Каркас кольца для аннулопластики трикуспидального клапана сердца, способ его изготовления и применение Российский патент 2018 года по МПК A61F2/24 

Описание патента на изобретение RU2663157C1

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии, и может быть использовано при лечении пороков клапанов сердца, в частности при аннулопластике трикуспидального клапана.

Опорные кольца используются при реконструктивных операциях на трикуспидальном клапане в ситуациях, когда створчатый аппарат клапана сохранен, а наличие порока (недостаточности) обусловлено дилатацией собственного фиброзного кольца клапана вследствие различных причин. Имплантация опорного кольца призвана восстановить анатомическую площадь клапана. При необходимости кольцевую пластику клапана дополняют пластикой хордального аппарата.

При создании аннулопластических колец для атрио-вентрикулярных клапанов следует учитывать, что деформационные нагрузки воспринимаются не только створками клапанов, но и опорным кольцом, моделирующим естественное фиброзное кольцо. Следовательно, опорное кольцо должно максимально имитировать анатомическую форму нормального фиброзного кольца и иметь возможность естественных деформаций в процессе сердечного цикла.

Огромное многообразие существующих опорных аннулопластических колец можно классифицировать исходя из трех параметров, первым из которых является их геометрическая (пространственная) форма:

1) плоские (двумерные) кольца, форма которых представлена проекцией фиброзного кольца трикуспидального клапана на плоскость со стороны правого предсердия;

2) трехмерные (3D) кольца, соответствующие непланарной геометрии трикуспидального фиброзного кольца.

Второй важной характеристикой является их способность к деформации в процессе сердечного цикла:

1) «жесткие» недеформируемые или малодеформируемые кольца, имеющие каркас-сердечник из ригидных или полуригидных материалов (полимеры, металлы и др.);

2) «мягкие» кольца, как правило, вообще не имеющие каркаса и состоящие из одно- или многослойных полосок синтетической (тканой или вязаной) или биологической ткани ксено-, алло- или аутогенного происхождения;

3) «упругие», то есть способные изменять форму в процессе сердечного цикла соответственно изменению конфигурации фиброзного кольца при воздействии на него нагрузок, различающихся в систолу и диастолу.

Кроме того, по варианту исполнения кольца для аннулопластики разделяют на:

1) замкнутые - полностью повторяющие периметр фиброзного кольца естественного атрио-вентрикулярного клапана;

2) разомкнутые - повторяющие периметр фиброзного кольца естественного трикуспидального клапана лишь частично (остается свободной, как правило, половина области прикрепления септальной створки, с тем, чтобы избежать при прошивании травмы расположенного в этой зоне атрио-вентрикулярного узла).

Из существующего уровня техники известны, например, жесткие плоские (патент США №405586, A61F 1/22, опубл. 01.11.1977) и жесткие 3D кольца (патент РФ №2324457 С1, приоритет от 09.01.2007, патент США №7879087 В2, приоритет от 05.10.2007), кольца для аннулопластики, содержащие каркас из ригидных и полуригидных материалов (полимеры, металлы и др.) и покрытие из биологических или синтетических (тканых или вязаных) материалов.

К основным недостаткам известных жестких опорных колец следует отнести нарушение биомеханических свойств реконструируемого фиброзного кольца, так как деформационная зависимость при "нагрузке-разгрузке" полимерных материалов и металлов имеет резко выраженные отличия от живых биологических структур. В результате этого нарушается согласованность работы фиброзных колец сердца, увеличиваются нагрузки на миокард, что ухудшает условия для полноценного ремоделирования последнего в послеоперационном периоде. Кроме того, наиболее частое отдаленное послеоперационное осложнение - отрывы аннулопластических колец от фиброзного кольца - также происходит вследствие прорезывания швов в результате большей амплитуды смещений в процессе «систолы-диастолы» упругого фиброзного кольца по сравнению с ригидным аннулопластическим кольцом. Плоская конфигурация жестких колец, помимо этого, отрицательно сказывается на долговечности конструкции вследствие возникновения нефизиологичных нагрузок в створчатом аппарате.

Известно 3D-кольцо с переменной жесткостью (патент США 2013/0211512 А1, заявл. 05.02.2013, опубл. 15.08.2013), представляющее собой плетеный сердечник из эластичного металла с внешними элементами, меняющими жесткость конструкции. Данный сердечник обеспечивает необходимую подвижность кольца в соответствии с физиологией клапана в необходимых его участках, а жесткие элементы-вставки позволяют поддерживать необходимую трехмерную геометрию устройства. Недостатком его является чрезмерная податливость и невозможность сохранения пространственной формы самим сердечником с одновременным наличием жестких участков в области вставок, а также техническая и технологическая сложность исполнения целостной конструкции. Кроме того, данное техническое решение предусматривает исполнение наружной облицовки только из синтетических материалов.

Наиболее близким к заявленному техническому решению является кольцо для аннулопластики трикуспидального клапана по патенту РФ №2300348 (класс С2, приоритет от 01.11.2004). Устройство содержит каркас в виде разомкнутого кольца из нитиноловой проволоки, с покрытием из эпоксиобработанного ксеноперикарда. Каркас снабжен закругленными выступами с отверстиями, расположенными кнутри от основной линии кольца на торцах и внутреннем контуре в местах проекции на него комиссуры передней и задней створок трикуспидального клапана. Проекция каркаса на покрытие визуально маркирована цветным швом из нерассасывающегося шовного материала.

Недостатками данного технического решения являются:

1) плоская геометрия устройства, что создает постоянные напряжения деформации в каркасе за счет адаптации формы аннулопластического кольца к форме фиброзного кольца, имеющего непланарную геометрию. Это, в свою очередь, снижает циклостойкость конструкции в целом;

2) наличие закругленных выступов с отверстиями, расположенными на торцах и внутреннем контуре в местах проекции на него комиссуры передней и задней створок трикуспидального клапана, затрудняет наложение хирургических швов, так как вынуждает хирурга смещать линию шва кнутри, уменьшая при этом площадь проходного сечения клапана;

3) предусмотрен только один вариант облицовки - из биологического материала.

Задачей, решаемой предложенным способом изготовления каркаса, является создание упругого аннулопластического разомкнутого каркаса кольца (С-кольца) трикуспидального клапана, которое может быть использовано в качестве самостоятельного протезного устройства для имплантации, соответствующего пространственной форме естественного трикуспидального фиброзного кольца и обладающего упругодеформативными свойствами, близкими по своим параметрам к фиброзному кольцу.

Техническим результатом изобретения является создание разомкнутого каркаса кольца (С-кольца) для аннулопластики трикуспидального клапана сердца, форма которого соответствует пространственной форме естественного трикуспидального фиброзного кольца, а также уменьшение периметра и площади дилатированного фиброзного кольца в результате фиксации аннулопластического имплантируемого каркаса и минимизация количества инородных материалов в правом предсердии. Использование двух формообразующих матриц позволяет достигнуть необходимых упругодеформативных свойств каркаса и создать точную пространственную форму, сохраняющуюся при температурах 34-42°С. Сформированные в виде замкнутой петли и обращенные наружу концы каркаса позволяют при имплантации не смещать внутрь общий контур швов.

Поставленная задача достигается тем, что каркас кольца для аннулопластики трикуспидального клапана сердца выполнен из никелида титана в форме разомкнутого кольца из проволоки круглого сечения с диаметром 0,5-0,7 мм. Каждый конец каркаса сформирован в виде замкнутой петли, обращенной наружу, при этом замкнутые петли расположены в плоскости фиброзного кольца. Способ изготовления каркаса разомкнутого кольца для аннулопластики трикуспидального клапана сердца включает построение компьютерной модели каркаса, формование и полировку. Сначала с помощью первой формообразующей матрицы формируют разомкнутый контур будущего каркаса из заготовки-проволоки, а на концах заготовки для каркаса формируют замкнутые петли. Первая матрица состоит из цилиндрического основания, на котором расположены шток для намотки проволоки и два цилиндрических штыря для формирования петель и съемные прижимные пластины. Проволоку наматывают с плотным прилеганием к штоку и штырям. После осуществления намотки проволоки, ее свободный конец прижимают пластинами для надежной иммобилизации. Зафиксированную на матрице заготовку для каркаса нагревают в вакуумной печи в течение 30-180 минут при температуре 480-550°С, после чего погружают для охлаждения в воду. Затем придают пространственную форму каркасу с помощью второй формообразующей матрицы, состоящей из прижимных элементов и центрального блока с выполненным на наружной поверхности горизонтальным пазом для заправки заготовки каркаса, при этом геометрия центрального блока и паза повторяют форму фиброзного кольца митрального клапана. Прижимные элементы закрепляют на центральном блоке второй матрицы с помощью винтов. Зафиксированную на матрице заготовку нагревают в вакуумной печи в течение 30-180 минут при температуре 480-550°С, после чего погружают для охлаждения в воду. После охлаждения каркас вынимают из матрицы, затем полируют и пассивируют. После придания нитиноловому каркасу окончательной пространственной формы он может быть использован в качестве самостоятельного изделия для имплантации либо подвергнут облицовке био- и гемосовместимыми материалами. При использовании для имплантации в организм пациента необлицованного нитинолового каркаса его поверхности придают био- и гемосовместимые свойства любым известным способом.

Деформационная способность нитиноловых каркасов из проволоки сечением 0,5-0,7 мм под действием нагрузок, развиваемых миокардом правого желудочка в процессе сердечного цикла, сопоставима по величине с деформационной способностью интактного трикуспидального фиброзного кольца. Упругодеформативные свойства каркаса регулируются за счет диаметра нитиноловой проволоки в диапазоне 0,5-0,7 мм. Способность к деформации уменьшается по мере увеличения диаметра проволоки, т.е. кольца становятся более жесткими. Упругодеформативные характеристики должны варьировать в зависимости от выраженности недостаточности клапана: так, например, при умеренной трикуспидальной недостаточности (регургитация не более 2+) возможно использование более «мягких» колец, при выраженной недостаточности (регургитация 3-4+) необходимы более «жесткие».

Для изготовления каркаса на первом этапе строят компьютерные модели на основании собственных или имеющихся в литературе обширных данных о размерах и геометрии трикуспидального фиброзного кольца в норме и при недостаточности различной этиологии, с учетом сведений о нагрузках, приходящихся на опорное кольцо в различные фазы сердечного цикла при данном виде патологии. Используя полученные модели, средствами автоматизированного проектирования разрабатывают высокоточные матрицы для термоформования. Матрицы выполняют из жаропрочного металла.

Вокруг центрального штока первой матрицы наматывают проволоку, таким образом, чтобы не создавать зазоры между проволокой и центральным штоком. При приближении намотки к области формирования петель - штырям, производят оборот вокруг них, таким же образом, как и вокруг центрального штока - без зазора. После формирования второй концевой петли, свободный край проволоки фиксируют прижимной пластиной, иммобилизуя проволоку-заготовку от смещения. После чего производят термическую обработку изделия.

Матрица для придания пространственной формы состоит из центрального блока, имеющего паз, повторяющий по форме конечную геометрию трикуспидального кольца. Для того чтобы заготовка не покидала паз, снаружи центрального блока монтируют серию удерживающих пластин, повторяющих по форме центральный блок. Заправляя заготовку трикуспидального кольца в паз центрального блока, последовательно, с помощью винтов, присоединяют наружные платины к центральному блоку. После чего производят термическую обработку изделия и, таким образом, придание ей конечной формы.

Продолжительность термической обработки в вакууме зависит от температуры: при температуре 480°С выдерживают в течение 180 минут, при температуре 550°С выдерживают в течение 30 минут.

После придания конечной формы изделие полируют. Стадии электрополировки могут предшествовать стадия пескоструйной механической обработки и стадия химического травления поверхности никелида титана с помощью плавиковой и азотной кислот. После электрополировки поверхность никелида титана пассивируется с помощью азотной кислоты.

С целью минимизации объема инородной ткани в полостях сердца каркасы заявленных колец могут быть использованы в качестве финального изделия для имплантации при реконструктивных вмешательствах на трикуспидальном клапане. Для улучшения гемосовместимых свойств поверхности нитиноловые каркасы могут быть подвергнуты обработке, повышающей био- и гемосовместимые свойства нитинола, любым известным способом.

Сущность изобретения поясняется чертежами, на которых изображено:

на фиг. 1 - каркас заявленного кольца для аннулопластики трикуспидального клапана; А - вид сверху; Б - вид сбоку;

на фиг. 2 - плоскостная проекция компьютерной модели каркаса заявленного кольца для аннулопластики трикуспидального клапана;

на фиг. 3А и 3Б - матрица для предварительного формования петлеобразных изгибов на торцах С-колец для аннулопластики. Фиг. 3А - вставлены штыри; Фиг. 3Б - матрица с прижимными пластинами;

на фиг. 4 - внешний вид матрицы для термоформования каркаса трикуспидального кольца.

Каркас 1 аннулопластического кольца трикуспидального клапана (фиг. 1А и Б) представляет собой проволоку диаметром 0,5-0,7 мм из сверхэластичного нитинола медицинской марки. Каждый конец проволочного каркаса 1 сформирован в виде замкнутой петли 2а, 2б (фиг 1А), обращенной наружу. Конец каркаса 2а приподнят относительно конца 2б, что соответствует анатомическому строению трикуспидального фиброзного кольца (фиг. 1Б). Форма каркаса повторяет геометрию нормального фиброзного кольца трикуспидального клапана за исключением части 3, прилегающей к основанию передней части септальной створки.

Для изготовления каркаса на первом этапе строят компьютерные модели (фиг. 2). Используя полученные модели, средствами автоматизированного проектирования разрабатывают высокоточные матрицы (фиг. 3, фиг. 4).

Первая матрица (фиг. 3) предназначена для формирования разомкнутого контура будущего каркаса из заготовки-проволоки, и формирования на концах заготовки для каркаса замкнутых петель. Первая матрица 4 представляет собой цилиндрическое основание 5, на которое монтируют центральный шток 6. Вокруг данного штока производят намотку проволоки, из которой изготавливают заготовку для каркаса 1 митрального кольца. Намотку осуществляют таким образом, чтобы сформировать разомкнутую геометрию и формируют концевые петли каркаса 2а, 2б. Для формирования петель используют штыри 7, представляющие собой металлические или полимерные цилиндры, или винты. После осуществления намотки проволоки, ее свободный конец прижимают пластинами 8 для надежной иммобилизации и производят термическую обработку изделий.

Вторая матрица 9 (фиг. 4) для придания пространственной формы каркасу состоит из центрального блока 10 - «тела» матрицы, с выполненным на наружной поверхности горизонтальным пазом 11, повторяющим по форме конечную геометрию трикуспидального кольца. Паз 11 проходит по наружной границе центрального блока 10 таким образом, чтобы в него можно было заправить заготовку изделия, полученную с помощью первой матрицы. В концевых участках паза имеются углубления 12 к центру матрицы, такие, чтобы погрузить в них петли заготовки и сформировать их конечный вид. Для того чтобы заготовка не покидала паз, снаружи центрального блока монтируют серию удерживающих пластин - прижимных элементов 13, повторяющих по форме центральный блок. Заправляя заготовку митрального кольца в паз 11 центрального блока 10, последовательно, с помощью винтов, присоединяют наружные пластины - прижимные элементы 13 к центральному блоку 10. После чего производят термическую обработку изделия, придавая каркасу конечную форму.

Похожие патенты RU2663157C1

название год авторы номер документа
Каркас разомкнутого кольца для аннулопластики митрального клапана сердца, способ его изготовления и применение 2017
  • Журавлёва Ирина Юрьевна
  • Богачёв-Прокофьев Александр Владимирович
  • Требушат Дмитрий Владимирович
RU2663156C1
КАРКАС ЗАМКНУТОГО КОЛЬЦА ДЛЯ АННУЛОПЛАСТИКИ МИТРАЛЬНОГО КЛАПАНА СЕРДЦА, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ 2017
  • Журавлёва Ирина Юрьевна
  • Богачёв-Прокофьев Александр Владимирович
  • Майоров Александр Петрович
  • Требушат Дмитрий Владимирович
RU2666929C1
УСТРОЙСТВО И СПОСОБ ДЛЯ УМЕНЬШЕНИЯ РАЗМЕРА КЛАПАНА СЕРДЦА 2008
  • Керянен Олли
  • Антонссон Пер
RU2491035C2
Биопротез аортального клапана (варианты) для открытой бесшовной и транскатетерной имплантации 2020
  • Журавлёва Ирина Юрьевна
  • Богачёв-Прокофьев Александр Владимирович
  • Тимченко Татьяна Павловна
  • Шарифулин Равиль Махарамович
  • Приходько Юрий Михайлович
RU2749118C1
СПОСОБ ИМПЛАНТАЦИИ КЛАПАННОГО ПРОТЕЗА В ТРИКУСПИДАЛЬНУЮ ПОЗИЦИЮ 2011
  • Горбатых Юрий Николаевич
  • Ленько Евгений Владимирович
  • Наберухин Юрий Леонидович
RU2465834C1
БИОПРОТЕЗ ДЛЯ ТРАНСКАТЕТЕРНОЙ ЗАМЕНЫ МИТРАЛЬНОГО КЛАПАНА 2020
  • Журавлёва Ирина Юрьевна
  • Богачёв-Прокофьев Александр Владимирович
  • Тимченко Татьяна Павловна
  • Шарифулин Равиль Махарамович
RU2738306C1
СПОСОБ РЕЗЕКЦИОННОЙ АТРИОПЛАСТИКИ ПРИ ЛЕВОЙ АТРИОМЕГАЛИИ 2006
  • Железнев Сергей Иванович
  • Назаров Владимир Михайлович
  • Богачев-Прокофьев Александр Владимирович
RU2354309C2
СПОСОБ ХИРУРГИЧЕСКОЙ КОРРЕКЦИИ КОМБИНИРОВАННЫХ ПОРОКОВ МИТРАЛЬНОГО И АОРТАЛЬНОГО КЛАПАНОВ НА ФОНЕ АКТИВНОГО ИНФЕКЦИОННОГО ЭНДОКАРДИТА 2006
  • Караськов Александр Михайлович
  • Семенов Игорь Иванович
  • Железчиков Владимир Евгеньевич
  • Астапов Дмитрий Александрович
RU2355327C2
СПОСОБ ИМПЛАНТАЦИИ МЕХАНИЧЕСКОГО ПРОТЕЗА КЛАПАНА СЕРДЦА 2009
  • Железнев Сергей Иванович
  • Назаров Владимир Михайлович
  • Сартин Борис Евгеньевич
  • Богачев-Прокофьев Александр Владимирович
  • Шматов Дмитрий Владимирович
RU2453278C2
СПОСОБ ИМПЛАНТАЦИИ БЕСКАРКАСНЫХ БИОЛОГИЧЕСКИХ КЛАПАНОВ СЕРДЦА У БОЛЬНЫХ ИНФЕКЦИОННЫМ ЭНДОКАРДИТОМ 2003
  • Караськов Александр Михайлович
  • Семенов Игорь Иванович
  • Железчиков Владимир Евгеньевич
  • Железнев Сергей Иванович
  • Назаров Владимир Михайлович
  • Аминов Владислав Вадимович
RU2268005C2

Иллюстрации к изобретению RU 2 663 157 C1

Реферат патента 2018 года Каркас кольца для аннулопластики трикуспидального клапана сердца, способ его изготовления и применение

Группа изобретений относится к медицине, а именно к сердечно-сосудистой хирургии, и может быть использована при лечении пороков клапанов сердца, в частности при аннулопластике трикуспидального клапана. Способ изготовления разомкнутого каркаса кольца для аннулопластики трикуспидального клапана сердца включает построение компьютерной модели каркаса, формование и полировку. Сначала из заготовки для каркаса формируют разомкнутый контур и на концах формируют замкнутые петли с помощью первой формообразующей матрицы, имеющей на цилиндрическом основании шток для намотки проволоки и два цилиндрических штыря для формирования петель и съемные прижимные пластины. Зафиксированную на матрице заготовку для каркаса нагревают в вакуумной печи с последующим охлаждением в воде, затем придают пространственную форму каркасу с помощью второй формообразующей матрицы, состоящей из прижимных элементов и центрального блока с выполненным на наружной поверхности горизонтальным пазом для заправки заготовки каркаса. Геометрия центрального блока и паза повторяет форму фиброзного кольца трикуспидального клапана. Зафиксированную на матрице заготовку нагревают в вакуумной печи, затем охлаждают в воде, затем каркас вынимают из матрицы, полируют и пассивируют. Раскрыто применение каркаса кольца для аннулопластики в качестве протезного устройства, дополняющего естественный клапан и фиксирующего наружно трикуспидальное фиброзное кольцо. Технический реузльтат состоит в обеспечении соответствия пространственной форме естественного трикуспидального фиброзного кольца. 2 н. и 3 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 663 157 C1

1. Способ изготовления разомкнутого каркаса кольца для аннулопластики трикуспидального клапана сердца, включающий построение компьютерной модели каркаса, формование и полировку, отличающийся тем, что сначала из заготовки для каркаса формируют разомкнутый контур и на концах формируют замкнутые петли с помощью первой формообразующей матрицы, имеющей на цилиндрическом основании шток для намотки проволоки и два цилиндрических штыря для формирования петель и съемные прижимные пластины, зафиксированную на матрице заготовку для каркаса нагревают в вакуумной печи с последующим охлаждением в воде; затем придают пространственную форму каркасу с помощью второй формообразующей матрицы, состоящей из прижимных элементов и центрального блока с выполненным на наружной поверхности горизонтальным пазом для заправки заготовки каркаса, при этом геометрия центрального блока и паза повторяет форму фиброзного кольца трикуспидального клапана, зафиксированную на матрице заготовку нагревают в вакуумной печи, затем охлаждают в воде, затем каркас вынимают из матрицы, полируют и пассивируют.

2. Способ изготовления каркаса по п. 1, отличающийся тем, что заготовку для каркаса, зафиксированную на первой матрице, нагревают в течение 30-180 минут при температуре 480-550°С.

3. Способ изготовления каркаса по п. 1, отличающийся тем, что заготовку для каркаса, зафиксированную на второй матрице, нагревают в течение 30-180 минут при температуре 480-550°С.

4. Способ изготовления каркаса по п. 1, отличающийся тем, что для фиксации заготовки каркаса прижимные элементы на центральном блоке второй матрицы закрепляют с помощью винтов.

5. Применение каркаса кольца для аннулопластики, изготовленного в соответствии с пп. 1-4, в качестве протезного устройства, дополняющего естественный клапан и фиксирующего наружно трикуспидальное фиброзное кольцо.

Документы, цитированные в отчете о поиске Патент 2018 года RU2663157C1

US 2009036979 A1, 05.02.2009
US 5674279 A1, 07.10.997
Вибрационный гальванометр 1960
  • Ройтман М.С.
SU132332A1
ДРЕНАЖНОЕ ПРИСПОСОБЛЕНИЕ К ПЛУГУ 0
SU174868A1

RU 2 663 157 C1

Авторы

Журавлёва Ирина Юрьевна

Богачёв-Прокофьев Александр Владимирович

Требушат Дмитрий Владимирович

Даты

2018-08-01Публикация

2017-06-21Подача