МЕТАЛЛИЗИРОВАННАЯ БУМАГА ИЗ УГЛЕРОДНЫХ НАНОТРУБОК Российский патент 2018 года по МПК H01B1/04 B82B3/00 

Описание патента на изобретение RU2660769C1

Изобретение относится к композиционным материалам, содержащим в своем составе углеродные нанотрубки, и может использоваться в различных отраслях промышленности, преимущественно - в электротехнике, например в литий-ионных аккумуляторах, или в электрических кабелях связи коаксиального типа, где важное значение имеет масса кабеля.

Известна бумага из углеродных нанотрубок, представляющая собой тонкий лист, сделанный из пучков углеродных нанотрубок. В литературе такой материал называют «Buckypaper» или «Bucky paper» [Richard Е. Smalley et al. / Science / Vol 280 / 1998 / p. 1253; M. Endo et al. / Nature / Vol 433 / 2005 / p. 476].

Вышеупомянутая бумага является электропроводящей, обладает гибкостью и небольшой удельной массой. Благодаря этим свойствам, она может использоваться, например, в электрических кабелях связи коаксиального типа в качестве внешнего проводника, как описано в патенте US 7459627 (МПК Н01В 7/00). Использование бумаги из углеродных нанотрубок в качестве внешнего проводника позволяет снизить массу кабеля. Однако такой внешний проводник значительно уступает проводнику, изготовленному из чистого металла, по величине электропроводности. Например, электропроводность бумаги из одностенных углеродных нанотрубок составляет 45 См/см [Sakurai et al. / Nanoscale Research Letters / Vol 8 / 2013 / 546], что на четыре порядка меньше, чем электропроводность меди - 595000 См/см [Электротехнический справочник. Т. 1. Общие вопросы. Электротехнические материалы / Под общей редакцией профессоров МЭИ / 6-е изд. / Москва: Энергия, 1980. / С. 353. / с. 520]. Показатели прочности на разрыв для вышеупомянутой бумаги достигают 52 МПа.

Для повышения электропроводности изготавливают бумагу из углеродных нанотрубок, включающую наночастицы металла. Это достигается различными способами. Например, пленку из углеродных нанотрубок с наночастицами металла (золото (Au), серебро (Ag), платина (Pt), палладий (Pd) или медь (Cu)), получают на гибкой подложке при нанесении смеси из дисперсии углеродных нанотрубок и раствора металлического предшественника [заявка US 20090008712, МПК B05D 5/12, H01L 29/786, Н01В 1/04]. При последующей термической обработке металлический предшественник, адсорбированный на поверхности углеродных нанотрубок, восстанавливается до наночастиц металла. В результате, получается композиционный материал в виде тонкой пленки, содержащей углеродные нанотрубки с адсорбированными частицами металла во всем объеме материала. Тем не менее, такой подход не приводит к значительному росту электропроводности материала.

За прототип изобретения выбрана бумага из углеродных нанотрубок [М. Endo et al. / Nature / Vol 433 / 2005 / p. 476].

Недостатками прототипа является то, что бумага из углеродных нанотрубок характеризуется невысокими показателями прочности на разрыв и электропроводности (типичные значения указаны выше). Также возможность ее применения ограничивается тем, что для соединения бумаги с металлическими деталями не может использоваться пайка.

Изобретение решает задачу создания композиционного материала на основе бумаги из углеродных нанотрубок, обладающего электропроводностью, сравнимой с электропроводностью металлов, небольшой удельной массой, повышенной прочностью на разрыв, и возможностью использования пайки для соединения с различными деталями.

Поставленная задача решается тем, что предлагается бумага из углеродных нанотрубок, содержащая одностенные углеродные нанотрубки и связующую добавку, причем, по меньшей мере на одну из сторон бумаги нанесено металлическое покрытие путем осаждения на нее металла таким образом, чтобы поверхностная плотность металлического покрытия составляла не менее 0,9 г/м2.

Вышеупомянутая бумага с металлическим покрытием может содержать не менее 20 масс. % связующих добавок, повышающих ее прочность.

В качестве связующих добавок могут быть использованы синтетические полимеры, например, поливинилпирролидон, поливинилденфторид, поливиниловый спирт, поливинилхлорид, полиакрилонитрил и т.п., не ограничиваясь приведенными примерами, или карбоновые кислоты, например капроновая или акриловая кислота, или нитрилы кислот, например ацетонитрил, и т.п., не ограничиваясь приведенными примерами.

Кроме этого, бумага с металлическим покрытием может содержать одностенные углеродные нанотрубки в количестве не менее 20 масс. %. При более низком содержании углеродных нанотрубок в бумаге электропроводность и прочность бумаги падает.

Металлическое покрытие может быть нанесено как на одну, так и на обе стороны бумаги из углеродных нанотрубок одним из следующих способов: химическое или электрохимическое осаждение, физическое осаждение из газовой фазы.

В зависимости от используемого способа осаждения, металл покрытия может быть выбран из следующего ряда: алюминий, или никель, или медь, или серебро, или комбинация по меньшей мере двух из перечисленных металлов.

Важнейшими характеристиками для бумаги из углеродных нанотрубок с металлическим покрытием являются электропроводность и прочность (усилие на разрыв).

Так как бумага из углеродных нанотрубок с металлическим покрытием является композиционным материалом, то ее электропроводность, в первую очередь, определяется электропроводностью нанесенного металла. На основании измеренной величины сопротивления (R) композита (металлизированной бумаги из углеродных нанотрубок), рассчитывается удельное сопротивление на квадрат из расчета геометрических размеров образца по формуле R=R⋅W/L, где W - ширина образца, L - длина образца, и R составляет не более 0,5 Ом/□. Для сравнения - удельное сопротивление на квадрат бумаги из углеродных нанотрубок без металлического покрытия составляет не более 2,5 Ом/□, а для медной фольги R=0,008 Ом/□.

Прочность бумаги с металлическим покрытием измеряется усилием на разрыв, отнесенным на 1 мм ее ширины, и составляет не менее 0,05 Н, что соответствует прочности на разрыв для бумаги с металлическим покрытием не менее 50 МПа. Это сравнимо с величиной прочности на разрыв для бумаги без металлического покрытия.

Толщина бумаги с металлическим покрытием составляет не менее 2 μм.

Бумага с металлическим покрытием может быть выполнена из нескольких слоев, на каждый из которых нанесено металлическое покрытие.

Бумага с металлическим покрытием может быть изготовлена, например, электрохимическим способом (на примере нанесения медного покрытия). Для этого в раствор электролита опускают медную фольгу, бумагу из углеродных нанотрубок и подают разность потенциалов. При пропускании электрического тока через раствор электролита происходит восстановление металлической меди на бумаге из углеродных нанотрубок с образованием сплошного покрытия из металла. После завершения электролиза бумага с металлическим покрытием промывается дистиллированной водой. Приготовленный образец бумаги с металлическим покрытием далее подвергают сушке при повышенной температуре.

Полученная бумага из углеродных нанотрубок с металлическим покрытием обладает электропроводностью, сравнимой с электропроводностью металла, небольшой удельной массой и повышенными механическими свойствами, в частности, прочностью на разрыв. Благодаря этим свойствам бумага с металлическим покрытием может применяться, например, при электромагнитном экранировании в электрических кабелях связи коаксиального типа.

Предлагаемое изобретение подтверждается нижеприведенным примером, который иллюстрирует, но не ограничивает его собой.

ПРИМЕР

Для приготовления раствора электролита 30 грамм медного купороса и 3 грамма 98% серной кислоты растворяют в 100 мл дистиллированной воды при постоянном перемешивании. В раствор приготовленного электролита опускают медную фольгу и бумагу из углеродных нанотрубок. На медную фольгу подают положительный потенциал (анод), на бумагу из углеродных нанотрубок подают отрицательный потенциал (катод). При пропускании электрического тока (не менее 1 Ампера) через раствор электролита ионы меди Cu2+ диффундируют к катоду и осаждаются на бумаге из углеродных нанотрубок в виде частиц металлической меди Cu0, образуя сплошное металлическое покрытие. Данный процесс может занимать по времени не менее 10 секунд, в зависимости от требуемой толщины металлического покрытия и достижения плотности металлического покрытия не менее 0,9 г/м2.

После завершения электролиза и нанесения металлического покрытия бумагу из углеродных нанотрубок вынимают из раствора электролита и неоднократно промывают дистиллированной водой при температуре 80°С. Приготовленный образец далее сушат при температуре 140°С, в течение 2 часов.

Измеренное удельное сопротивление на квадрат полученной бумаги с металлическим покрытием составило не более 0,01 Ом/□, что в 50 раз меньше, чем удельное сопротивление на квадрат бумаги без металлического покрытия.

Измеренное усилие на разрыв, отнесенное на 1 мм ширины полученной бумаги с металлическим покрытием составило не менее 0,1 Н, по сравнению с 0,08 Н для бумаги без металлического покрытия.

Похожие патенты RU2660769C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОПРОВОДЯЩЕГО ПОЛИУРЕТАНОВОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА И МАТЕРИАЛ 2020
  • Предтеченский Михаил Рудольфович
  • Чебочаков Дмитрий Семенович
  • Канагатов Бекет
  • Федоров Никита Александрович
RU2756754C1
ГРУНТУЮЩИЙ СОСТАВ ДЛЯ СОЗДАНИЯ СВЕТЛОГО ЭЛЕКТРОПРОВОДЯЩЕГО ГРУНТУЮЩЕГО ПОКРЫТИЯ ДЕТАЛИ ПЕРЕД ЭЛЕКТРОСТАТИЧЕСКИМ ОКРАШИВАНИЕМ, СПОСОБ ПРИГОТОВЛЕНИЯ ГРУНТУЮЩЕГО СОСТАВА И ГРУНТУЮЩЕЕ ПОКРЫТИЕ 2020
  • Предтеченский Михаил Рудольфович
  • Чебочаков Дмитрий Семенович
  • Шиляев Глеб Евгеньевич
RU2765132C1
КОАКСИАЛЬНЫЙ КАБЕЛЬ 2016
  • Предтеченский Михаил Рудольфович
  • Безродный Александр Евгеньевич
  • Бобренок Олег Филиппович
  • Галков Михаил Сергеевич
RU2643156C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО МАТЕРИАЛА, МОДИФИЦИРОВАННОГО ХЛОРОМ, И УГЛЕРОДНЫЙ МАТЕРИАЛ, МОДИФИЦИРОВАННЫЙ ХЛОРОМ, СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО ЭЛЕКТРОПРОВОДЯЩЕГО МАТЕРИАЛА И ЭЛЕКТРОПРОВОДЯЩИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2018
  • Предтеченский Михаил Рудольфович
  • Бобренок Олег Филиппович
  • Хасин Александр Александрович
  • Алексеев Артем Владимирович
RU2717516C2
ТКАНЬ С АНТИСТАТИЧЕСКИМИ СВОЙСТВАМИ 2018
  • Предтеченский Михаил Рудольфович
  • Мурадян Вячеслав Ервандович
  • Сильченко Елена Владимировна
  • Цыбикдоржиева Арюхан Васильевна
  • Баранов Вадим Александрович
  • Шкиринда Елена Анатольевна
RU2712912C1
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ С ЭЛЕКТРОПРОВОДНЫМИ СВОЙСТВАМИ, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ 2022
  • Рубинов Александр Маркович
  • Михайленко Михаил
RU2804721C1
ДОБАВКА К РЕЗИНОВЫМ КОМПОЗИЦИЯМ, СПОСОБ ПОЛУЧЕНИЯ ДОБАВКИ, СПОСОБ ПОЛУЧЕНИЯ РЕЗИНЫ С ПОВЫШЕННЫМИ ЭЛЕКТРОПРОВОДНОСТЬЮ И ФИЗИКО-МЕХАНИЧЕСКИМИ СВОЙСТВАМИ И РЕЗИНА 2021
  • Предтеченский Михаил Рудольфович
  • Хасин Александр Александрович
  • Карпунин Руслан Владимирович
  • Скуратов Андрей Юрьевич
  • Филиппов Илья Анатольевич
  • Ануфриева Ангелина Николаевна
  • Круч Владимир Андреевич
RU2767647C1
КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ОБЪЕМНЫХ УГЛЕРОДНЫХ НАНОТРУБОК И МЕТАЛЛА И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 2013
  • Васинчук, Джеймс, Энтони
RU2639181C2
Способ повышения физико-механических и триботехнических характеристик композиционного материала на основе эластомера, армированного многостенными углеродными нанотрубками 2022
  • Королева Светлана Валерьевна
  • Шилов Михаил Александрович
  • Королёв Павел Владимирович
RU2807827C1
ЭЛЕКТРОПРОВОДЯЩАЯ РЕЗИНОВАЯ КОМПОЗИЦИЯ ДЛЯ СПЛОШНЫХ ШИН И НЕ ОСТАВЛЯЮЩАЯ СЛЕДОВ СПЛОШНАЯ ШИНА 2019
  • Предтеченский Михаил Рудольфович
  • Хасин Александр Александрович
  • Карпунин Руслан Владимирович
  • Горбунова Екатерина Юрьевна
  • Скуратов Андрей Юрьевич
  • Си Минлонг
RU2731635C1

Реферат патента 2018 года МЕТАЛЛИЗИРОВАННАЯ БУМАГА ИЗ УГЛЕРОДНЫХ НАНОТРУБОК

Изобретение относится к композиционным материалам, содержащим в своем составе углеродные нанотрубки, и может использоваться в различных отраслях промышленности, преимущественно - в электротехнике, например в литий-ионных аккумуляторах, или в электрических кабелях связи коаксиального типа, где важное значение имеет масса кабеля. Бумага из углеродных нанотрубок содержит одностенные углеродные нанотрубки и связующую добавку. На одну из сторон бумаги нанесено металлическое покрытие путем осаждения металла таким образом, чтобы поверхностная плотность металлического покрытия составляла не менее 0,9 г/м2. Изобретение позволяет создать композиционный материал на основе бумаги из углеродных нанотрубок, обладающий электропроводностью, сравнимой с электропроводностью металлов, небольшой удельной массой, повышенными механическими свойствами. 23 з.п. ф-лы.

Формула изобретения RU 2 660 769 C1

1. Бумага из углеродных нанотрубок, отличающаяся тем, что она содержит одностенные углеродные нанотрубки и связующую добавку, причем по меньшей мере на одну из ее сторон нанесено металлическое покрытие путем осаждения на нее металла таким образом, чтобы поверхностная плотность металлического покрытия составляла не менее 0,9 г/м2.

2. Бумага по п. 1, отличающаяся тем, что названная связующая добавка содержится в количестве не менее 20 мас.%.

3. Бумага по п. 1, отличающаяся тем, что названная связующая добавка содержится в количестве не менее 40 мас.%.

4. Бумага по п. 1, отличающаяся тем, что названная связующая добавка содержится в количестве не менее 60 мас.%.

5. Бумага по п. 1, отличающаяся тем, что названная связующая добавка содержится в количестве не менее 80 мас.%.

6. Бумага по п. 1, отличающаяся тем, что связующая добавка выбрана из ряда: синтетический полимер, или карбоновая кислота, или нитрилы кислот.

7. Бумага по п. 1, отличающаяся тем, что содержание углеродных нанотрубок составляет не менее 20 мас.%.

8. Бумага по п. 1, отличающаяся тем, что содержание углеродных нанотрубок составляет не менее 40 мас.%.

9. Бумага по п. 1, отличающаяся тем, что содержание углеродных нанотрубок составляет не менее 60 мас.%.

10. Бумага по п. 1, отличающаяся тем, что содержание углеродных нанотрубок составляет не менее 80 мас.%.

11. Бумага по п. 1, отличающаяся тем, что металлическое покрытие нанесено на поверхность бумаги путем химического или электрохимического осаждения, или физического осаждения металла из газовой фазы.

12. Бумага по п. 1, отличающаяся тем, что металлическое покрытие нанесено как на одну, так и на обе стороны бумаги.

13. Бумага по п. 1, отличающаяся тем, что металл покрытия выбран из ряда: алюминий, или никель, или медь, или серебро, или комбинации перечисленных металлов.

14. Бумага по п. 1, отличающаяся тем, что удельное сопротивление на квадрат бумаги составляет не более 0,5 Ом/□.

15. Бумага по п. 1, отличающаяся тем, что удельное сопротивление на квадрат бумаги составляет не более 0,1 Ом/□.

16. Бумага по п. 1, отличающаяся тем, что удельное сопротивление на квадрат бумаги составляет не более 0,05 Ом/□.

17. Бумага по п. 1, отличающаяся тем, что удельное сопротивление на квадрат бумаги составляет не более 0,01 Ом/□.

18. Бумага по п. 1, отличающаяся тем, что удельное сопротивление на квадрат бумаги составляет не более 0,005 Ом/□.

19. Бумага по п. 1, отличающаяся тем, что ее усилие на разрыв, отнесенное на 1 мм ширины бумаги, составляет не менее 0,05 Н.

20. Бумага по п. 1, отличающаяся тем, что ее усилие на разрыв, отнесенное на 1 мм ширины бумаги, составляет не менее 0,1 Н.

21. Бумага по п. 1, отличающаяся тем, что ее усилие на разрыв, отнесенное на 1 мм ширины бумаги, составляет не менее 0,5 Н.

22. Бумага по п. 1, отличающаяся тем, что ее усилие на разрыв, отнесенное на 1 мм ширины бумаги, составляет не менее 1 Н.

23. Бумага по п. 1, отличающаяся тем, что ее толщина составляет не менее 2 μм.

24. Бумага по п. 1, отличающаяся тем, что она выполнена из нескольких слоев, на каждый из которых нанесено металлическое покрытие.

Документы, цитированные в отчете о поиске Патент 2018 года RU2660769C1

А.А
Пугач, Бумага на основе углеродных нанотрубок, 2006
СПОСОБ ПОЛУЧЕНИЯ ОБЪЕМНОГО НАНОСТРУКТУРИРОВАННОГО МАТЕРИАЛА 2010
  • Головин Юрий Иванович
  • Столяров Роман Александрович
  • Шуклинов Алексей Васильевич
  • Литовка Юрий Владимирович
  • Ткачев Алексей Григорьевич
RU2475445C2
СТЕКЛЯННЫЙ СОСУД С ПОКРЫТИЕМ 2014
  • Предтеченский Михаил Рудольфович
RU2553015C1
WO 200891402 A2, 31.07.2008.

RU 2 660 769 C1

Авторы

Предтеченский Михаил Рудольфович

Галков Михаил Сергеевич

Огиенко Михаил Александрович

Косолапов Андрей Геннадьевич

Даты

2018-07-10Публикация

2017-07-12Подача