Изобретение относится к области медицины, а именно к патоморфологии, профессиональной патологии, пульмонологии и онкологии.
Известен способ обнаружения кристаллов кварца при силикозе с помощью поляризационной микроскопии, который позволяет обнаружить анизотропные кристаллы кварца в пылевых скоплениях. Кристаллы кварца игловидной или округлой формы в поляризованном свете дают яркое свечение белого цвета. Поляризационная микроскопия находит широкое применение для обнаружения пылевых частиц в ткани легких и лимфоузлов. Преимуществами метода поляризационной микроскопии тканевых образцов являются простота, доступность, малые затраты времени для проведения исследования, которое рекомендуется проводить параллельно с обычной микроскопией гистологических препаратов (Diseases accociated with exposure to silica and nonfibrous silicate minerals. Arch Pathol Lab Med. 1988 Jul;112(7):673-720).
Недостаток - известный метод описан для морфологической диагностики силикоза (пневмокониоза, вызванного воздействием пыли, содержащей свободный диоксид кремния). Цветовая характеристика пылевых структур в поляризованном свете при алюминозе (бокситовом пневмокониозе) в литературе не представлена. Способ морфологической диагностики алюминоза (бокситового пневмокониоза) легких с помощью поляризационной микроскопии в литературе не описан.
В качестве ближайшего аналога нами выбран метод обнаружения структур, содержащих алюминий в легочной ткани с помощью трансмиссионной электронной микроскопии с рентгеновской спектроскопией, описанный в Mineralogical analysis of the respiratory tract in aluminium oxide-exposed workers. C.Voisin, F. Fisekci, B. Buclez, A. Didier, B. Couste, F. Bastien, P. Brochard, J-C. Pairon. European Respiratory Journal ISSN 0903 - 1936 Ltd 1996.
Недостаток - известный метод трудоемкий, дорогостоящий, требует специальной подготовки материала и затрат времени на исследование.
Заявляемый способ направлен на морфологическую диагностику и верификацию профессиональной пылевой патологии - алюминоза (бокситового пневмокониоза) легких. Заболевания органов дыхания, ассоциированные с ингалированной минеральной пылью, в
первую очередь пневмокониозы занимают существенное место в современной пульмонологии. Верификация профессиональной пылевой патологии является сложной и ответственной задачей, так как гиподиагностика профессиональной патологии ущемляет права больного на компенсационные выплаты и не способствует развитию профилактических мероприятий на производстве.
Технический результат: способ позволяет идентифицировать в гистологических срезах структуры, содержащие алюминий, которые в поляризованном свете обладают свечением оранжевого цвета и имеют преимущественно округлую или овальную форму. Идентификация структур, содержащих алюминий в легочной ткани, необходима для подтверждения диагноза алюминоз (бокситовый пневмокониоз) легких. Внедрение способа диагностики алюминоза (бокситового пневмокониоза) на материале резекций или биопсийном материале легких способствует совершенствованию диагностики профессиональных пылевых поражений органов дыхания.
Заявляется способ морфологической диагностики алюминоза (бокситового пневмокониоза) на материале резекций или биопсийном материале легких и лимфатических узлов, отличающийся тем, что наличие алюминия в пылевых частицах определяют с помощью микроскопа по свечению оранжевого цвета в поляризованном свете.
Изобретение поясняется иллюстрациями.
На Фиг.1 показано скопление пылевых частиц темно-коричневого цвета в ткани легкого. Окраска гематоксилин-эозин, увеличение 200.
На Фиг.2 показано свечение оранжевым цветом частиц, содержащих алюминий.
Поляризационная микроскопия, увеличение 200.
На Фиг.З показаны структуры, содержащие алюминий. Сканирующая электронная микроскопия.
На Фиг.4 показано картирование алюминия по площади образца. Сканирующая электронная микроскопия с энергодисперсионным микроанализом пылевых частиц.
На Фиг.5 показан рентгеноспектральный микроанализ пыли в ткани легких. Сканирующая электронная микроскопия с энергодисперсионным микроанализом пылевых частиц.
Способ диагностики алюминоза (бокситового пневмокониоза) легких осуществляется с применением биологического микроскопа (или поляризационного микроскопа) с использованием поляризационных фильтров, позволяющих перейти из режима обычной световой микроскопии в режим работы в поляризованном свете без
перемещения гистологического среза на предметном столике микроскопа. В поляризованном свете определяются структуры, обладающие свойством двулучепреломления. Поляризационная микроскопия позволяет обнаружить анизотропные структуры и кристаллы в пылевых скоплениях, что имеет существенное диагностическое значение при пылевых поражениях органов дыхания, в первую очередь профессиональной природы (пневмокониозы). В зависимости от длины световой волны, проходящей через кристалл, в поляризованном свете определяется свечение разного цветового спектра. При алюминозе (бокситовом пневмокониозе) в поляризованном свете определяются анизотропные структуры, содержащие алюминий и кристаллы кварца. Частицы алюминия обладают низким показателем двулучепреломления и в поляризованном свете имеют свечение оранжевого цвета (Фиг. 1, 2).
Проверено и доказано наличие в составе пыли соединений алюминия методом сканирующей электронной микроскопии (СЭМ) с энергодисперсионным микроанализом (Фиг.3-5). Метод СЭМ проведен на базе УЦКП «Современные нанотехнологии» ИЕНиМ, Уральского Федерального Университета, образцы изучали в сканирующем электронном микроскопе AURIGA FIB-SEM workstation («Carl Zeiss & МТ», Германия). Известный метод СЭМ с энергодисперсионным микроанализом является трудоемким, требует материальных затрат в проведении метода, производстве и обслуживании оборудования, имеется сложность эксплуатации техники, необходима высокая квалификация для подготовки образца и проведения исследования.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАННЕЙ ДИАГНОСТИКИ ХРОНИЧЕСКОГО ПЫЛЕВОГО БРОНХИТА | 2014 |
|
RU2572724C1 |
СПОСОБ ДИАГНОСТИКИ СИЛИКОЗА | 2000 |
|
RU2183328C1 |
СПОСОБ ПОДГОТОВКИ ОБРАЗЦОВ НЕДЕКАЛЬЦИНИРОВАННОГО СУСТАВНОГО ХРЯЩА С ПОДЛЕЖАЩЕЙ СУБХОНДРАЛЬНОЙ КОСТЬЮ ДЛЯ МНОГОЦЕЛЕВЫХ ИССЛЕДОВАНИЙ | 2011 |
|
RU2466375C1 |
СПОСОБ НЕИНВАЗИВНОЙ ЭКСПРЕСС-ДИАГНОСТИКИ ПАТОЛОГИЧЕСКИХ ИЗМЕНЕНИЙ В ТКАНЯХ В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ IN VIVO | 2022 |
|
RU2824571C2 |
СПОСОБ СУДЕБНО-МЕДИЦИНСКОЙ ДИАГНОСТИКИ СМЕРТИ ОТ СТРАНГУЛЯЦИОННОЙ МЕХАНИЧЕСКОЙ АСФИКСИИ | 2007 |
|
RU2326591C1 |
СПОСОБ ДИАГНОСТИКИ ЗЛОКАЧЕСТВЕННЫХ СОЛИДНЫХ ОПУХОЛЕЙ И ИХ ОТДАЛЕННЫХ МЕТАСТАЗОВ | 2011 |
|
RU2456602C1 |
СПОСОБ СУДЕБНО-МЕДИЦИНСКОЙ ДИАГНОСТИКИ МГНОВЕННОЙ СМЕРТИ ОТ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМЫ | 2007 |
|
RU2326590C1 |
СПОСОБ МОРФОМЕТРИЧЕСКОЙ ДИАГНОСТИКИ ПНЕВМОКОНИОЗА | 1999 |
|
RU2199746C2 |
СПОСОБ ОБНАРУЖЕНИЯ ВНЕКЛЕТОЧНЫХ ОКСИДОВ И СУЛЬФИДОВ В ТКАНЯХ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ | 2009 |
|
RU2408888C1 |
СПОСОБ ДИАГНОСТИКИ ХОЛАНГИТА | 2001 |
|
RU2211451C2 |
Изобретение относится к медицине и может быть использовано для морфологической диагностики алюминоза (бокситового пневмокониоза) на материале резекций или биопсийном материале легких и лимфатических узлов пациента. При этом наличие алюминия в пылевых частицах определяют с помощью микроскопа по свечению оранжевого цвета в поляризованном свете. Изобретение позволяет идентифицировать в гистологических срезах легочной ткани структуры, содержащие алюминий и диагностировать алюминоз у пациентов. 5 ил.
Способ морфологической диагностики алюминоза (бокситового пневмокониоза) на материале резекций или биопсийном материале легких и лимфатических узлов, отличающийся тем, что наличие алюминия в пылевых частицах определяют с помощью микроскопа по свечению оранжевого цвета в поляризованном свете.
СПОСОБ МОРФОМЕТРИЧЕСКОЙ ДИАГНОСТИКИ ПНЕВМОКОНИОЗА | 1999 |
|
RU2199746C2 |
СПОСОБ ДИАГНОСТИКИ ПНЕВМОКОНИОЗОВ | 2000 |
|
RU2173086C1 |
VOISIN C | |||
et al., Mineralogical analysis of the respiratory tract in aluminium oxide-exposed workers,Eur Respir J | |||
Предохранительное устройство для паровых котлов, работающих на нефти | 1922 |
|
SU1996A1 |
TAKADA T | |||
et al., Elemental analysis of occupational and environmental lung diseases by electron probe microanalyzer with wavelength dispersive spectrometer, Respir Investig., 2014 Jan; 52(1):5-13. |
Авторы
Даты
2018-07-06—Публикация
2017-07-27—Подача