Настоящее изобретение относится к медицине и фармацевтике, а именно к водорастворимой лекарственной форме фотосенсибилизатора (ФС) на основе мезо-тетра(3-пиридил)бактериохлорина и ее применению для лечения злокачественных новообразований методом фотодинамической терапии (ФДТ).
Метод ФДТ рака основан на применении природных или синтетических ФС, которые обладают способностью к избирательному накоплению в опухолевой ткани. При облучении светом определенной длины волны, соответствующей максимуму поглощения, ФС переходит в активированное состояние, которое инициирует образование цитотоксических агентов - синглетного кислорода и свободных радикалов, вызывающих разрушение структурных элементов опухолевой ткани. Эффективность ФС во многом зависит от области его спектрального поглощения, в которой проводится облучение опухоли. Длина волны облучения определяет глубину проникновения света в опухолевую ткань и, следовательно, возможную глубину воздействия на опухоль.
Используемые в клинике ФС на основе порфиринов, хлоринов и тетраазапорфинов («Фотофрин» (США), «Фотогем» (Россия), «Фотосенс» (Россия), «Радахлорин» (Россия), «Фотолон» (Беларусь), «Фотодитазин» (Россия), «Фоскан» (Великобритания)), имеют спектр поглощения с максимумами в области 630-670 нм. Проницаемость биологических тканей в этом диапазоне незначительна и составляет всего несколько миллиметров, что часто приводит к частичной деструкции опухолевого очага и продолженному росту опухоли. Поэтому в последнее время проводятся интенсивные исследования по созданию новых эффективных ФС на основе бактериохлоринов, имеющих интенсивное поглощение в красной и ближней инфракрасной области спектра (700-850 нм), так называемом «терапевтическом окне», где собственное поглощение биологической ткани минимально, что обеспечивает возможность более глубокого проникновения излучения в ткань и, как следствие, высокую эффективность терапии (Bonnett R.J. Heterocyclic Chem. 2002. V. 39. P. 455-470).
Возможность более глубокого воздействия на опухолевую ткань (до 8-10 мм) при использовании бактериохлоринов в качестве ФС позволит сократить количество сеансов облучения, что очень важно для лечения опухолей труднодоступной локализации, в частности рака предстательной железы, и даст возможность эффективно воздействовать на опухоли большого размера.
Результаты исследований ФС класса бактериохлоринов, как получаемых на основе природного сырья - бактериохлорофилла, так и чисто синтетических, подтверждают их высокую фотодинамическую активность (Chen Y., Li G., Pandey R.K. // Cur. Org. Chem. 2004. V. 8. P. 1105-1134; Миронов А.Ф., Грин M.A., Ципровский А.Г. и др. // Биоорганическая химия. 2003. Т. 29. Вып. 2. С. 214-221). Так, бактериофеофорбид палладия (Tookad, Израиль-ФРГ-Франция), являющийся производным бактериохлорофилла, разрешен для лечения рака простаты.
Высокую эффективность в экспериментах in vitro и in vivo показали водорастворимые тетра- и октакатионные четвертичные соли мезо-тетра(3-пиридил)бактериохлорина (Патент РФ №2479585, №2476218, №2446842). Хорошая растворимость этих ФС в воде является их несомненным достоинством, делающим возможным использование их готовых лекарственных форм в виде сухого порошка, однако они обладают длительной фармакокинетикой, приводящей к развитию побочных эффектов.
Некоторые высокоэффективные ФС нерастворимы в воде, что препятствует их широкому использованию в клинической практике, хотя высокий уровень гидрофобности препарата предпочтителен для прохождения через клеточные мембраны. Лекарственные формы гидрофобных ФС в виде стабильных водных композиций создаются путем включения их в наноносители, например, мицеллы или липосомы. Так, гидрофобный мезо-тетра(3-пиридил)бактериохлорин в 4% водном растворе Cremophor EL показал высокий противоопухолевый эффект (100% торможение роста опухоли и 100% излеченность животных) при использовании в дозе 2,5 мг/кг и облучении через 2 часа после введения (Патент РФ №2549953). При этом он характеризуется быстрым выведением из организма животных (через 24 часа содержание во внутренних органах уменьшается на 87-92% от максимального значения). Недостатком этой композиции является ее недостаточная устойчивость, при длительном хранении постепенно происходит разрушение коллоидных наночастиц и образование осадка.
Известно, что сублимационная сушка является эффективным способом повышения стабильности термолабильных и гидролитически неустойчивых лекарственных веществ. Сублимационная сушка основана на удалении влаги из замороженного материала путем возгонки (сублимации) льда, который превращается в пар, минуя жидкую фазу (Abdelwahed W., Degobert G., Stainmesse S., Fessi H. // Adv. Drug. Deliv. Rev. 2006. V. 58. P. 1688-1713).
Задачей предлагаемого изобретения является создание лекарственной формы ФС на основе мезо-тетра(3-пиридил)бактериохлорина, обеспечивающей устойчивость при длительном хранении при сохранении высокой фотоиндуцированной активности и короткого времени циркуляции в организме.
Для решения поставленной задачи в качестве лекарственной формы для ФДТ предлагается сухой лиофилизированный порошок, содержащий действующее вещество мезо-тетра(3-пиридил)бактериохлорин, неиногенное поверхностно-активное вещество коллифор ELP в качестве солюбилизата, маннит в качестве криопротектора и лимонную кислоту для стабилизации водного раствора перед лиофилизацией при следующем массовом содержании вспомогательных компонентов в расчете на 1 мг действующего вещества:
коллифор ELP - 80 мг ± 10%;
D(-)-маннит - 200 мг ± 10%;
лимонная кислота - 0,5 мг ± 10%.
Содержание коллифора ELP в предлагаемой лекарственной форме оптимально для солюбилизации гидрофобного действующего вещества. Аналогичное количество коллифора ELP было использовано нами ранее для солюбилизации мезо-тетра(3-пиридил)бактериохлорина (Патент РФ №2549953). Углеводсодержащий спирт маннит используется в медицине для внутривенного введения как диуретическое средство. Мы использовали его в качестве криопротектора и формообразующего наполнителя в количестве, необходимом и достаточном для формирования объемной таблетки. Количество лимонной кислоты оптимизировано для обеспечения стабильности раствора в течение подготовки его к лиофилизации, и с другой стороны не изменяет спектральных свойств действующего вещества, которые могут происходить при рН раствора менее 3,0.
1. Приготовление лекарственной формы препарата Бактериосенс - лиофилизата для приготовления раствора для инфузий.
Процедура получения лекарственной формы заключается в следующем: диспергируют мезо-тетра(3-пиридил)бактериохлорин в поверхностно-активном веществе Kolliphor ELP ультразвуком, растворяют полученную дисперсию в хлороформе и удаляют растворитель на роторном испарителе. Затем гидратируют остаток раствором лимонной кислоты и добавляют маннит в качестве наполнителя и криопротектора. Далее проводят стерилизующую фильтрацию полученного раствора, дозированный разлив в стеклянные флаконы и лиофильную сушку, после чего флаконы заполняют инертным газом и укупоривают.
Лиофилизированный препарат может содержать активное действующее вещество в количествах от 1 до 5 мг (оптимально 2,5 мг), в зависимости от объема раствора для лиофилизации на один флакон.
Лиофилизат отличается высокой стабильностью при хранении и легко растворяется в водной среде перед введением без применения дополнительного оборудования.
2. Фотоиндуцированная активность бактериосенса в системе in vitro.
Исследование фотоиндуцированной активности in vitro проводили на 10-ти клеточных линиях человека и мыши различного эпителиального происхождения и генеза: человека - легкие А549, гортаноглотка: НЕр2, молочная железа: ВТ-474, MCF-7, SK-BK-3, предстательная железа: РС3, мочевой пузырь EJ, толстая кишка НТ29; мыши: карцинома S-37, толстая кишка: С26, легкие: LLC. При исследованиях варьировали концентрацию ФС и время инкубации до облучения (от 30 минут до 12 часов). При воздействии светом препарат проявлял высокую специфическую активность, при отсутствии темновой токсичности. Величина ИК50, варьировалась при/оптимальном времени инкубации (от 4 до 8 часов) от 25±6 нМ до 80±5 нМ в зависимости от культуры клеток.
3. Распределение и флуоресцентная контрастность препарата Бактериосенс у мышей с опухолями различного генеза большого размера.
Оценка распределения бактериосенса в опухолевой ткани мышей с карциномой легкого Льюис (LLC), саркомой мягких тканей S37 (S37), аденокарциномой толстой кишки Colo26 (С26), аденокарциномой предстательной железы человека РС3 (РС3) и окружающей ткани, проведенная методом локальной флуоресцентной спектроскопии (ЛФС), показала, что фотосенсибилизатор дозозависимо (1,0 мг/кг, 2,5 мг/кг и 6,25 мг/кг) накапливался в опухолевой и окружающей ткани.
Максимальные значения нормированной флуоресценции (ФН) препарата в опухолях LLC, S37, С26 и РС3 регистрировалось на ранние сроки (0,5-4 часа) после однократного внутривенного введения. Наибольший уровень ФН выявлен у мышей с аденокарциномой предстательной железы человека РС3 на все сроки наблюдения, а наименьший - у мышей с саркомой S37 и составлял в зависимости от дозы: 6,2÷7,3 усл. ед. - 9,3÷13,0 усл. ед. и 3,6÷4,0 усл. ед. - 7,7÷9,5 усл. ед., соответственно. На фиг.4 представлено распределение препарата в дозе 2,5 мг/кг у мышей nu/nu с ксенографтами аденокарциномы РС3 в опухолевой и окружающей ткани.
Для всех исследованных опухолей максимальная флуоресцентная контрастность относительно кожи регистрировалась через 5-30 минут после введения препарата независимо от его дозы. Уровень ФК относительно кожи имел близкие значения для LLC - 2,7÷3,9 усл. ед., для S37 - 2,1÷3,1 усл. ед., для С26 - 2,3÷4,5 усл. ед., для РС3 - 2,2÷3,4 усл. ед
4. Фотоиндуцированная противоопухолевая активность препарата Бактериосенс у животных с опухолями различного генеза большого размера при полипозиционном режиме облучения.
Поскольку эффективность ФДТ зависит от ряда параметров, изучение фотоиндуцированной противоопухолевой активности бактериосенса проводили в зависимости от дозы препарата при постоянных интервале между его введением и облучением и дозе света; затем определяли оптимальный интервал времени между введением ФС и облучением при постоянной дозе препарата и дозе света, после этого изучали зависимость эффективности от плотности энергии облучения при отобранной дозе препарата и интервале между его введением и облучением и в конечном итоге варьировали количества полей облучения при постоянных дозе препарата, дозе света и интервале между введением препарата и облучением.
Выявлены оптимальные терапевтические режимы проведения ФДТ с препаратом Бактериосенс: доза 2,5 мг/кг, интервалы после введения 0,5-1 час и доза света при полипозиционном режиме облучения: одного поля 90 Дж/см2, суммарная - 270 Дж/см2.
При определении спектра фотоиндуцированной противоопухолевой активности бактериосенса у мышей с опухолями большого размера (Vопухоли=400±40 мм3): саркомой мягких тканей S37, карциномой легкого Льюис LLC, аденокарциномой толстой кишки С26, аденокарциномой молочной железы Са755 показано, что наименее выраженный противоопухолевый эффект выявлен у мышей с аденокарциномой толстой кишки С26 (ТРО - 100%, УПЖ - 54%, КИ - 0%), наиболее выраженный - у мышей с S37 (ТРО - 100%, УПЖ - 78%, КИ - 38%).
5. Фармакокинетика бактериосенса у интактных животных
Исследования по фармакокинетике у интактных мышей и кроликов, проведенные методом ЛФС по нормированной флуоресценции препарата в интервале от 5 секунд до 6 суток, показали дозозависимое накопление и элиминацию бактериосенса в сыворотке крови, основных внутренних органах и тканях животных после внутривенного введения. Бактериосенс быстро выводился из кровотока мышей и крыс, через сутки при использовании минимальной дозы (1,0 мг/кг и 0,236 мг/кг, соответственно) и через 4 суток - максимальной дозы (6,25 мг/кг и 1,475 мг/кг, соответственно).
В коже, мышце, ушах и селезенке мышей и кроликов бактериосенс накапливался быстро, но также быстро и выводился - максимальная доза (6,25 мг/кг и 1,475 мг/кг, соответственно) регистрировалась до 4-х суток, минимальная доза (1,0 мг/кг) - не более 24 часов для мышей и (0,236 мг/кг) - до 3-х суток у кроликов.
Бактериосенс наиболее интенсивно накапливался и длительно удерживался у мышей и кроликов в сальнике, печени и почках - более 6-ти суток при использовании максимальной дозы (6,25 мг/кг и 1,475 мг/кг, соответственно). При использовании минимальной дозы у мышей (1,0 мг/кг) - в течение 2-х суток и минимальной дозы кроликов (0,236 мг/кг) - в течение 4-х суток. Основные пути элиминирования препарата из организма животных происходили через почки и печень.
Изобретение иллюстрируется чертежами (фиг. 1 - фиг. 6).
название | год | авторы | номер документа |
---|---|---|---|
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ | 2012 |
|
RU2479585C1 |
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ | 2013 |
|
RU2549953C2 |
АМИНОАМИДЫ В РЯДУ БАКТЕРИОХЛОРОФИЛЛА A, ОБЛАДАЮЩИЕ ФОТОДИНАМИЧЕСКОЙ АКТИВНОСТЬЮ, И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2013 |
|
RU2548675C9 |
ПРЕПАРАТ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ РАКА С ЕГО ИСПОЛЬЗОВАНИЕМ | 2012 |
|
RU2521327C1 |
ФОТОСЕНСИБИЛИЗАТОР БАКТЕРИОХЛОРИНОВОГО РЯДА ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2019 |
|
RU2720806C2 |
ФОТОСЕНСИБИЛИЗАТОРЫ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ | 2012 |
|
RU2476218C1 |
СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ ПЕРЕВИВНОЙ ОПУХОЛИ КАРЦИНОМА ЭРЛИХА МЫШЕЙ С ФОТОСЕНСИБИЛИЗАТОРОМ ХЛОРИНОВОГО РЯДА | 2022 |
|
RU2788766C2 |
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ | 2013 |
|
RU2536966C1 |
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ | 2013 |
|
RU2548726C2 |
СПОСОБ МОДИФИКАЦИИ ФОТОДИНАМИЧЕСКОГО ЛЕЧЕНИЯ | 2010 |
|
RU2449821C1 |
Изобретение относится к водорастворимой лекарственной форме фотосенсибилизатора ближней ИК области спектра для фотодинамической терапии мезо-тетра(3-пиридил)бактериохлорина (λmax = 747 нм) структурной формулы:
представляющей собой лиофилизат для приготовления раствора для инфузий, содержащий неиногенное поверхностно-активное вещество коллифор ELP, маннит и лимонную кислоту при следующем оптимальном содержании вспомогательных компонентов в расчете на 1 мг действующего вещества: коллифор ELP - 80 мг±10%; D(-)-маннит - 200 мг ± 10%; лимонная кислота - 0,5 мг ± 10%. Технический результат: получена водорастворимая лекарственная форма мезо-тетра(3-пиридил)бактериохлорина, устойчивая при длительном хранении, обладающая высокой фотоиндуцированной активностью. 6 ил.
Водорастворимая лекарственная форма фотосенсибилизатора ближней ИК области спектра для фотодинамической терапии мезо-тетра(3-пиридил)бактериохлорина (λmax = 747 нм) структурной формулы:
представляющая собой лиофилизат для приготовления раствора для инфузий, содержащий неиногенное поверхностно-активное вещество коллифор ELP, маннит и лимонную кислоту, при следующем оптимальном содержании вспомогательных компонентов в расчете на 1 мг действующего вещества:
СПОСОБ ЛЕЧЕНИЯ МЕСТНОРАСПРОСТРАНЕННЫХ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ В ЭКСПЕРИМЕНТЕ | 2010 |
|
RU2446842C2 |
ФОТОСЕНСИБИЛИЗАТОРЫ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ | 2012 |
|
RU2476218C1 |
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ | 2012 |
|
RU2479585C1 |
WO 9950269 A2, 07.10.1999. |
Авторы
Даты
2018-08-13—Публикация
2017-08-21—Подача