ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ БИОЛОГИЧЕСКОГО СЕНСОРА Российский патент 2018 года по МПК H01B1/24 B82B3/00 

Описание патента на изобретение RU2661884C2

Изобретение относится к чувствительным элементам на основе углеродных нанотрубок и может быть использовано для создания электрохимических сенсоров, устройств фотовольтаики на гибких подложках.

Известны устройства чувствительных элементов (ЧЭ) на основе углеродных нанотрубок (УНТ), которые включают в себя сетку УНТ, нанесенную из раствора водной или иной жидкой среды или выращенную химическим методом на поверхности диэлектрического материала (стекла или полимера) и иммобилизированные на поверхности нанотрубок химические соединения, чувствительные к биологическим агентам [1-4].

В конструкции сенсора [1] в качестве чувствительного элемента предложен полевой транзистор на основе углеродных нанотрубок на твердотельной подложке (SiO2, SiN, Al2O3, HfO2). К нанотрубкам нековалентно присоединяются пептиды. Тем не менее использование твердотельной подложки ограничивает использование подобных сенсоров в устройствах персонального мониторинга состояния здоровья (на сегодняшний день тенденции разработки подобных устройств направлены на создание гибких устройств), кроме того, используется вариант нековалентной иммобилизации чувствительного биологического агента на поверхности нанотрубки.

В работе [2] в качестве чувствительного элемента также используется полевой транзистор на основе углеродных нанотрубок с нековалентно связанными с поверхностью нанотрубки аптамерами. Данная конструкция в виде полевого транзистора с дополнительным электродом является относительно сложной и имеет повышенную сложность исполнения в виде планарной структуры. Так же аналогично примеру [1] твердотельная подложка так же ограничивает применение такой конструкции в устройствах персонального мониторинга здоровья. Кроме того, опять же используется нековалентная иммобилация аптамеров, что выливается в малое число измерений одним сенсором.

В работе [3] в качестве чувствительного элемента используются золотые электроды с иммобилизированными на них аптамерами и противоэлектродом для измерения электрохимического потенциала на полимерной подложке. В такой конструкции, однако, ограничена гибкость устройства из-за металлических электродов, кроме того, площадь поверхности металлического электрода гораздо меньше, чем у сетки нанотрубок, что предполагает меньшее число чувствительных элементов на единицу площади сенсора, и, соответственно меньшую чувствительность.

В работе [4] используется сетка нанотрубок с иммобилизированными на них наночастицами с привязанными к ним биологически чувствительными агентами на SiO2 подложке. Данное устройство обладает повышенной сложностью в виде дополнительной иммобилизации золотых наночастиц на поверхности нанотрубок и в качестве подложки используется опять же твердотельная подложка.

Особенностями формирования ЧЭ в описанных устройствах являются приготовление стабильного коллоида, содержащего взвесь одиночных однослойных, а также метод иммобилизации чувствительных агентов (аптамеров) на поверхности углеродных нанотрубок. При этом стабильность коллоида и степень дисперсности определяют плотность формируемой сетки углеродных нанотрубок, а подбор концентраций химических реагентов - количество иммобилизуемых аптамеров. Методом подбора концентрации раствора УНТ возможно получить настолько разреженную сетку углеродных нанотрубок, что между электродами образуется единственный канал, по которому возможно протекание тока.

Вследствие малых размеров нанотрубок высокое влияние на формирование раствора и последующей ЧЭ оказывают силы взаимного притяжения между УНТ. С целью уменьшения влияния Ван-дер-ваальсового взаимодействия между нанотрубками используют различные методы их функционализации и модификации, как ковалентной, так и нековалентной. Одним из распространенных способов формирования стабильных коллоидов в воде является использование предварительно модифицированных (карбоксилированных) углеродных нанотрубок. При этом в органических растворителях карбоксилированные углеродные нанотрубки успешно разделяются на единичные ОСНТ или тонкие пучки. В зависимости от времени ультразвуковой обработки возможно добиться разделения пучков на отдельные однослойные нанотрубки.

Известен ЧЭ, описанный в [5], включающий сетку УНТ между контактами, синтезированную на SiO2 подложке методом химического осаждения из газовой фазы. В данной конструкции аптамеры иммобилизированы нековалентно с помощью дополнительного элемента (линкера).

Наиболее близким к изобретению является чувствительный элемент, описанный в [6] и представляющий собой сетку углеродных нанотрубок, ориентированную случайным образом. В данном чувствительном элементе имеется множество пересечений отдельных углеродных нанотрубок друг с другом, соответственно существует много путей протекания тока, что не позволяет добиться сверхвысокой чувствительности и селективности. Также в указанной работе для иммобилизации аптамеров использовалась методика нековалентного связывания через специальный линкер, тогда как для достижения лучших показателей чувствительности и возможности многократного использования требуется ковалентная иммобилизация биочувствительного материала (в частности, аптамеров).

Задачей предлагаемого изобретения является повышение селективности биосенсора и возможности его многократного использования за счет контролируемого формирования единственного канала проводимости и ковалентной иммобилизации аптамера на поверхности функционализированных карбоксильными группами углеродных нанотрубок.

Для создания сетки углеродных нанотрубок заданной геометрии на подложку наносится маска из непроницаемого для раствора углеродных нанотрубок материала и осаждается секта из раствора, находящегося в электрическом поле, используя эффект измеримого изменения сопротивления (импеданса) среды при замыкании цепи углеродными нанотрубками.

Для создания омического контакта между сеткой углеродных нанотрубок и измерительным оборудованием на поверхность сенсора наносится тонка золотая пленка через маску.

Для обеспечения лучших параметров чувствительности и селективности предпочтительно использовать ковалентную иммобилизацию аптамеров на поверхности нанотрубки. Для ковалентной иммобилизации аптамеров на функциональных группах -СООН применяется связка 1-Этил-3-(3-диметиламинопропил) карбодиимид (EDC) и N-Гидроксисукцинимид (NHS), при этом иммобилизация происходит в несколько стадий. Для создания предлагаемого ЧЭ, в отличии от вышеуказанных работ, используется одностадийный процесс иммобилизации аптамеров на кУНТ с помощью раствора EDC в дистиллированной воде.

Для электрической изоляции подводящих электродов используется изоляция в виде полимерной пленки толщиной 25 мкм.

Для ограничения области экспонирования и исключения возможности замыкания подводящих электродов в изоляции формируется круглое окно диаметром 2 мм.

Для обеспечения простой интеграции в устройства персонального мониторинга состояния здоровья или в другие электронные устройства геометрия подводящих золотых электродов и подложки выполнена таким образом, чтобы обеспечивать электрический контакт со стандартными разъемами для гибких шлейфов типа OMRON XF2J.

Изобретение иллюстрируется графическими материалами, где изображено:

Фиг 1. Схема биологического сенсора в разрезе, где:

1 - полимерная подложка, 2 - подводящие электроды, 3 - сетка углеродных нанотрубок, покрытая функциональными группами -СООН, 4 - область сетки УНТ с иммобилизированными аптамерами, 5 - защитная полимерная пленка, 6 - «окно» для экспонирования в защитной пленке.

Фиг. 2-3D изображение биологического сенсора с чувствительным элементом на основе аптамер-модифицированных углеродных нанотрубок.

Фиг. 3 - Модель аптамера, связанного с углеродной нанотрубкой, где: 301 - углеродная нанотрубка, 302 - карбоксильная группа, 403 - аптамер.

Фиг. 4 - Схематическое изображение сетки углеродных нанотрубок с концентрацией, близкой к перколяционному порогу, между контактами, где: 1 - полимерная подложка, 2 - подводящие электроды, 3 - сетка углеродных нанотрубок, покрытая функциональными группами -СООН.

Если концентрация УНТ превышает степень перколяции, то сетка является проводящей.

Для формирования проводящего канала, состоящего из единственной одиночной нанотрубки используется переменное или постоянное электрическое поле между электродами, формирующими контакт к ЧЭ. В случае переменного электрического поля, его амплитуда лежит в пределах 0.1-30 В в зависимости от расстояния между электродами. Частота переменного электрического поля составляет от 10 до 1000 кГц в зависимости от типа (длины) используемых нанотрубок. В случае постоянного поля напряжение между электродами составляет 10-50 В также в зависимости от типа используемых нанотрубок. При этом для формирования канала необходимо создавать исходный раствор с диапазоном концентраций от 0,001 до 0,1 мг/л. При указанном диапазоне концентраций, в зависимости от типа используемых нанотрубок, при изменении импеданса между контактами приложенное напряжение отключается, а раствор принудительно удаляется с подложки. Изменение импеданса (в случае постоянного приложенного напряжения - сопротивления) происходит в случае замыкания сетки нанотрубок и появления проводимости. В условиях указанных концентраций нанотрубок в исходном растворе такое замыкание происходит в случае формирования канала из единственной нанотрубки.

Пример конкретного исполнения.

Первоначально определялась зависимость сопротивления слоя углеродных нанотрубок на полимерной подложке от объема капли и числа итераций осаждения. Для нанесения использовался раствор углеродных нанотрубок (0,5 мг/мл) в диметилацетамиде. На подложку предварительно наносилась маска с заданным паттерном электродов куда в дальнейшем наносился раствор углеродных нанотрубок. Объем капли раствора наносимой на поверхность пленки полиэтиленнафталата (ПЭН) варьировался от 5 до 12 мкл в каждую ячейку паттерна. После каждого нанесения производился отжиг подложки при температуре 110°C. Атомно-силовая микроскопия (АСМ) выявила формирование сетки углеродных нанотрубок толщиной 5 нм. Измерения проводимости показали, что в этом концентрация нанотрубок на поверхности чуть превышает порог перколяции.

Далее поверх сетки углеродных нанотрубок формировались металлические контакты. На подложку наносилась дополнительная маска под контакты. Далее подложка помещалась в магнетрон и производилось напыление 150 мкм пленки золота. После формирования золотых контактов производилась резка подложки на отдельные сенсорные структуры и нанесение на них защитной полимерной пленки с окном для экспонирования биологических жидкостей методом ламинирования.

Далее производилась процедура ковалентной иммобилизации аптамеров на поверхности. Процедура иммобилизации аптамера включает в себя подготовку 5 мкМ раствора EDC и 0,5 мкМаптамера в дистиллированной воде. Далее в окно для экспонирования наносится указанный раствор объемом 2 мкл и выдерживается 24 часа во влажной атмосфере.

Предложенная конструкция устройства обеспечивает ковалентную иммобилизация при сохранении чувствительности по сравнению с прототипом, что обеспечивает решение задачи.

Источники информации

1. Патент США 8716029.

2. Патент США7854826 - прототип.

3. Патент США 20080156646.

4. Патент США 20140255952.

5. Hye-Mi So, Keehoon Won, Yong Hwan Kim et. al. Single-Walled Carbon Nanotube Biosensors Using Aptamers as Molecular Recognition Elements. J. AM. CHEM. SOC. 2005, 127, 11906-11907

6. К.Ф. Ахмадишина, И.И. Бобринецкий, И.А. Комаров и др. Быстродействующие биологические сенсоры на основе однослойных углеродных нанотрубок, модифицированных специфичными аптамерами. Известия вузов. Электроника, 2015, т. 20, 2, с. 137-143 - прототип.

Похожие патенты RU2661884C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ БИОЛОГИЧЕСКОГО СЕНСОРА НА ОСНОВЕ ОКСИДА ГРАФЕНА И БИОЛОГИЧЕСКИЙ СЕНСОР НА ГИБКОЙ ПОДЛОЖКЕ 2018
  • Комаров Иван Александрович
  • Стручков Николай Сергеевич
  • Антипова Ольга Михайловна
  • Калинников Александр Николаевич
  • Нелюб Владимир Александрович
  • Бородулин Алексей Сергеевич
RU2697701C1
Способ изготовления матричного биосенсора на основе восстановленного оксида графена и матричный биосенсор на полимерной подложке 2019
  • Нелюб Владимир Александрович
  • Орлов Максим Андреевич
  • Калинников Александр Николаевич
  • Бородулин Алексей Сергеевич
  • Комаров Иван Александрович
  • Антипова Ольга Михайловна
  • Стручков Николай Сергеевич
RU2745663C1
ПРОЗРАЧНЫЙ ПРОВОДЯЩИЙ ЭЛЕКТРОД РЕЗИСТИВНОГО СЕНСОРА 2015
  • Бобринецкий Иван Иванович
  • Комаров Иван Александрович
  • Рубцова Екатерина Николаевна
  • Емельянов Алексей Владимирович
  • Федоров Игорь Вячеславович
RU2609793C1
ИЗМЕРИТЕЛЬНЫЕ И КОНТРОЛЬНЫЕ ЭЛЕКТРОДЫ С АПТАМЕРНЫМ ПОКРЫТИЕМ И СПОСОБЫ ИХ ПРИМЕНЕНИЯ ДЛЯ РАСПОЗНАВАНИЯ БИОМАРКЕРОВ 2012
  • Кэш Стефен Ли
  • Робсон Кейт
  • Кинлох Ян Энтони
  • Стокли Питер Джордж
RU2617535C2
СПОСОБ ДЕТЕКЦИИ СПЕЦИФИЧЕСКИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ НУКЛЕИНОВЫХ КИСЛОТ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Федоровская Екатерина Олеговна
  • Апарцин Евгений Константинович
  • Новопашина Дарья Сергеевна
  • Булушева Любовь Геннадиевна
  • Веньяминова Алия Гусейновна
  • Окотруб Александр Владимирович
RU2509157C2
Способ иммобилизации коротких нуклеотидных последовательностей на поверхность и торцевые области наноматериалов 2019
  • Нелюб Владимир Александрович
  • Орлов Максим Андреевич
  • Калинников Александр Николаевич
  • Бородулин Алексей Сергеевич
  • Комаров Иван Александрович
  • Антипова Ольга Михайловна
  • Стручков Николай Сергеевич
RU2745511C1
Способ получения тонких слоёв оксида графена с формированием подслоя из углеродных нанотрубок 2018
  • Ромашкин Алексей Валентинович
  • Стручков Николай Сергеевич
  • Левин Денис Дмитриевич
  • Поликарпов Юрий Александрович
  • Комаров Иван Александрович
  • Калинников Александр Николаевич
  • Нелюб Владимир Александрович
  • Бородулин Алексей Сергеевич
RU2693733C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАТРИЦЫ ДЕТЕКТОРОВ ТГЦ ИЗЛУЧЕНИЯ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК 2016
  • Гольцман Григорий Наумович
  • Федоров Георгий Евгеньевич
  • Гайдученко Игорь Андреевич
  • Воронов Борис Моисеевич
  • Степанова Татьяна Сергеевна
  • Газалиев Арсен Шахсенович
  • Титова Надежда Андреевна
  • Каурова Наталья Сергеевна
RU2667345C2
ЭЛЕКТРОХИМИЧЕСКИЙ БИОСЕНСОР ДЛЯ ПРЯМОЙ РЕГИСТРАЦИИ МИОГЛОБИНА НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК И МОЛЕКУЛЯРНО ИМПРИНТИРОВАННОГО ПОЛИМЕРА НА ОСНОВЕ О-ФЕНИЛЕНДИАМИНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2015
  • Шумянцева Виктория Васильевна
  • Булко Татьяна Владимировна
  • Супрун Елена Владимировна
  • Кузиков Алексей Владимирович
RU2604688C2
НАНОТРУБОЧНЫЙ НОСИТЕЛЬ ДЛЯ ЭЛЕКТРИЧЕСКОЙ СТИМУЛЯЦИИ РОСТА КЛЕТОК И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2011
  • Бобринецкий Иван Иванович
  • Морозов Роман Андреевич
  • Селезнев Алексей Сергеевич
RU2465312C1

Иллюстрации к изобретению RU 2 661 884 C2

Реферат патента 2018 года ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ БИОЛОГИЧЕСКОГО СЕНСОРА

Изобретение относится к чувствительным элементам на основе углеродных нанотрубок и может быть использовано в технологических операциях создания электрохимических сенсоров, устройств фотовольтаики на гибких подложках. Чувствительный элемент включает в себя сетку углеродных нанотрубок между планарными металлическими электродами, на которую иммобилизованы аптамеры, физическим преобразователем - чувствительным слоем - является единственная нанотрубка, обеспечивающая единственный путь для протекания тока между электродами. Изобретение позволяет обеспечить ковалентную иммобилизацию при сохранении чувствительности. 4 ил.

Формула изобретения RU 2 661 884 C2

Чувствительный элемент биологического сенсора, включающий ультратонкую сетку углеродных нанотрубок между планарными металлическими электродами, на которую иммобилизованы аптамеры, отличающийся тем, что физическим преобразователем - чувствительным слоем - является единственная нанотрубка, обеспечивающая единственный путь для протекания тока между электродами.

Документы, цитированные в отчете о поиске Патент 2018 года RU2661884C2

К.Ф
Ахмадишина и др
Быстродействующие биологические сенсоры на основе однослойных углеродных нанотрубок, модифицированных специфичными аптамерами, Известия вузов, Электроника, с.137-143, т.20, 2, 2015
НАНОЭЛЕКТРОМЕХАНИЧЕСКАЯ СТРУКТУРА (ВАРИАНТЫ) И СПОСОБ ЕЕ ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2007
  • Хартов Станислав Викторович
  • Симунин Михаил Максимович
  • Неволин Владимир Кириллович
RU2349542C1
US 2014255952 A, 11.09.2014
CN 102375007 A, 14.03.2012.

RU 2 661 884 C2

Авторы

Бобринецкий Иван Иванович

Комаров Иван Александрович

Неволин Владимир Кириллович

Даты

2018-07-20Публикация

2016-12-28Подача