ВОДОРАСТВОРИМАЯ ЛЕКАРСТВЕННАЯ ФОРМА МЕЗО-ТЕТРА(3-ПИРИДИЛ)БАКТЕРИОХЛОРИНА ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ Российский патент 2018 года по МПК A61K31/409 A61P35/00 C07D487/22 

Описание патента на изобретение RU2663900C1

Настоящее изобретение относится к медицине и фармацевтике, а именно к водорастворимой лекарственной форме фотосенсибилизатора (ФС) на основе мезо-тетра(3-пиридил)бактериохлорина и ее применению для лечения злокачественных новообразований методом фотодинамической терапии (ФДТ).

Метод ФДТ рака основан на применении природных или синтетических ФС, которые обладают способностью к избирательному накоплению в опухолевой ткани. При облучении светом определенной длины волны, соответствующей максимуму поглощения, ФС переходит в активированное состояние, которое инициирует образование цитотоксических агентов - синглетного кислорода и свободных радикалов, вызывающих разрушение структурных элементов опухолевой ткани. Эффективность ФС во многом зависит от области его спектрального поглощения, в которой проводится облучение опухоли. Длина волны облучения определяет глубину проникновения света в опухолевую ткань и, следовательно, возможную глубину воздействия на опухоль.

Используемые в клинике ФС на основе порфиринов, хлоринов и тетраазапорфинов («Фотофрин» (США), «Фотогем» (Россия), «Фотосенс» (Россия), «Радахлорин» (Россия), «Фотолон» (Беларусь), «Фотодитазин» (Россия), «Фоскан» (Великобритания)), имеют спектр поглощения с максимумами в области 630-670 нм. Проницаемость биологических тканей в этом диапазоне незначительна и составляет всего несколько миллиметров, что часто приводит к частичной деструкции опухолевого очага и продолженному росту опухоли. Поэтому в последнее время проводятся интенсивные исследования по созданию новых эффективных ФС на основе бактериохлоринов, имеющих интенсивное поглощение в красной и ближней инфракрасной области спектра (700-850 нм), так называемом «терапевтическом окне», где собственное поглощение биологической ткани минимально, что обеспечивает возможность более глубокого проникновения излучения в ткань и, как следствие, высокую эффективность терапии (Bonnett R.J. Heterocyclic Chem. 2002. V. 39. P. 455-470).

Возможность более глубокого воздействия на опухолевую ткань (до 8-10 мм) при использовании бактериохлоринов в качестве ФС позволит сократить количество сеансов облучения, что очень важно для лечения опухолей труднодоступной локализации, в частности рака предстательной железы, и даст возможность эффективно воздействовать на опухоли большого размера.

Результаты исследований ФС класса бактериохлоринов, как получаемых на основе природного сырья - бактериохлорофилла, так и чисто синтетических, подтверждают их высокую фотодинамическую активность (Chen Y., Li G., Pandey R.K. // Cur. Org. Chem. 2004. V. 8. P. 1105-1134; Миронов А.Ф., Грин M.A., Ципровский А.Г. и др. // Биоорганическая химия. 2003. Т. 29. Вып. 2. С. 214-221). Так, бактериофеофорбид палладия (Tookad, Израиль-ФРГ-Франция), являющийся производным бактериохлорофилла, разрешен для лечения рака простаты.

Высокую эффективность в экспериментах in vitro и in vivo показали водорастворимые тетра- и октакатионные четвертичные соли мезо-тетра(3-пиридил)бактериохлорина (Патент РФ №2479585, №2476218, №2446842). Хорошая растворимость этих ФС в воде является их несомненным достоинством, делающим возможным использование их готовых лекарственных форм в виде сухого порошка, однако они обладают длительной фармакокинетикой, приводящей к развитию побочных эффектов.

Некоторые высокоэффективные ФС нерастворимы в воде, что препятствует их широкому использованию в клинической практике, хотя высокий уровень гидрофобности препарата предпочтителен для прохождения через клеточные мембраны. Лекарственные формы гидрофобных ФС в виде стабильных водных композиций создаются путем включения их в наноносители, например, мицеллы или липосомы. Так, гидрофобный мезо-тетра(3-пиридил)бактериохлорин в 4% водном растворе Cremophor EL показал высокий противоопухолевый эффект (100% торможение роста опухоли и 100% излеченность животных) при использовании в дозе 2,5 мг/кг и облучении через 2 часа после введения (Патент РФ №2549953). При этом он характеризуется быстрым выведением из организма животных (через 24 часа содержание во внутренних органах уменьшается на 87-92% от максимального значения). Недостатком этой композиции является ее недостаточная устойчивость, при длительном хранении постепенно происходит разрушение коллоидных наночастиц и образование осадка.

Известно, что сублимационная сушка является эффективным способом повышения стабильности термолабильных и гидролитически неустойчивых лекарственных веществ. Сублимационная сушка основана на удалении влаги из замороженного материала путем возгонки (сублимации) льда, который превращается в пар, минуя жидкую фазу (Abdelwahed W., Degobert G., Stainmesse S., Fessi H. // Adv. Drug. Deliv. Rev. 2006. V. 58. P. 1688-1713).

Задачей предлагаемого изобретения является создание лекарственной формы ФС на основе мезо-тетра(3-пиридил)бактериохлорина, обеспечивающей устойчивость при длительном хранении при сохранении высокой фотоиндуцированной активности и короткого времени циркуляции в организме.

Для решения поставленной задачи в качестве лекарственной формы для ФДТ предлагается сухой лиофилизированный порошок, содержащий действующее вещество мезо-тетра(3-пиридил)бактериохлорин, неиногенное поверхностно-активное вещество коллифор ELP в качестве солюбилизата, маннит в качестве криопротектора и лимонную кислоту для стабилизации водного раствора перед лиофилизацией при следующем массовом содержании вспомогательных компонентов в расчете на 1 мг действующего вещества:

коллифор ELP - 80 мг ± 10%;

D(-)-маннит - 200 мг ± 10%;

лимонная кислота - 0,5 мг ± 10%.

Содержание коллифора ELP в предлагаемой лекарственной форме оптимально для солюбилизации гидрофобного действующего вещества. Аналогичное количество коллифора ELP было использовано нами ранее для солюбилизации мезо-тетра(3-пиридил)бактериохлорина (Патент РФ №2549953). Углеводсодержащий спирт маннит используется в медицине для внутривенного введения как диуретическое средство. Мы использовали его в качестве криопротектора и формообразующего наполнителя в количестве, необходимом и достаточном для формирования объемной таблетки. Количество лимонной кислоты оптимизировано для обеспечения стабильности раствора в течение подготовки его к лиофилизации, и с другой стороны не изменяет спектральных свойств действующего вещества, которые могут происходить при рН раствора менее 3,0.

1. Приготовление лекарственной формы препарата Бактериосенс - лиофилизата для приготовления раствора для инфузий.

Процедура получения лекарственной формы заключается в следующем: диспергируют мезо-тетра(3-пиридил)бактериохлорин в поверхностно-активном веществе Kolliphor ELP ультразвуком, растворяют полученную дисперсию в хлороформе и удаляют растворитель на роторном испарителе. Затем гидратируют остаток раствором лимонной кислоты и добавляют маннит в качестве наполнителя и криопротектора. Далее проводят стерилизующую фильтрацию полученного раствора, дозированный разлив в стеклянные флаконы и лиофильную сушку, после чего флаконы заполняют инертным газом и укупоривают.

Лиофилизированный препарат может содержать активное действующее вещество в количествах от 1 до 5 мг (оптимально 2,5 мг), в зависимости от объема раствора для лиофилизации на один флакон.

Лиофилизат отличается высокой стабильностью при хранении и легко растворяется в водной среде перед введением без применения дополнительного оборудования.

2. Фотоиндуцированная активность бактериосенса в системе in vitro.

Исследование фотоиндуцированной активности in vitro проводили на 10-ти клеточных линиях человека и мыши различного эпителиального происхождения и генеза: человека - легкие А549, гортаноглотка: НЕр2, молочная железа: ВТ-474, MCF-7, SK-BK-3, предстательная железа: РС3, мочевой пузырь EJ, толстая кишка НТ29; мыши: карцинома S-37, толстая кишка: С26, легкие: LLC. При исследованиях варьировали концентрацию ФС и время инкубации до облучения (от 30 минут до 12 часов). При воздействии светом препарат проявлял высокую специфическую активность, при отсутствии темновой токсичности. Величина ИК50, варьировалась при/оптимальном времени инкубации (от 4 до 8 часов) от 25±6 нМ до 80±5 нМ в зависимости от культуры клеток.

3. Распределение и флуоресцентная контрастность препарата Бактериосенс у мышей с опухолями различного генеза большого размера.

Оценка распределения бактериосенса в опухолевой ткани мышей с карциномой легкого Льюис (LLC), саркомой мягких тканей S37 (S37), аденокарциномой толстой кишки Colo26 (С26), аденокарциномой предстательной железы человека РС3 (РС3) и окружающей ткани, проведенная методом локальной флуоресцентной спектроскопии (ЛФС), показала, что фотосенсибилизатор дозозависимо (1,0 мг/кг, 2,5 мг/кг и 6,25 мг/кг) накапливался в опухолевой и окружающей ткани.

Максимальные значения нормированной флуоресценции (ФН) препарата в опухолях LLC, S37, С26 и РС3 регистрировалось на ранние сроки (0,5-4 часа) после однократного внутривенного введения. Наибольший уровень ФН выявлен у мышей с аденокарциномой предстательной железы человека РС3 на все сроки наблюдения, а наименьший - у мышей с саркомой S37 и составлял в зависимости от дозы: 6,2÷7,3 усл. ед. - 9,3÷13,0 усл. ед. и 3,6÷4,0 усл. ед. - 7,7÷9,5 усл. ед., соответственно. На фиг.4 представлено распределение препарата в дозе 2,5 мг/кг у мышей nu/nu с ксенографтами аденокарциномы РС3 в опухолевой и окружающей ткани.

Для всех исследованных опухолей максимальная флуоресцентная контрастность относительно кожи регистрировалась через 5-30 минут после введения препарата независимо от его дозы. Уровень ФК относительно кожи имел близкие значения для LLC - 2,7÷3,9 усл. ед., для S37 - 2,1÷3,1 усл. ед., для С26 - 2,3÷4,5 усл. ед., для РС3 - 2,2÷3,4 усл. ед

4. Фотоиндуцированная противоопухолевая активность препарата Бактериосенс у животных с опухолями различного генеза большого размера при полипозиционном режиме облучения.

Поскольку эффективность ФДТ зависит от ряда параметров, изучение фотоиндуцированной противоопухолевой активности бактериосенса проводили в зависимости от дозы препарата при постоянных интервале между его введением и облучением и дозе света; затем определяли оптимальный интервал времени между введением ФС и облучением при постоянной дозе препарата и дозе света, после этого изучали зависимость эффективности от плотности энергии облучения при отобранной дозе препарата и интервале между его введением и облучением и в конечном итоге варьировали количества полей облучения при постоянных дозе препарата, дозе света и интервале между введением препарата и облучением.

Выявлены оптимальные терапевтические режимы проведения ФДТ с препаратом Бактериосенс: доза 2,5 мг/кг, интервалы после введения 0,5-1 час и доза света при полипозиционном режиме облучения: одного поля 90 Дж/см2, суммарная - 270 Дж/см2.

При определении спектра фотоиндуцированной противоопухолевой активности бактериосенса у мышей с опухолями большого размера (Vопухоли=400±40 мм3): саркомой мягких тканей S37, карциномой легкого Льюис LLC, аденокарциномой толстой кишки С26, аденокарциномой молочной железы Са755 показано, что наименее выраженный противоопухолевый эффект выявлен у мышей с аденокарциномой толстой кишки С26 (ТРО - 100%, УПЖ - 54%, КИ - 0%), наиболее выраженный - у мышей с S37 (ТРО - 100%, УПЖ - 78%, КИ - 38%).

5. Фармакокинетика бактериосенса у интактных животных

Исследования по фармакокинетике у интактных мышей и кроликов, проведенные методом ЛФС по нормированной флуоресценции препарата в интервале от 5 секунд до 6 суток, показали дозозависимое накопление и элиминацию бактериосенса в сыворотке крови, основных внутренних органах и тканях животных после внутривенного введения. Бактериосенс быстро выводился из кровотока мышей и крыс, через сутки при использовании минимальной дозы (1,0 мг/кг и 0,236 мг/кг, соответственно) и через 4 суток - максимальной дозы (6,25 мг/кг и 1,475 мг/кг, соответственно).

В коже, мышце, ушах и селезенке мышей и кроликов бактериосенс накапливался быстро, но также быстро и выводился - максимальная доза (6,25 мг/кг и 1,475 мг/кг, соответственно) регистрировалась до 4-х суток, минимальная доза (1,0 мг/кг) - не более 24 часов для мышей и (0,236 мг/кг) - до 3-х суток у кроликов.

Бактериосенс наиболее интенсивно накапливался и длительно удерживался у мышей и кроликов в сальнике, печени и почках - более 6-ти суток при использовании максимальной дозы (6,25 мг/кг и 1,475 мг/кг, соответственно). При использовании минимальной дозы у мышей (1,0 мг/кг) - в течение 2-х суток и минимальной дозы кроликов (0,236 мг/кг) - в течение 4-х суток. Основные пути элиминирования препарата из организма животных происходили через почки и печень.

Изобретение иллюстрируется чертежами (фиг. 1 - фиг. 6).

Похожие патенты RU2663900C1

название год авторы номер документа
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2012
  • Дудкин Семен Валентинович
  • Игнатова Анастасия Александровна
  • Кобзева Елена Сергеевна
  • Лужков Юрий Михайлович
  • Лукъянец Евгений Антонович
  • Макарова Елена Александровна
  • Морозова Наталья Борисовна
  • Плютинская Анна Дмитриевна
  • Феофанов Алексей Валерьевич
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
RU2479585C1
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2013
  • Макарова Елена Александровна
  • Якубовская Раиса Ивановна
  • Ворожцов Георгий Николаевич
  • Ластовой Антон Павлович
  • Лукьянец Евгений Антонович
  • Морозова Наталья Борисовна
  • Плотникова Екатерина Александровна
RU2549953C2
АМИНОАМИДЫ В РЯДУ БАКТЕРИОХЛОРОФИЛЛА A, ОБЛАДАЮЩИЕ ФОТОДИНАМИЧЕСКОЙ АКТИВНОСТЬЮ, И СПОСОБ ИХ ПОЛУЧЕНИЯ 2013
  • Миронов Андрей Федорович
  • Решетников Роман Игоревич
  • Грин Михаил Александрович
  • Якубовская Раиса Ивановна
  • Плотникова Екатерина Александровна
  • Морозова Наталья Борисовна
  • Цыганков Анатолий Анатольевич
  • Феофанов Алексей Валерьевич
  • Ермакова Дарья Эдуардовна
  • Ефременко Анастасия Владимировна
RU2548675C9
ПРЕПАРАТ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ РАКА С ЕГО ИСПОЛЬЗОВАНИЕМ 2012
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
  • Миронов Андрей Федорович
  • Грин Михаил Александрович
  • Плотникова Екатерина Александровна
  • Морозова Наталья Борисовна
  • Цыганков Анатолий Анатольевич
RU2521327C1
ФОТОСЕНСИБИЛИЗАТОР БАКТЕРИОХЛОРИНОВОГО РЯДА ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2019
  • Грин Михаил Александрович
  • Филоненко Елена Вячеславовна
  • Миронов Андрей Федорович
  • Суворов Никита Владимирович
  • Панкратов Андрей Александрович
  • Григорьевых Надежда Игоревна
RU2720806C2
ФОТОСЕНСИБИЛИЗАТОРЫ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2012
  • Дудкин Семен Валентинович
  • Ефременко Анастасия Владимировна
  • Игнатова Анастасия Александровна
  • Кобзева Елена Сергеевна
  • Лукъянец Евгений Антонович
  • Макарова Елена Александровна
  • Морозова Наталья Борисовна
  • Плютинская Анна Дмитриевна
  • Феофанов Алексей Валерьевич
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
RU2476218C1
СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ ПЕРЕВИВНОЙ ОПУХОЛИ КАРЦИНОМА ЭРЛИХА МЫШЕЙ С ФОТОСЕНСИБИЛИЗАТОРОМ ХЛОРИНОВОГО РЯДА 2022
  • Абрамова Ольга Борисовна
  • Дрожжина Валентина Владимировна
  • Козловцева Екатерина Александровна
  • Сивоволова Татьяна Петровна
  • Островерхов Петр Васильевич
  • Грин Михаил Александрович
  • Кирин Никита Сергеевич
  • Иванов Сергей Анатольевич
  • Каприн Андрей Дмитриевич
RU2788766C2
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2013
  • Койфман Оскар Иосифович
  • Лукьянец Евгений Антонович
  • Морозова Наталья Борисовна
  • Плотникова Екатерина Александровна
  • Пономарёв Гелий Васильевич
  • Соловьёва Людмила Ивановна
  • Страховская Марина Глебовна
  • Якубовская Раиса Ивановна
RU2536966C1
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2013
  • Якубовская Раиса Ивановна
  • Соловьёва Людмила Ивановна
  • Койфман Оскар Иосифович
  • Пономарёв Гелий Васильевич
  • Ластовой Антон Павлович
  • Лукьянец Евгений Антонович
  • Морозова Наталья Борисовна
  • Плотникова Екатерина Александровна
RU2548726C2
СПОСОБ МОДИФИКАЦИИ ФОТОДИНАМИЧЕСКОГО ЛЕЧЕНИЯ 2010
  • Якубовская Раиса Ивановна
  • Воронцова Мария Сергеевна
  • Кармакова Татьяна Анатольевна
  • Венедиктова Юлия Борисовна
  • Лукъянец Евгений Антонович
RU2449821C1

Иллюстрации к изобретению RU 2 663 900 C1

Реферат патента 2018 года ВОДОРАСТВОРИМАЯ ЛЕКАРСТВЕННАЯ ФОРМА МЕЗО-ТЕТРА(3-ПИРИДИЛ)БАКТЕРИОХЛОРИНА ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ

Изобретение относится к водорастворимой лекарственной форме фотосенсибилизатора ближней ИК области спектра для фотодинамической терапии мезо-тетра(3-пиридил)бактериохлорина (λmax = 747 нм) структурной формулы:

представляющей собой лиофилизат для приготовления раствора для инфузий, содержащий неиногенное поверхностно-активное вещество коллифор ELP, маннит и лимонную кислоту при следующем оптимальном содержании вспомогательных компонентов в расчете на 1 мг действующего вещества: коллифор ELP - 80 мг±10%; D(-)-маннит - 200 мг ± 10%; лимонная кислота - 0,5 мг ± 10%. Технический результат: получена водорастворимая лекарственная форма мезо-тетра(3-пиридил)бактериохлорина, устойчивая при длительном хранении, обладающая высокой фотоиндуцированной активностью. 6 ил.

Формула изобретения RU 2 663 900 C1

Водорастворимая лекарственная форма фотосенсибилизатора ближней ИК области спектра для фотодинамической терапии мезо-тетра(3-пиридил)бактериохлорина (λmax = 747 нм) структурной формулы:

представляющая собой лиофилизат для приготовления раствора для инфузий, содержащий неиногенное поверхностно-активное вещество коллифор ELP, маннит и лимонную кислоту, при следующем оптимальном содержании вспомогательных компонентов в расчете на 1 мг действующего вещества:

коллифор ELP - 80 мг±10%; D(-)-маннит - 200 мг ± 10%; лимонная кислота - 0,5 мг ± 10%.

Документы, цитированные в отчете о поиске Патент 2018 года RU2663900C1

СПОСОБ ЛЕЧЕНИЯ МЕСТНОРАСПРОСТРАНЕННЫХ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ В ЭКСПЕРИМЕНТЕ 2010
  • Алехин Александр Иванович
  • Сергеева Татьяна Владимировна
  • Шастак Астрид
  • Базаева Виктория Викторовна
  • Богатырев Олег Павлович
  • Баркая Владимир Спиридонович
  • Миквабия Зураб Ясонович
  • Тимановская Валентина Васильевна
RU2446842C2
ФОТОСЕНСИБИЛИЗАТОРЫ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2012
  • Дудкин Семен Валентинович
  • Ефременко Анастасия Владимировна
  • Игнатова Анастасия Александровна
  • Кобзева Елена Сергеевна
  • Лукъянец Евгений Антонович
  • Макарова Елена Александровна
  • Морозова Наталья Борисовна
  • Плютинская Анна Дмитриевна
  • Феофанов Алексей Валерьевич
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
RU2476218C1
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2012
  • Дудкин Семен Валентинович
  • Игнатова Анастасия Александровна
  • Кобзева Елена Сергеевна
  • Лужков Юрий Михайлович
  • Лукъянец Евгений Антонович
  • Макарова Елена Александровна
  • Морозова Наталья Борисовна
  • Плютинская Анна Дмитриевна
  • Феофанов Алексей Валерьевич
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
RU2479585C1
WO 9950269 A2, 07.10.1999.

RU 2 663 900 C1

Авторы

Лукьянец Евгений Антонович

Макарова Елена Александровна

Калиниченко Алла Николаевна

Старкова Наталия Николаевна

Безуленко Валентина Николаевна

Кобзева Елена Сергеевна

Якубовская Раиса Ивановна

Морозова Наталья Борисовна

Плотникова Екатерина Александровна

Плютинская Анна Дмитриевна

Страмова Валентина Олеговна

Даты

2018-08-13Публикация

2017-08-21Подача