Способ получения нанокапсул спирулина в конжаковой камеди Российский патент 2018 года по МПК A61K36/258 A61K47/36 A61K9/51 A61J3/07 B01J13/02 B82B3/00 

Описание патента на изобретение RU2657748C1

Изобретение относится к области нанотехнологии и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В патенте РФ 2173140, МПК А61К 009/50, А61К 009/127, опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В патенте РФ 2359662 МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009 предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в патенте РФ 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул спирулина, отличающимся тем, что в качестве оболочки нанокапсул используется конжаковая камедь, а в качестве ядра - спирулин при получении нанокапсул методом осаждения нерастворителем с применением гексана в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием гексана в качестве осадителя, а также применение конжаковой камеди в качестве оболочки частиц и спирулина - в качестве ядра.

ПРИМЕР 1. Получение нанокапсул спирулина в соотношении ядро : оболочка 1:1

1 г спирулина медленно добавляют в суспензию 1 г конжаковой камеди в бутаноле в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 7 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул спирулина в соотношении ядро : оболочка 1:3

1 г спирулина медленно добавляют в суспензию 3 г конжаковой камеди в бутаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 7 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул спирулина в соотношении ядро : оболочка 1:5

1 г спирулина медленно добавляют в суспензию 5 г конжаковой камеди в бутаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 7 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Определение размеров нанокапсул методом NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1: 100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length : Auto, Min Expected Size : Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Похожие патенты RU2657748C1

название год авторы номер документа
Способ получения нанокапсул сухого экстракта шиповника 2016
  • Кролевец Александр Александрович
RU2613881C1
Способ получения нанокапсул резвератрола в конжаковой камеди 2016
  • Кролевец Александр Александрович
RU2631886C2
Способ получения нанокапсул гидрокарбоната натрия в конжаковой камеди 2016
  • Кролевец Александр Александрович
RU2632303C2
Способ получения нанокапсул аминокислот в конжаковой камеди 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
RU2607589C2
Способ получения нанокапсул бетулина 2016
  • Кролевец Александр Александрович
RU2614713C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ 2015
  • Кролевец Александр Александрович
RU2596482C1
Способ получения нанокапсул экоцида в конжаковой камеди 2015
  • Кролевец Александр Александрович
RU2688146C1
Способ получения нанокапсул спирулина в альгинате натрия 2016
  • Кролевец Александр Александрович
RU2648816C2
Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в конжаковой камеди 2016
  • Кролевец Александр Александрович
RU2612347C1
Способ получения нанокапсул семян чиа (Salvia hispanica) в конжаковой камеди 2016
  • Кролевец Александр Александрович
RU2624532C1

Иллюстрации к изобретению RU 2 657 748 C1

Реферат патента 2018 года Способ получения нанокапсул спирулина в конжаковой камеди

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул спирулина в оболочке из конжаковой камеди. Способ характеризуется тем, что порошок спирулина медленно добавляют в суспензию конжаковой камеди в бутаноле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1000 об/мин, после приливают гексан, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, или 1:3, или 1:5. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул и может быть использовано в фармацевтической и пищевой промышленности. 2 ил., 3 пр.

Формула изобретения RU 2 657 748 C1

Способ получения нанокапсул спирулина в конжаковой камеди, характеризующийся тем, что в качестве ядра используют спирулин, в качестве оболочки нанокапсул используют конжаковую камедь, при этом порошок спирулина медленно добавляют в суспензию конжаковой камеди в бутаноле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1000 об/мин, после приливают гексан, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, или 1:3, или 1:5.

Документы, цитированные в отчете о поиске Патент 2018 года RU2657748C1

ПИЩЕВАЯ БИОЛОГИЧЕСКИ АКТИВНАЯ ДОБАВКА 2000
  • Нечаева С.В.
  • Семенов В.В.
  • Туркин В.В.
RU2182806C2
PARRIS N et.al
Encapsulation of essential oils in zein nanospherical particles / J
Agric
Food Chem., 2005
Веникодробильный станок 1921
  • Баженов Вл.
  • Баженов(-А К.
SU53A1
Глушитель и маслоотделитель для автомобильных и т.п. двигателей 1923
  • Тагеев Д.Л.
SU4788A1
NAGAVARMA B.V.N
Different techniques for preparation of polymeric nanoparticles, Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23
WO 2004064544 A1, 05.08.2004
ЧУЕШОВ В.И
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Передвижная комнатная печь 1922
  • Лендер Ф.Ф.
SU383A1

RU 2 657 748 C1

Авторы

Кролевец Александр Александрович

Даты

2018-06-15Публикация

2017-01-11Подача