Изобретение относится к области создания малогабаритных микромодулей на гибкой плате, содержащих несколько больших интегральных схем (БИС), например, полупроводниковой памяти большой емкости и аналогичных устройств.
Известно техническое решение, позволяющее создавать подобные модули - конструкция и способ изготовления микроэлектронных приборов с высокой плотностью размещения компонентов [1]. Прибор содержит гибкую подложку с низким модулем упругости, к которой прикреплены полупроводниковые приборы. На одной стороне подложки сформированы проводники нужной конфигурации, которые через металлизированные отверстия соединяются с проводниками на другой стороне подложки и с контактными площадками для монтажа БИС. Недостатком предложенного способа является высокая трудоемкость изготовления приборов с большим количеством БИС.
Известны изделия на полиимидной пленке с использованием двухслойной коммутационной разводки с последующей металлизацией переходных отверстий и монтажом кристаллов с жесткими выводами [2]. Основным недостатком этих устройств является недостаточно высокая разрешающая способность рисунка коммутации.
Известно техническое решение - устройство, содержащее гибкую монтажную плату, бескорпусную интегральную схему и другие элементы [3], которое является наиболее близким к данному изобретению и принято за прототип.
Гибкая плата изготовлена из полиимидной пленки и имеет электропроводные коммутационные дорожки. Конструкция обеспечивает снижение габаритов, но не обеспечивает высокую плотность монтажа.
Задача изобретения - увеличение плотности монтажа, повышение надежности межслойных соединений малогабаритных микромодулей и минимизация уровня термомеханических напряжений при тепловых воздействиях.
Это достигается тем, что микромодуль содержит гибкую плату, снабженную металлизированными межслойными переходными отверстиями и смонтированными на ней кристаллами бескорпусных БИС с выступами. Металлизированные межслойные переходные отверстия имеют форму выпуклой криволинейной поверхности переменного поперечного сечения по длине с криволинейными контактными площадками на верхней и нижней поверхности гибкой платы, выполнены с уменьшением сечения от контактной площадки на верхней и нижней поверхности к срединной плоскости платы. Контактная площадка плавно переходит в межслойное переходное отверстие. Причем размер контактной площадки в плане можно изменять в широких пределах, исходя из технологической целесообразности, обеспечить монтаж выступов кристалла.
Конструкция и размещение контактных площадок с металлизированными межслойными переходными отверстиями на гибкой плате способствуют увеличению плотности монтажа кристаллов бескорпусных БИС за счет уменьшения размера межслойных переходных отверстий и контактных площадок, ширины проводников и зазора между ними, а также минимальному шагу между контактными площадками.
Современные конструкции микромодулей должны иметь как можно меньшие массогабаритные характеристики, устойчивость к циклическим тепловым воздействиям и усталостным отказам материалов межслойных соединений. Два конкурирующих подхода: «снизить массу - обеспечить прочность, долговечность и ресурс» составляют суть проблемы проектирования и конструирования микромодулей. Для повышения прочности и выносливости материалов микромодулей необходимо снижать эксплуатационные термомеханические напряжения в них.
С помощью компьютерного моделирования и метода конечного элемента определена рациональная форма металлизированного межслойного переходного отверстия с контактной площадкой по критериям увеличения плотности монтажа и прочностной надежности (фиг. 1, вид А). Наиболее рациональной формой является торовая поверхность (образованная вращением сегмента медной металлизации вокруг оси отверстия). Найдены рациональные соотношения размеров межслойного соединения - между диаметром отверстия d, диаметром выступа dв и размером контактной площадки D: dв=(2,3-3,0)d, dв=(0,58…0,75)D.
При компьютерном моделировании использовали базовую модель со следующими параметрами: толщина полиимидной пленки - 50 мкм, толщина медной металлизации - 15 мкм. Варьируемые параметры: размер контактной площадки D=50…150 мкм, диаметр отверстия d=0…80 мкм, диаметр выступа dв=30…120 мкм. Компьютерное моделирование позволило установить величину напряжения в материалах базовой модели - σАu=200, δSi=150, σCu=140 МПа.
Изменение соотношения размеров d, dв, D в большую или в меньшую сторону изменяет напряженно-деформированное состояние материалов сборки, приводит к увеличению деформаций и напряжений вплоть до величины предела выносливости материалов сборки, снижению долговечности (числа циклов при тепловых воздействиях в режиме включение-выключение).
Расчет показал, что при dв=100 мкм или dв=60 мкм напряжения увеличиваются до σAu=375, σSi=240, σCu=250 МПа, что превышает предел выносливости этих материалов и существенно снижает их циклическую долговечность. Рациональным значением по результатам расчета было выбрано dв=80±10 мкм (dв~2,67d и dв~0,67D).
Это позволило увеличить статическую прочность и выносливость материалов при действии переменных циклических термомеханических напряжений.
На фиг. 1 представлен микромодуль в бескорпусном исполнении, где:
1 - кристалл БИС;
2 - контактная площадка на кристалле;
3 - контактная площадка на плате с переходным отверстием;
4 - выступ кристалла БИС;
5 - гибкая плата;
6 - припойный выступ.
Изготавливают гибкую плату 5 с системой проводников и контактными площадками 3 на плате для соединения с выступами кристалла БИС 4, сформированными на контактных площадках 2 кристалла БИС 1. Припойные выступы 6 на обратной стороне платы служат выводами микромодуля, которые затем могут быть распаяны на следующий уровень.
Пример.
Гибкую плату с двухсторонней системой проводников изготавливают на полиимидной пленке толщиной 50 мкм. Проводники изготовлены тонкопленочной металлизацией в вакууме слоями хром - медь с последующим гальваническим наращиванием меди и облуживанием до толщины 15 мкм. Размер контактной площадки составляет 120…150 мкм, размер переходного отверстия d составляет 20…60 мкм. Межслойные переходные отверстия в плате выполняют путем двустороннего химического травления с последующим гальваническим наращиванием меди. Контактные площадки на гибкой плате для монтажа кристаллов БИС имеют минимальную монтажную площадь. Выступы кристалла имеют цилиндрическую форму с шарообразным куполом с размером dв=70…90 мкм.
Такое решение позволило существенно снизить термомеханические напряжения в материалах изделия. Так, например, напряжения уменьшились в Аu в 1,73 раза, Si в 1,58 раза, Сu в 1,8 раз. Это позволило повысить прочность и долговечность изделия при действии переменных циклических термонапряжений.
Созданные образцы микромодулей испытывались на воздействие повышенной температуры в диапазоне температур от +20 до +70°С (ГОСТ 30630.2.1, ГОСТ 28209, ст. МЭК 68-2-14-84, VI степень жесткости) и на вибропрочность в частотном диапазоне 10…5000 Гц и ускорении 40 g (ГОСТ 16962-71, XIV степень жесткости). Испытания подтвердили результаты компьютерных расчетов.
Достоинства такой конструкции - отсутствие концентраторов напряжений в материалах межслойного соединения Cu-Au, высокая плотность монтажа, минимальный уровень термомеханических напряжений при тепловых воздействиях, высокая прочностная надежность межслойных соединений малогабаритных микромодулей.
Источники информации
1. Патент США №6376769.
2. Гуськов Г.Я., Блинов Г.А., Газаров А.А. Монтаж микроэлектронной аппаратуры. - М.: Радио и связь, 1986, с. 109, рис. 4.13.
3. Патент РФ №2242798, - прототип.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНОГО МНОГОКРИСТАЛЬНОГО МИКРОМОДУЛЯ | 2005 |
|
RU2299497C2 |
Микромодуль космического назначения | 2021 |
|
RU2778034C1 |
НОСИТЕЛЬ КРИСТАЛЛА ИС | 1998 |
|
RU2134466C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНОГО МНОГОКРИСТАЛЬНОГО МОДУЛЯ НА ГИБКОЙ ПЛАТЕ | 2017 |
|
RU2657092C1 |
КОНТАКТНЫЙ УЗЕЛ | 1998 |
|
RU2134498C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНОГО ГИБРИДНОГО ИНТЕГРАЛЬНОГО МОДУЛЯ | 2008 |
|
RU2364006C1 |
МНОГОСЛОЙНАЯ КОММУТАЦИОННАЯ ПЛАТА (ВАРИАНТЫ) | 1998 |
|
RU2133081C1 |
КОНТАКТНЫЙ УЗЕЛ НА ВСТРЕЧНЫХ КОНТАКТАХ С КАПИЛЛЯРНЫМ СОЕДИНИТЕЛЬНЫМ ЭЛЕМЕНТОМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2008 |
|
RU2374793C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОННЫХ УЗЛОВ НА ГИБКОМ НОСИТЕЛЕ БЕЗ ПРОЦЕССОВ ПАЙКИ И СВАРКИ | 2014 |
|
RU2572588C1 |
СПОСОБ 2D-МОНТАЖА (ВНУТРЕННЕГО МОНТАЖА) ИНТЕГРАЛЬНЫХ МИКРОСХЕМ | 2015 |
|
RU2604209C1 |
Изобретение относится к области создания малогабаритных микромодулей на гибкой плате, содержащих несколько БИС. Сущность изобретения: микромодуль содержит гибкую плату, снабженную металлизированными межслойными переходными отверстиями и смонтированными на ней кристаллами бескорпусных БИС с выступами. Металлизированные межслойные переходные отверстия имеют форму выпуклой криволинейной поверхности переменного поперечного сечения по длине, с криволинейными контактными площадками на верхней и нижней поверхности гибкой платы, выполнены с уменьшением сечения от контактной площадки на верхней и нижней поверхности к срединной плоскости платы. Техническим результатом изобретения является увеличение плотности монтажа и повышение надежности межслойных соединений малогабаритных микромодулей. 1 з.п. ф-лы, 1 ил.
1. Микромодуль, содержащий гибкую плату, снабженную металлизированными межслойными переходными отверстиями, и смонтированные на ней кристаллы бескорпусных БИС с выступами, отличающийся тем, что межслойные переходные отверстия имеют форму выпуклой криволинейной поверхности переменного поперечного сечения по длине, с криволинейными контактными площадками на верхней и нижней поверхности гибкой платы, выполнены с уменьшением сечения от контактной площадки на верхней и нижней поверхности к срединной плоскости платы, размеры поперечного сечения выступов связаны с внешним размером контактной площадки D и минимальным размером переходного отверстия d соотношением d<dв<D, где выбирают dв=(2,3-3,0)d, dв=(0,58…0,75)D.
2. Микромодуль по п. 1, отличающийся тем, что металлизированные межслойные переходные отверстия с контактной площадкой имеют форму тора.
ИДЕНТИФИКАЦИОННОЕ УСТРОЙСТВО | 2001 |
|
RU2242798C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНОГО МНОГОКРИСТАЛЬНОГО МИКРОМОДУЛЯ | 2005 |
|
RU2299497C2 |
US 7021941 B1, 04.04.2006 | |||
US 6376769 B1, 23.04.2002 | |||
Токарный резец | 1924 |
|
SU2016A1 |
US 8928105 B2, 06.01.2015 | |||
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
Авторы
Даты
2018-07-03—Публикация
2017-10-05—Подача