - может быть использован исключительно ее разработчиком.
При условии соблюдения рекомендаций нормативного документа [Р Газпром 2-2.3-437-2010 «Методика расчета остаточного ресурса сварных соединений линейной части газопроводов»] необходимо привлечь на договорной основе специализированные организации по измерению НДС в трассовых условиях, геодезическому позиционированию и расчету НДС (комплексное диагностическое обследование); специализированную организацию по расчету ресурса, а это может быть только монополист - разработчик программного комплекса «Ресурс», дождаться его заключения по результатам комплексного обследования. Это означает, что до окончательного решения может пройти несколько месяцев (лет). Кроме того, в управлении, эксплуатирующем МГ, не всегда могут быть свободные средства для заключения договоров на комплексное диагностическое обследование. Все вышеизложенное относится к недостаткам данного способа.
Существенным недостатком данного способа оценки напряженно-деформированного состояния также является необходимость выполнения большого объема земляных работ для откопки трубопровода и обеспечения доступа при измерении напряжений и геометрических параметров изогнутого участка в соответствии с перечнем таблицы 1, так как элементы сегмента круга (база определения прогиба и прогибы в вертикальной и горизонтальной плоскости) не являются выходными данными результатов внутритрубной диагностики и не все изогнутые участки могут быть аппроксимированы дутой окружности.
При оценке работоспособности и отбраковке дефектных кольцевых сварных стыков трубопроводов в соответствии с [СТО Газпром 2-2.4-715-2013. Методика оценки работоспособности кольцевых сварных соединений магистральных газопроводов. - ОАО «Газпром». - М.: 2014. - 226 с] (прототип) номинальные продольные напряжения в стенке трубы от совместного действия упругого изгиба, рабочего давления и температурного перепада определяются расчетным методом по формуле [СП 36.13330.2012 Свод правил. Магистральные трубопроводы (Актуализированная редакция СНиП 2.05.06-85*)]:
где - кольцевые напряжения от нормативного рабочего давления, МПа;
μ - коэффициент Пуассона для металла трубы, МПа;
Ε - модуль Юнга для металла трубы, МПа;
Dн - наружный диаметр трубопровода, м;
Dвн=Dн-2t - внутренний диаметр трубопровода, м;
t - толщина стенки, м;
α - коэффициент линейного температурного расширения металла трубы, 1/град.;
ΔT - расчетный температурный перепад, определяемый в соответствии с требованиями [СП 36.13330.2012 Свод правил. Магистральные трубопроводы (Актуализированная редакция СНиП 2.05.06-85*)] и принимаемый положительным при нагревании, град.;
ρ - радиус упругого изгиба, м.
Знак «+» в формуле (1) соответствует растягивающим напряжениям, знак «-» - сжимающим напряжениям. Таким образом, при положительном расчетном температурном перепаде ΔT, что соответствует нагреванию, второе слагаемое имеет знак «-», что соответствует возникновению на прилегающих участках сжимающих напряжений из-за сопротивления грунта продольному перемещению сечений изогнутого участка. Знак «-» в третьем слагаемом соответствует сжимающим напряжениям на сжатой части сечения упругого изгиба.
Радиус упругого изгиба ρ, входящий в формулу (1), описывается как «минимальный радиус упругого изгиба» без пояснений, а как же эту минимальную величину определять.
В последние годы ООО «Газпром трансгаз Уфа» совместно с НПО «Спецнефтегаз» разработали технологию выявления и первичной оценки потенциально опасных участков путем непрерывной фиксации и занесения в журнал отчета значений кривизны оси трубопровода 1/ρ по ходу следования внутритрубного снаряда, с выделением в журнале участков с непроектными (менее 1000D) радиусами упругого изгиба [Отчет ВТД. Отчет по внутритрубной дефектоскопии газопровода «Уренгой-Новопсков» (участок КС «Алмазная» - КС «Полянская»). - НПО «Спецнефтегаз», г. Екатеринбург, 2013. - 674 с]. Эта технология является вариантом реализации прототипа, пример которого приведен ниже.
В нашем примере в журнале дефектов внутритрубной диагностики МГ «Уренгой-Новопсков» представлены трубы с аномальными сварными стыками, с делением на три категории, в зависимости от степени опасности дефекта. Категории «а» - устранение в кратчайшие сроки, «в» - ремонт в рамках плановых мероприятий - подлежат обязательной идентификации в шурфах. Категория «с» - допустимые без проведения обследования - данные аномалии не должны привести к аварии до следующей инспекции. Категория «с» самая многочисленная, например, в [Отчет ВТД. Отчет по внутритрубной дефектоскопии газопровода «Уренгой-Новопсков» (участок КС «Алмазная» - КС «Полянская»). - НПО «Спецнефтегаз», г. Екатеринбург, 2013. - 674 с], аномальные стыки категорий «а» и «в» в сумме составляют 2+14=16, а стыки категории «с» - 193.
Дефектные сварные стыки, независимо от категории опасности, находящиеся в зоне непроектного (менее 1000D) радиуса упругого изгиба трубопровода, подлежат идентификации в шурфах.
Если дефектная часть аномального стыка в угловых координатах поперечного сечения приходится на зону растяжения сечения с непроектным радиусом упругого изгиба - это должно быть поводом для назначения этого сварного стыка на вырезку или ремонт, так как наличие дефектов ослабляет сечение и снижает несущую способность трубы, испытывающей непроектные напряжения. Если дефектная часть аномального стыка в угловых координатах приходится на зону сжатия сечения с непроектным радиусом упругого изгиба, то требуется оценка величины и знака суммарного продольного напряжения с учетом знака и величины температурного перепада, зависящих от времени замыкания монтажного стыка при строительстве.
Данный метод определения продольных напряжений (прототип) имеет следующие недостатки:
1. Продольные напряжения от упругого изгиба, определяемые по третьему слагаемому уравнения (1), как
могут быть определены по этой формуле только на выпуклых участках рельефа местности при повороте оси трубопровода в вертикальной плоскости выпуклостью вверх [Бородавкин П.П., Березин В.П. Сооружение магистральных трубопроводов. - М.: Недра, 1977. - 407 с].
2. Прототип не поясняет, каким образом определить для эксплуатируемого трубопровода фактические значения радиуса изгиба в каждом конкретном сечении трубопровода для проверки условия упругости деформаций.
3. Прототип не делает различий между случаями вертикального и горизонтального положения плоскости изгиба и между вогнутостью и выпуклостью изогнутой оси при повороте трубопровода в вертикальной плоскости.
При проектировании участков магистральных трубопроводов, прокладываемых путем свободного упругого изгиба по рельефу местности, в соответствии с нормативным документом [СП 86.13330.2012. Свод правил. Магистральные трубопроводы (Актуализированная редакция СНиП III-42-80*)] радиус поворота не должен быть менее нормативной величины, определяемой из условия:
где D - наружный диаметр трубопровода, м.
4. Нормативные документы [Р Газпром 2-2.3-437-2010. Методика расчета остаточного ресурса сварных соединений линейной части газопроводов. - ОАО «Газпром». - М.: 2010. - 24 с] (аналог) и [СТО Газпром 2-2.4-715-2013. Методика оценки работоспособности кольцевых сварных соединений магистральных газопроводов. - ОАО «Газпром». - М.: 2014. -226 с] (прототип) при анализе НДС участков с дефектными сварными стыками все участки, проложенные по радиусам изгиба менее ρ≤1000D, относят к непроектным и обязывают проводить их идентификацию в шурфах, в том числе и те, которые выявлены в результате ВТД внутритрубными инспекционными снарядами [ВРД 39-1.10-001-99. Руководство по анализу результатов внутритрубной инспекции и оценке опасности дефектов. - ОАО «Газпром». - М.: 1999. - 16 с]. О недостатках диагностики и определения положения трубопровода, в том числе и радиусов изгиба, выше уже говорилось.
Практика строительства и эксплуатации трубопроводов показывает, что существует много криволинейных участков трубопроводов, уложенных по радиусу ρ≤1000D, где, тем не менее, деформации металла остаются упругими, и это подтверждается расчетами [ВРД 39-1.10-001-99. Руководство по анализу результатов внутритрубной инспекции и оценке опасности дефектов. - ОАО «Газпром». - М.: 1999. - 16 с.].
5. Методика оценки НДС, использованная в вычислительной программе внутритрубного диагностического комплекса, базируется па нормативных документах [Р Газпром 2-2.3-437-2010. Методика расчета остаточного ресурса сварных соединений линейной части газопроводов. - ОАО «Газпром». - М.: 2010. - 24 с.], [СТО Газпром 2-2.4-715-2013. Методика оценки работоспособности кольцевых сварных соединений магистральных газопроводов. - ОАО «Газпром». - М.: 2014. - 226 с.] и других, более ранних, и использует формулу (3), которая применима только для выпуклых изогнутых участков трубопроводов и дает заниженные значения изгибных напряжений.
6. Методика чисто документально, по характеристикам сварного шва (поперечное смещение кромок), без учета изгиба, отнесла дефекты данного сварного стыка к категории «с», которые идентификации в шурфах не подлежат. В результате образовался опасный дефект - трещина, которая подлежит немедленному удалению (т.е. относится к категории «а»).
Целью изобретения является упрощение оценки напряженно-деформированного состояния стенок магистральных трубопроводов при идентификации дефектных сварных стыков, расположенных на участках упругого изгиба. Указанная цель достигается следующим образом.
Способ оценки напряженно-деформированного состояния изогнутых участков магистрального трубопровода с дефектными сварными стыками включает расчет напряжений в стенке трубы с учетом радиусов изгиба оси трубопровода. Оценка выполняется по данным внутритрубной диагностики, в которых выделяются участки с непроектными радиусами упругого изгиба (менее 1000D, где D - диаметр трубопровода), для которых идентифицируются и выделяются части трубопровода с выпуклыми и вогнутыми поворотами в вертикальной плоскости и участки горизонтальных поворотов. Отдельно для каждого типа изогнутого участка (выпуклый участок, вогнутый участок и участок горизонтального поворота) рассчитываются минимальные радиусы упругого изгиба ρmin по предлагаемым формулам с учетом всех эксплуатационных нагрузок и воздействий. Для участков с радиусами упругого изгиба, лежащими в интервале ρmin≤ρ<1000 D, определяются нормативные кольцевые и суммарные продольные напряжения с учетом изгиба для каждого типа изогнутого участка и интенсивность напряжений [3]. Выполняется проверка на местные пластические деформации от действия нормативных кольцевых и продольных напряжений и проверка интенсивности напряжений.
Участки с фактическими замеренными радиусами, меньшими, чем радиусы упругого изгиба ρmin, для каждого типа изогнутого участка, включая участки вставок холодного гнутья (ρ≤60 м) и отводы, а также участки, не прошедшие проверку по требованиям п. 3, подлежат контролю, идентификации и дефектовке в шурфах в соответствии с нормативными документами.
Согласно формуле (1) при постоянных значениях рабочего давления, рабочего перепада температуры, геометрических характеристик сечения трубопровода и упругих характеристик стали, продольные напряжения будут линейно зависеть от величины радиуса упругого изгиба ρ. Таким образом, если с достаточной точностью измерить радиус упругого изгиба, то для каждого сечения трубопровода можно получить фактические значения продольных напряжений с учетом упругого изгиба в горизонтальной и вертикальной плоскости с учетом вогнутого или выпуклого рельефа местности.
Указанная цель достигается с использованием результатов внутритрубной диагностики, в которых имеется журнал непрерывной записи кривизны оси трубопровода 1/ρ для каждого сечения трубопровода с привязкой по расстоянию в метрах и к каждой пронумерованной трубе, распечаткой графика распределения кривизны по длине с любой заданной точностью, из которого виден знак кривизны, т.е. можно выделить выпуклые и вогнутые участки. С заданной точностью можно определить сечение с максимальной кривизной или кривизной, соответствующей сварному стыку с дефектами и вычислить номинальные кольцевые и продольные напряжения в интересующем сечении, а также интенсивность напряжений, если это потребуется при решении задачи.
В соответствии с законами строительной механики и ограничениями, накладываемыми [СП 36.13330.2012. Свод правил. Магистральные трубопроводы (Актуализированная редакция СНиП 2.05.06-85*)] для протяженных тонкостенных цилиндрических оболочек, продольные напряжения на упруго изогнутом участке подземного трубопровода определяются по формуле:
где μ, , α, Ε, ΔΤ - параметры, описанные в пояснениях к формуле (1);
σu - изгибные напряжения на участках упругого изгиба в горизонтальной или вертикальной плоскостях, а в вертикальной плоскости - на выпуклом или вогнутом участках в соответствии с формулами, изложенными, например, в [Быков Л.И., Мустафин Ф.М., Рафиков С.К. и др. Типовые расчеты при проектировании, строительстве и эксплуатации газонефтепроводов. - СПб, Недра, 2011. - 751 с].
При упругом изгибе в вертикальной плоскости на выпуклом участке изгибные напряжения определяются по формуле:
При упругом изгибе в вертикальной плоскости на вогнутом участке изгибные напряжения определяются по формуле:
На участке поворота упругим изгибом в горизонтальной плоскости изгибные напряжения определяются по формуле:
Рассмотрим примеры определения продольных напряжений на участках упругого изгиба.
Пример 1
Исходные данные:
Рабочее давление ρ=7,5 МПа; наружный диаметр Dн=1420 мм; толщина стенки трубы δ=15,7 мм; предел прочности стали σв=588 МПа; условный предел текучести стали σ0,2=470 МПа; температура стенки трубы на эксплуатируемом участке газопровода tэ=+25°С; расчетная температура замыкания монтажного стыка в холодное время года tзх=-25°С; расчетная температура замыкания монтажного стыка в теплое время года tзт=+35°С; минимальный радиус упругого изгиба при укладке ρ=1000D=1420 м; коэффициент Пуассона μ=0,3; модуль упругости стали Ε=2,1⋅105 МПа; внутренний диаметр Dвн=1,42-2⋅0,0157=1,3886 м.
Для того, чтобы произвести расчеты по формуле (5), необходимо определить расчетные перепады температуры стенки трубы ΔΤ:
- при замыкании монтажного стыка в холодное время года:
ΔТхол=tэ-tзх=+25-(-25)=+50°С;
- при замыкании монтажного стыка в теплое время года:
ΔТтеп=tэ-tзт=+25-(+35)=-10°С;
- при совпадении температуры стенки при эксплуатации и расчетной температуры стенки при замыкании монтажного стыка:
ΔΤ=tэ-tз=+25-(+25)=0°С.
Кольцевые напряжения:
Изгибные напряжения:
- на выпуклом участке: ;
- на вогнутом участке: ;
- на горизонтальном повороте:.
Продольные напряжения от расчетных перепадов температуры:
- при замыкании монтажных стыков в холодное время года (при положительном перепаде температуры):
σΔТхол=-α⋅Е⋅ΔТхол=-1,2⋅10-5⋅2,1⋅105⋅(+50)=-126 МПа - напряжения сжимающие;
- при замыкании монтажных стыков в теплое время года (при отрицательном перепаде температуры):
σΔТтеп=-α⋅Е⋅ΔТтеп=-1,2⋅10-5⋅2,1⋅105⋅(-10)=+25,2 МПа - напряжения растягивающие.
Продольные напряжения от действия внутреннего давления при защемлении грунтом подземного трубопровода:
- напряжения растягивающие.
Суммируя напряжения в соответствии с формулой (5), получаем суммарные продольные (мембранные) напряжения, представленные в таблице 2.
Анализ результатов расчетов показывает, что значения продольных напряжений на участках упругого изгиба на вогнутых участках и участках горизонтального поворота как в растянутой, так и в сжатой зонах сечения трубопровода, значительно превышают напряжения, вычисляемые по формулам, предлагаемым прототипом [СТО Газпром 2-2.4-715-2013. Методика оценки работоспособности кольцевых сварных соединений магистральных газопроводов. - ОАО «Газпром». - М.: 2014. - 226 с]. Максимальными являются продольные напряжения на участках горизонтального поворота.
Анализ таблицы 2 также показывает, что в сжатой части сечения (сжатая образующая) расчетные продольные напряжения практически при любых температурных перепадах (положительных или отрицательных) и при отсутствии перепада между температурой замыкания монтажного стыка и температурой эксплуатации являются сжимающими (<0).
Поэтому в сжатых зонах максимальными будут не кольцевые или продольные напряжения, а интенсивность напряжений, определяемая по формуле:
Пример 2
Расчет интенсивностей напряжений:
а) ΔТхол=+50°С - замыкание монтажного стыка в холодное время года с температурой воздуха tзх=-25°С:
- для вогнутого участка:
- для вогнутого участка:
- для участка горизонтального поворота:
б) ΔТтеп=-10°С - замыкание монтажного стыка в самый жаркий месяц лета при температуре воздуха tзт=+35°С:
- для выпуклого участка (единственный случай из таблицы 2, когда продольные напряжения остаются после изгиба положительными, т.е. растягивающими):
- для вогнутого участка:
- для участка горизонтального поворота:
в) ΔΤ=0°С - замыкание монтажного стыка в теплое время года с максимальной температурой воздуха tэ=+25°С:
- для выпуклого участка:
- для вогнутого участка:
- для участка горизонтального поворота:
Результаты расчетов интенсивности напряжений для сжатых зон сечений участков, изогнутых по радиусу ρ=1000 Дн=1420 м при кольцевых напряжениях =331,672 МПа, представлены в таблице 3.
Интенсивность напряжений в сжатых зонах сечений упруго изогнутых участков значительно превышает кольцевые и продольные напряжения на всех типах изогнутых участков и при всех рассматриваемых температурных перепадах, за исключением выпуклого участка при отрицательном температурном перепаде (σi=322,27 МПа при ΔТтеп=-10°С). Объясняется это большими значениями сжимающих продольных напряжений сжатой зоны сечения трубопровода на участке упругого изгиба. При этом возможна потеря местной устойчивости стенки трубы в сжатой зоне сечения и образование гофр, что намного увеличит концентрацию напряжений на кольцевых сварных соединениях. В таких случаях, в соответствии с положениями [СП 36.13330.2012. Свод правил. Магистральные трубопроводы (Актуализированная редакция СНиП 2.05.06-85*)] необходима проверка на недопустимые пластические деформации по условиям:
где - максимальные суммарные продольные напряжения в трубопроводе от нормативных нагрузок и воздействий, определяемые по формуле (4), МПа;
- нормативные кольцевые напряжения от рабочего давления, МПа;
m - коэффициент условий работы, принимаемый по таблице 1 [СП 36.13330.2012. Свод правил. Магистральные трубопроводы (Актуализированная редакция СНиП 2.05.06-85*)];
Кн - коэффициент надежности по ответственности трубопровода, принимаемый по таблице 13 [СП 36.13330.2012. Свод правил. Магистральные трубопроводы (Актуализированная редакция СНиП 2.05.06-85*)];
R2н - нормативное сопротивление растяжению (сжатию) металла трубы, принимаемое по условному пределу текучести стали из сертификатов или технических условий на данные трубы;
Ψ1 - коэффициент, учитывающий двухосное напряженное состояние металла трубы.
В сечениях трубопровода, имеющих сжатые в продольном направлении зоны, когда выполняется условие для , определяемого по формуле (4):
а также условие (11), коэффициент Ψ1 определяется по формуле:
Нормативные кольцевые напряжения определяются по формуле (2).
В случае, если максимальные суммарные продольные напряжения во всех зонах сечения трубопровода растягивающие (>0), то коэффициент =1.
Для исходные данных примеров 1 и 2 рассмотрим пример проверки отсутствия пластических деформаций в сжатой зоне сечения трубопровода, изогнутого в горизонтальной плоскости, где наибольшие сжимающие напряжения(таблица 1) и наибольшая интенсивность напряжений σi (таблица 2).
Пример 3
Исходные данные:
Суммарные продольные напряжения в сжатой зоне сечения =-184,0 МПа; нормативные кольцевые напряжения =331,67 МПа; интенсивность напряжений в сжатой зоне сечения σi=452,66 МПа; условный предел текучести σ0,2=470 МПа; рабочее давление p=7,5 МПа; наружный диаметр Dн=1420 мм; толщина стенки трубы δ=15,7 мм.
По характеристикам трубопровода из таблиц 1 и 13 [СП 36.13330.2012. Свод правил. Магистральные трубопроводы (Актуализированная редакция СНиП 2.05.06-85*)] определяем:
- коэффициент условий работы для трубопровода III категории m=0,990;
- коэффициент надежности по ответственности Кн=1,210.
Проверяем условие (11):
- местные пластические деформации в кольцевом направлении отсутствуют.
Поскольку есть сжатая зона и сжимающие напряжения в сечении изогнутого трубопровода (=-184,0 МПа), то есть опасность местной потери устойчивости, нужно проверить условие (10).
Вычисляем значение коэффициента Ψ1 по формуле (13):
Проверяем условие (10):
=184,0 МПа≤0,439⋅427,27=187,6 МПа - местные пластические деформации в осевом направлении отсутствуют.
Дополнительная проверка по нормативным значениям интенсивности напряжений и предела текучести:
σi=452,66 МПа<R2н=480 МПа - местная потеря устойчивости по оценке нормативных параметров из-за деформаций сдвига отсутствует, но не хватает запаса по коэффициенту надежности Кн и коэффициенту условий работы m в соответствии с [СП 36.13330.2012. Свод правил. Магистральные трубопроводы (Актуализированная редакция СНиП 2.05.06-85*)]. По результатам оценки интенсивности напряжений рекомендуется дополнительное диагностическое обследование в шурфе для оценки изгибных напряжений акустическими методами в сжатой зоне сечения, уточнение положения оси и точного описания дефектов сварных швов.
Все рассмотренные выше примеры рассчитаны для «минимального» с точки зрения [СП 36.13330.2012. Свод правил. Магистральные трубопроводы (Актуализированная редакция СНиП 2.05.06-85*)], [Р Газпром 2-2.3-437-2010. Методика расчета остаточного ресурса сварных соединений линейной части газопроводов. - ОАО «Газпром». - М.: 2010. - 24 с], [СТО Газпром 2-2.4-715-2013. Методика оценки работоспособности кольцевых сварных соединений магистральных газопроводов. - ОАО «Газпром». - М.: 2014. -226 с] значения радиуса упругого изгиба, равного ρ=1000D=1420 м. В действительности, как показано выше, деформации изгиба могут оставаться упругими при радиусах, меньших 1000 Дн, и различных на вогнутых и выпуклых участках трассы и участках горизонтального поворота.
С целью уменьшения объема вычислительных работ и ускорения анализа предлагается на предварительной стадии реализации предлагаемого метода рассчитать минимальные допустимые радиусы упругого изгиба, реализованные при укладке трубопроводов в траншею, в зависимости от типа изогнутого участка, характеристик трубопровода, расчетного температурного перепада, рабочего давления и характеристик стали, базируясь на формуле максимальных суммарных продольных (мембранных) напряжений, рассчитанных для нормативных значений нагрузок и характеристик стали:
где σи - изгибные напряжения, определяемые в зависимости от типа изогнутого участка.
Принимая условие, что продольные суммарные напряжения, определяемые по нормативным нагрузкам, не должны превышать нормативные значения предела текучести, из формулы (15) получаем зависимость:
Для выпуклого участка, выражая величину изгибных напряжений
получаем зависимость для определения минимального допустимого радиуса упругого изгиба на выпуклом участке:
Для вогнутого участка при величине изгибных напряжений
зависимость для определения минимального радиуса упругого изгиба на выпуклом участке выражается как:
Для участка горизонтального поворота минимальный радиус упругого изгиба определяется по формуле:
Пример 4
Выполнить расчеты минимальных радиусов упругого изгиба для газопровода диаметром Dн=1420 мм при рабочем давлении p=7,5 МПа и температурном перепаде ΔΤ=+50°С; ΔΤ=-10°С; ΔΤ=0°С.Остальные исходные данные принимаются из примера 3.
Расчеты минимальных радиусов упругого изгиба производятся по формулам (18), (20), (21). Результаты расчетов приведены в таблице 4.
Анализ допустимых значений минимальных радиусов упругого изгиба при укладке трубопровода, рассчитанных из условия ограничения сжимающих напряжений нормативными условными пределами текучести стали σ0,2, показал следующее:
1. Отрицательный температурный перепад из-за замыкания монтажных стыков в теплое время года увеличивает суммарные растягивающие напряжения от действия давления и температуры и снижает запас прочности, остающийся на долю изгибающих напряжений, что вынуждает увеличивать радиус укладки упругим (свободным) изгибом.
2. Положительный температурный перепад при замыкании монтажных стыков в холодное время года уменьшает суммарные продольные напряжения от действия давления и температуры и увеличивает запас прочности, приходящийся на долю изгибающих напряжений, что позволяет уменьшить радиусы укладки упругим (свободным) изгибом, чем и пользуются на стадии проектирования для упрощения трассирования и облегчения разбивки трассы.
3. При любых температурных перепадах радиусы упругого изгиба имеют минимальные значения на выпуклых участках, больше по значению - на вогнутых участках, и максимальные значения - на участках горизонтального поворота.
Предлагаемый способ оценки напряженно-деформированного состояния магистрального трубопровода с дефектными сварными соединениями реализуется следующим образом:
1. По результатам внутритрубной дефектоскопии, путем анализа таблиц с массивом значений радиусов поворота или графиков значений радиусов от координат, выделяются участки с радиусами поворота ρ≤1000D.
2. На выделенных участках по результатам внутритрубного контроля идентифицируются и обозначаются части трубопровода с поворотами в вертикальной плоскости с выпуклыми и вогнутыми участками отдельно и участки горизонтальных поворотов.
3. Выделяются и выносятся для отдельного анализа напряженно-деформированного состояния участки поворотов со вставками холодного гнутья, которые должны, в соответствии с требованиями [36.13330.2012. Свод правил. Магистральные трубопроводы (Актуализированная редакция СНиП 2.05.06-85*)], иметь радиус 60 м и менее, а также участки с отводами.
4. С использованием материалов проектно-исполнительной, эксплуатационной документации и фактических замеров при контроле рассчитываются минимальные радиусы упругого изгиба ρmin по формулам (18), (20) и (21).
5. Делается сравнение фактических замеренных радиусов поворота с рассчитанными минимальными радиусами упругого изгиба ρmin отдельно для каждого типа поворота (выпуклый участок, вогнутый участок, участок горизонтального поворота).
6. На основе сравнительного анализа для участков, в которых радиусы изгиба лежат в интервале между минимальными радиусами упругого изгиба ρmin и радиусами поворота ρ=1000D, рассчитываются с использованием формул (1)-(8) кольцевые и суммарные продольные напряжения и интенсивности напряжений с проверкой для сжатых зон условия недопустимости местных пластических деформаций по формулам (9)-(14).
7. Участки, на которых фактические радиусы изгиба меньше минимальных радиусов упругого изгиба ρmin, передаются для контроля и дефектовки в шурфах в соответствии с нормативно-техническими документами, также как и участки со значениями ρmin <ρ≤1000D, не прошедшие проверку сжатых зон сечений на отсутствие чрезмерных местных пластических деформаций.
Предлагаемое изобретение позволяет без проведения дорогостоящих и длительных дополнительных комплексных обследований на трассе трубопровода с привлечением специализированных подрядных организаций, на базе имеющихся результатов внутритрубной диагностики оценить напряженно-деформированное состояние большинства участков с дефектными сварными стыками и получить достоверные данные для оценки надежности этих участков.
название | год | авторы | номер документа |
---|---|---|---|
Способ оценки степени опасности дефектных кольцевых стыков на магистральных газопроводах | 2021 |
|
RU2798635C1 |
Способ оценки степени опасности дефектных кольцевых стыков на магистральных газопроводах | 2022 |
|
RU2817232C2 |
СПОСОБ РЕМОНТА ПОТЕНЦИАЛЬНО ОПАСНОГО УЧАСТКА ТРУБОПРОВОДА | 2020 |
|
RU2740329C1 |
СПОСОБ РЕМОНТА ПОТЕНЦИАЛЬНО ОПАСНОГО УЧАСТКА ГАЗОПРОВОДА | 2018 |
|
RU2686133C1 |
Способ ремонта потенциально опасного участка газопровода | 2019 |
|
RU2722579C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТЕНЦИАЛЬНО ОПАСНЫХ УЧАСТКОВ ТРУБОПРОВОДА С НЕПРОЕКТНЫМ УРОВНЕМ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ | 2015 |
|
RU2602327C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТЕНЦИАЛЬНО ОПАСНЫХ УЧАСТКОВ ТРУБОПРОВОДА, СОДЕРЖАЩИХ ОТВОДЫ ХОЛОДНОГО ГНУТЬЯ, С НЕПРОЕКТНЫМ УРОВНЕМ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ | 2015 |
|
RU2603501C1 |
Способ выявления потенциально опасных участков магистральных трубопроводов c отводами холодного гнутья | 2022 |
|
RU2790906C1 |
СПОСОБ РЕМОНТА ПОТЕНЦИАЛЬНО ОПАСНОГО УЧАСТКА ГАЗОПРОВОДА | 2013 |
|
RU2554172C2 |
Способ определения напряженно-деформированного состояния отводов холодного гнутья в составе длительно эксплуатируемых магистральных газопроводов | 2023 |
|
RU2827291C1 |
Изобретение относится к эксплуатации магистральных трубопроводов и может быть использовано при оценке напряженно-деформированного состояния (НДС) и остаточного ресурса дефектных сварных стыков, выявленных при проведении внутритрубной диагностики. Способ оценки НДС изогнутых участков магистрального трубопровода с дефектными сварными стыками включает расчет напряжений в стенке трубы с учетом радиусов изгиба оси трубопровода. Оценку выполняют по данным внутритрубной диагностики, в которых выделяют выпуклые, вогнутые участки и участки горизонтального поворота с непроектными радиусами упругого изгиба менее «минимального радиуса упругого изгиба при укладке» 1000D, где D - диаметр трубопровода. Отдельно для каждого типа изогнутого участка вычисляют допускаемые по пределу текучести металла радиусы упругого изгиба ρmin при заданном внутреннем давлении и температурном перепаде. Напряжения в стенке трубы вычисляют с учетом радиусов изгиба ρ, установленных внутритрубной диагностикой и лежащих в интервале ρmin≤ρ<1000D для каждого участка трубопровода отдельно. Технический результат: упрощение оценки НДС при идентификации дефектных сварных стыков на участках упругого изгиба. 2 з.п. ф-лы, 4 табл.
1. Способ оценки напряженно-деформированного состояния изогнутых участков магистрального трубопровода с дефектными сварными стыками, включающий расчет напряжений в стенке трубы с учетом радиуса изгиба оси трубопровода, отличающийся тем, что оценку выполняют по данным внутритрубной диагностики, в которых выделяют выпуклые, вогнутые участки и участки горизонтального поворота с непроектными радиусами упругого изгиба менее «минимального радиуса упругого изгиба при укладке» 1000D, где D - диаметр трубопровода, вычисляют допускаемые по пределу текучести металла радиусы упругого изгиба ρmin для выпуклого, вогнутого участка и участка горизонтального поворота при заданном внутреннем давлении и температурном перепаде, а напряжения в стенке трубы вычисляют с учетом радиусов изгиба ρ, установленных внутритрубной диагностикой и лежащих в интервале ρmin≤ρ<1000D для каждого участка трубопровода отдельно.
2. Способ по п. 1, отличающийся тем, что для участков с установленными радиусами упругого изгиба ρ, лежащими в интервале ρmin≤ρ<1000D, где D - диаметр трубопровода, выполняют проверку на местные пластические деформации от действия кольцевых, продольных напряжений и интенсивности напряжений.
3. Способ по п. 2, отличающийся тем, что на участках с фактическими замеренными радиусами изгиба, меньшими, чем допускаемые радиусы упругого изгиба ρmin, включая вставки холодного гнутья и отводы, а также на участках, не прошедших проверку на местные пластические деформации от действия кольцевых, продольных напряжений и интенсивности напряжений, выполняют контроль, идентификацию и дефектовку в шурфах.
Исследования напряженно-деформированного состояния трубопроводов: учебное пособие / А.В | |||
Рудаченко, А.Л | |||
Саруев; Томский политехнический университет | |||
- Томск: Изд-во Томского политехнического университета, 2011 | |||
Регулятор для ветряного двигателя в ветроэлектрических установках | 1921 |
|
SU136A1 |
Основы численного моделирования магистральных трубопроводов | |||
Под ред | |||
В.Е | |||
Селезнева | |||
Изд | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
и доп | |||
- М.: МАКС Пресс, 2009 | |||
СПОСОБ ПОЛУЧЕНИЯ АЗОПИГМЕНТОВ | 1925 |
|
SU436A1 |
Методы и средства диагностики линейной части магистральных газопроводов: Учебное пособие / Под ред | |||
А.С | |||
Лопатина | |||
- М.: Издательский центр РГУ нефти и газа имени И.М | |||
Губкина, 2012 | |||
Ускоритель для воздушных тормозов при экстренном торможении | 1921 |
|
SU190A1 |
Домовый номерной фонарь, служащий одновременно для указания названия улицы и номера дома и для освещения прилежащего участка улицы | 1917 |
|
SU93A1 |
СПОСОБ ПРОДЛЕНИЯ РЕСУРСА НАДЗЕМНЫХ ТРУБОПРОВОДОВ | 2007 |
|
RU2350832C2 |
RU 2014106080 A, 27.08.2015. |
Авторы
Даты
2018-05-31—Публикация
2016-04-12—Подача