СПОСОБ ГАШЕНИЯ КОЛЕБАНИЙ И ЭЛЕКТРОСТАТИЧЕСКИЙ ДЕМПФЕР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2018 года по МПК F16F9/53 F16F6/00 H02N1/08 

Описание патента на изобретение RU2656232C1

Изобретение относится к электромашиностроению и предназначено для использования в энергетике, в частности в исследованиях электростатических сил по электростатике, а также как двигатель небольшой мощности и устройство для торможения и гашения крутильных колебаний.

Известен способ демпфирования колебаний подвижной системы и устройство для его осуществления (патент RU №2426922, МПК F16F 9/53, F16F 6/00, F16F 15/03, опубл. 20.08.2011), заключающийся в том, что колебания демпфируют посредством приложения к системе диссипативных сил путем увеличения вязкости магнитной жидкости и путем приложения к системе дополнительной диссипативной силы сопротивления за счет возбуждения импульсов магнитного поля в демпфирующей магнитной жидкости, причем дополнительную диссипативную силу сопротивления создают в области демпфирующей магнитной жидкости, которая пространственно предваряет передний фронт перемещения подвижной части системы, погруженной в магнитную жидкость, в направлении перемещения.

Недостатками аналога являются ограниченные функциональные возможности.

Наиболее близким по технической сущности к заявляемому способу является способ демпфирования колебаний системы (патент RU №2605229, МПК F16F 9/06, F16F 9/53, опубл. 20.12.2016), заключающийся в том, что колебания демпфируют за счет приложения к объекту диссипативных сил сопротивления путем увеличения вязкости магнитной жидкости и путем возбуждения импульсов магнитного поля в демпфирующей магнитной жидкости, создаваемого в области демпфирующей магнитной жидкости, которая пространственно предваряет передний фронт перемещения подвижной части системы, погруженной в магнитную жидкость, в направлении перемещения, при этом производят процесс дополнительного демпфирования колебаний системы в заполненных газом переменном объеме пневматического упругого элемента и постоянном объеме полого плунжера, размещенных между подвижными и малоподвижными частями системы и связанных с системой, путем кратковременного соединения объемов газа и уменьшения при этом разности давлений между объемами газа, периодически создаваемой при перемещении подвижной части системы.

Недостатками ближайшего аналога являются ограниченные функциональные возможности.

Известен магнитоиндукционный демпфер (патент РФ №2343491, МПК Н02К 49/02, опубл. 2008 г.), содержащий, по крайней мере, одну пару магнитных полюсов и электропроводящий элемент, размещенный в их магнитном поле, причем указанные элементы установлены с возможностью их относительного перемещения, причем электропроводящий элемент выполнен, по крайней мере, с одним выступом, выступающим за габариты магнитных полюсов так, что он максимально приближен, по меньшей мере, к одному магнитному полюсу и пронизывается по высоте его краевыми магнитными потоками, при этом площадь выступа в любом сечении, перпендикулярном направлению перемещения, выбрана из условия обеспечения минимально возможного электрического сопротивления для индуцируемых в электропроводящем элементе вихревых токов.

Недостатками аналога являются большие массогабаритные показатели вследствие наличия магнитных полюсов, а также ограниченные функциональные возможности из-за применения только твердого диэлектрического тела вращения в качестве подвижного элемента.

Известен зажимной патрон с электрореологической жидкостью (патент США №3253200 Electro-viscous fluid chuck, 1966 г.), содержащий основание из диэлектрика, промежуточный слой из диэлектрика с высокой диэлектрической проницаемостью (например, титанат бария), электроды, расположенные горизонтально, параллельно основанию, источник высокого напряжения и слой из электрореологической жидкости.

Недостатками аналога являются ограниченные функциональные возможности и невозможность регулирования угла поворота электродов.

Наиболее близкой к предлагаемому изобретению по технической сущности является электрическая машина [патент РФ №2330374, МПК H02N 1/08, опубл. 2006 г.], содержащая диэлектрический корпус, закрепленный в нем с возможностью вращения вал, на котором установлен диэлектрический подвижный элемент, выполненный в виде конуса из фибры, металлические электроды, подключенные к источнику питания и установленные под углом относительно нормали к поверхности подвижного элемента. Электрическая машина (емкостный двигатель) может быть выполнена многофазной и работать от тока любого рода.

Недостатками прототипа являются ограниченные функциональные возможности из-за применения только твердого диэлектрического тела вращения в качестве подвижного элемента и малый момент вращения.

Задача изобретения - расширение функциональных возможностей, увеличение производительности процесса и снижение массогабаритных показателей электростатического демпфера за счет использования подвижного элемента из проводящего материала, а также использования диэлектрической жидкости в качестве демпфирующей среды.

Технический результат - регулирование величины вращающего момента электростатического демпфера и, как следствие, регулирование величины крутильных колебаний.

Указанная задача решается, а технический результат достигается тем, что в способе гашения колебаний, по которому колебания демпфируют за счет увеличения вязкости диэлектрической жидкостной среды, согласно изобретению на металлические электроды подают напряжение, создают тормозящее электрическое поле с определенным значением его напряженности, которым связывают вращающийся в диэлектрической жидкостной среде подвижный элемент структурированными в электрическом поле мелкодисперсными частицами диэлектрической жидкостной среды, увеличивая ее вязкость, при этом при низком значении напряженности поля повышают вязкость диэлектрической жидкостной среды подачей высокого напряжения на электроды, тем самым усиливают электрическое поле, воздействующее на диэлектрическую жидкостную среду, изменяют ее вязкость и затормаживают демпфер.

Указанная задача решается, а технический результат достигается также тем, что в электростатическом демпфере, содержащем диэлектрический герметичный корпус, установленный в нем с возможностью вращения вал, на котором установлен подвижный элемент, металлические электроды, подключенные к источнику высокого напряжения, установленные под углом относительно нормали к поверхности подвижного элемента, согласно изобретению в качестве подвижного элемента использован конусообразный подвижный элемент из проводящего материала, помещенный в герметичный диэлектрический корпус, заполненный диэлектрической жидкостной средой и оснащенный системой для регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента.

Сущность изобретения поясняется чертежами. На фиг. 1 изображен вид сбоку электростатического демпфера, на фиг. 2 - элемент системы для регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента, на фиг. 3 - схема примера конкретной реализации способа гашения колебаний.

Электростатический демпфер (фиг. 1) содержит герметичный корпус 1, закрепленный в нем с возможностью вращения вал 2, на котором установлен подвижный элемент 3, металлические электроды 4, подключенные к источнику высокого напряжения постоянного тока (на чертеже не показан), установленные под углом относительно нормали к поверхности подвижного элемента, системы для регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента 5, позволяющей поворачивать электроды как в прямой, так и в обратной последовательности, и диэлектрической жидкой средой 6, заполняющей герметичный корпус 1. Для управления величиной зазора применяется система регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента 5, состоящая из двух управляющих винтов 7, один конец которых имеет шестерню 8, а другой - посадочное место под стопорное кольцо (на чертеже не показано). На внешней части управляющие винты 7 соединены через шестерню 8 с внешней шестерней 9 с зубьями с внутренней стороны (фиг. 2). Поворотом внешней шестерни 9 достигается изменение расстояния между подвижным элементом 3 и металлическими электродами 4. На валу 2 установлены передний щит 10, задний щит 11, основание ротора 12. Между задним щитом 11 и основанием ротора 12 помещена пружина 13 для снижения вибрации и предотвращения самораскручивания управляющих винтов 7.

Электростатический демпфер работает следующим образом. На металлические электроды 4 подается напряжение от источника высокого напряжения постоянного тока. В результате в рабочем пространстве электростатического демпфера возникает область переменной емкости, за счет чего возникает вращающееся электрическое поле, под действием которого приводится в движение подвижный элемент 3. В качестве диэлектрической жидкой среды 6 можно использовать электрореологическую суспензию - электрореологическую жидкость, состоящую из диэлектрической среды, например трансформаторного масла, и введенного в нее мелкодисперсного наполнителя. Под действием высокого напряжения электрореологическая суспензия переходит в желеобразное состояние, т.е. ее эффективная вязкость растет до ее насыщения, это связано с электростатическим взаимодействием частиц и динамикой изменения структуры размещения мелкодисперсных частиц. За счет образования тормозящей среды с большой вязкостью подвижный элемент 3 начинает замедляться.

Поворотом внешней шестерни 9 достигается изменение расстояния между подвижным элементом 3 и металлическими электродами 4. Возможность изменения угла наклона относительно нормали к поверхности подвижного элемента и величины воздушного зазора между металлическими электродами 4 и поверхностью подвижного элемента позволяет регулировать величину вращающего момента электростатического демпфера.

Пример конкретной реализации способа

Схема конкретного применения электростатического демпфера поясняется фиг. 3, в которой к электростатическому демпферу 14 подключены источник крутильных колебаний 15, высоковольтный трансформатор 16 и датчик напряженности поля 17, соединенные с исполнительным устройством 18. В ждущем режиме на металлические электроды 4 электростатического демпфера 14 подается высокое напряжение постоянного тока от источника высокого напряжения, например высоковольтного трансформатора 16, только на одну сторону металлических электродов 4, расположенных внутри герметичного корпуса 1. Вторая половина металлических электродов 4 заземлена и подключена к датчику напряженности поля (например, бесконтактный датчик тока Холла) 17, закрепленному на высоковольтных соединительных проводах. При возникновении на валу 2 крутильных колебаний от источника крутильных колебаний 15 равновесное состояние межэлектродного пространства нарушается и изменяется напряженность поля за счет нарушения силовых линий в диэлектрической жидкой среде - электрореологической суспензии 6, заполняющей герметичный корпус 1. В результате на металлических электродах 4 возникают токи несимметрии электрического поля, действующие на подвижный элемент 3, заставляя его вращаться, тем самым увеличивая неоднородность поля. Датчик напряженности поля 17, обнаружив изменение в однородности поля, дает команду на исполнительное устройство 18 для изменения величины напряжения высоковольтного трансформатора 16. С высоковольтного трансформатора 16 на металлические электроды 4 начинает подаваться высокое напряжение необходимой величины для уравновешивания электрического поля между металлическими электродами 4.

Итак, заявляемое изобретение позволяет расширить функциональные возможности и снизить массогабаритные показатели электростатического демпфера за счет использования диэлектрической жидкости в качестве демпфирующей среды и использования подвижного элемента из проводящего материала, а также увеличить производительность процесса, регулировать величину вращающего момента электростатического демпфера и, как следствие, регулировать величину крутильных колебаний.

Похожие патенты RU2656232C1

название год авторы номер документа
ЕМКОСТНЫЙ ДВИГАТЕЛЬ-ПЕРЕМЕШИВАТЕЛЬ 2010
  • Исмагилов Флюр Рашитович
  • Хайруллин Ирек Ханифович
  • Фаттахов Рамиль Касымович
  • Волкова Татьяна Александровна
RU2453978C2
Магнитореологический амортизатор 2015
  • Гордеев Борис Анатольевич
  • Дарьенков Андрей Борисович
  • Охулков Сергей Николаевич
  • Плехов Александр Сергеевич
RU2645484C2
СПОСОБ ДЕМПФИРОВАНИЯ КОЛЕБАНИЙ ПОДВИЖНОЙ СИСТЕМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Власов Андрей Вячеславович
RU2426922C1
Крутильный маятник для определения механических свойств материалов 1982
  • Головин Станислав Алексеевич
  • Левин Даниил Михайлович
  • Чуканов Александр Николаевич
  • Юркин Игорь Николаевич
SU1067406A1
ЭЛЕКТРОСТАТИЧЕСКИЙ СЕПАРАТОР 2015
  • Исмагилов Флюр Рашитович
  • Хайруллин Ирек Ханифович
  • Алетдинов Рустам Фларидович
  • Волкова Татьяна Александровна
RU2583844C1
СПОСОБ ДЕМПФИРОВАНИЯ КОЛЕБАНИЙ СИСТЕМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Корчагин Анатолий Борисович
  • Аверьянов Геннадий Сергеевич
  • Бельков Валентин Николаевич
RU2605229C2
ДЕМПФЕР ВЯЗКОГО ТРЕНИЯ 2019
  • Анцев Георгий Владимирович
  • Малосай Сергей Олегович
  • Фролов Александр Семенович
RU2723102C1
ГИДРАВЛИЧЕСКАЯ ВИБРООПОРА 2009
  • Синёв Александр Владимирович
  • Гордеев Борис Александрович
  • Куплинова Галина Сергеевна
RU2407929C1
Плавкий предохранитель 1983
  • Соколов Виктор Петрович
SU1108530A1
МАГНИТОРЕОЛОГИЧЕСКИЙ АМОРТИЗАТОР 2014
  • Гордеев Борис Александрович
  • Ерофеев Владимир Иванович
  • Охулков Сергей Николаевич
  • Тумаков Сергей Фёдорович
RU2561610C1

Иллюстрации к изобретению RU 2 656 232 C1

Реферат патента 2018 года СПОСОБ ГАШЕНИЯ КОЛЕБАНИЙ И ЭЛЕКТРОСТАТИЧЕСКИЙ ДЕМПФЕР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к электромашиностроению, в частности к устройству для торможения и гашения крутильных колебаний. Технический результат: регулирование величины вращающего момента электростатического демпфера. На металлические электроды подают напряжение, создают тормозящее электрическое поле, которым связывают вращающийся в диэлектрической жидкостной среде подвижный элемент структурированными в электрическом поле мелкодисперсными частицами диэлектрической жидкостной среды, увеличивая ее вязкость. При низком значении напряженности поля повышают вязкость диэлектрической жидкостной среды подачей высокого напряжения на электроды, тем самым усиливают электрическое поле, воздействующее на диэлектрическую жидкостную среду, изменяют ее вязкость и затормаживают демпфер, в котором в качестве подвижного элемента использован конусообразный подвижный элемент из проводящего материала, помещенный в герметичный диэлектрический корпус, заполненный диэлектрической жидкостной средой и оснащенный системой для регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента. 2 н.п. ф-лы, 3 ил.

Формула изобретения RU 2 656 232 C1

1. Способ гашения колебаний, по которому колебания демпфируют за счет увеличения вязкости диэлектрической жидкостной среды, отличающийся тем, что на металлические электроды подают напряжение, создают тормозящее электрическое поле с определенным значением его напряженности, которым связывают вращающийся в диэлектрической жидкостной среде подвижный элемент структурированными в электрическом поле мелкодисперсными частицами диэлектрической жидкостной среды, увеличивая ее вязкость, при этом при низком значении напряженности поля повышают вязкость диэлектрической жидкостной среды подачей высокого напряжения на электроды, тем самым усиливают электрическое поле, воздействующее на диэлектрическую жидкостную среду, изменяют ее вязкость и затормаживают демпфер.

2. Электростатический демпфер, содержащий диэлектрический герметичный корпус, установленный в нем с возможностью вращения вал, на котором установлен подвижный элемент, металлические электроды, подключенные к источнику высокого напряжения, установленные под углом относительно нормали к поверхности подвижного элемента, отличающийся тем, что в качестве подвижного элемента использован конусообразный подвижный элемент из проводящего материала, помещенный в герметичный диэлектрический корпус, заполненный диэлектрической жидкостной средой и оснащенный системой для регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента.

Документы, цитированные в отчете о поиске Патент 2018 года RU2656232C1

СПОСОБ ДЕМПФИРОВАНИЯ КОЛЕБАНИЙ СИСТЕМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Корчагин Анатолий Борисович
  • Аверьянов Геннадий Сергеевич
  • Бельков Валентин Николаевич
RU2605229C2
ЕМКОСТНЫЙ ДВИГАТЕЛЬ 2006
  • Хайруллин Ирек Ханифович
  • Исмагилов Флюр Рашитович
  • Фаттахов Рамиль Касымович
  • Аминова Рената Раифовна
  • Волкова Татьяна Александровна
  • Еремин Михаил Николаевич
RU2330374C2
СПОСОБ ДЕМПФИРОВАНИЯ КОЛЕБАНИЙ ПОДВИЖНОЙ СИСТЕМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Власов Андрей Вячеславович
RU2426922C1
Прибор для расчетов поставов в лесопильном деле 1929
  • Андреев Г.Г.
SU18419A1
Калориметр для определения теплоты горения 1927
  • Нейман М.Б.
SU6611A1
DE 4134354 A1, 22.04.1993.

RU 2 656 232 C1

Авторы

Исмагилов Флюр Рашитович

Алетдинов Рустам Фларидович

Волкова Татьяна Александровна

Калимуллин Радик Рифкатович

Маликов Айнур Аллурович

Даты

2018-06-04Публикация

2017-07-17Подача