Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех Российский патент 2018 года по МПК G01S13/66 

Описание патента на изобретение RU2665031C1

Предлагаемое изобретение относится к области вторичной цифровой обработки радиолокационных сигналов и может быть использовано в радиолокационной станции (РЛС) для формирования при сопровождении воздушной цели (ВЦ)) из класса «самолет с турбореактивным двигателем (ТРД)» достоверной оценки радиальных функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС при воздействии уводящих по дальности и скорости помех.

Известен способ сопровождения воздушной цели на основе процедуры оптимальной многомерной линейной дискретной калмановской фильтрации в соответствии с уравнениями [1]

где

k=0,1,…, К, …, - номер такта работы фильтра;

P-(k+1) и P(k+1) - ковариационные матрицы ошибок экстраполяции и фильтрации соответственно;

Ф(k) - переходная матрица состояния;

Q(k+1) и R(k+1) - ковариационные матрицы шумов возбуждения и наблюдения соответственно;

S(k+1) - матрица весовых коэффициентов;

I - единичная матрица;

и - вектор текущих и экстраполированных оценок радиальных функционально-связанных координат взаимного перемещения носителя РЛС и воздушной цели;

H(k+1) - матрица наблюдения;

Y(k) - вектор наблюдения;

Z(k+1) - матрица невязок измерения;

Ψ(k+1) - матрица априорных ошибок фильтрации;

«-1» - операция вычисления обратной матрицы;

«т» - операция транспонирования матрицы.

Недостатком данного способа сопровождения воздушной цели является низкая достоверность оценок радиальных функционально-связанных дальности до воздушной цели и скорости сближения носителя РЛС с нею при воздействии уводящих по скорости и дальности помех.

Известен способ сопровождения в радиолокационной станции воздушной цели из класса «самолет с турбореактивным двигателем» при воздействии уводящей по скорости помехи, заключающийся в том, что сигнал, отраженный от цели, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье (БПФ) и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планера сопровождаемой воздушной цели и вращающихся лопаток рабочего колеса компрессора низкого давления (КНД) ее силовой установки, определяется отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который соответствует его отражениям от планера воздушной цели и поступает на вход оптимального фильтра сопровождения воздушной цели, функционирующего в соответствии с процедурой оптимальной многомерной линейной дискретной калмановской фильтрации (1)-(6), определяется отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, находящейся справа по доплеровской частоте относительно спектральной составляющей сигнала, отраженного от планера воздушной цели, который поступает на вход оптимального фильтра сопровождения первой компрессорной составляющей спектра сигнала, обусловленной его отражениями от лопаток рабочего колеса первой ступени КНД и функционирующего в соответствии с процедурой (1)-(6), определяется оценка разности между оцененными значениями доплеровских частот, обусловленных отражениями от планера и лопаток рабочего колеса первой ступени КНД силовой установки воздушной цели, которая при отсутствии воздействия уводящей по скорости помехи является величиной постоянной, вычисляется модуль производной оценки разности между оцененными значениями доплеровских частот, обусловленных отражениями от планера и лопаток рабочего колеса первой ступени КНД силовой установки воздушной цели, которая сравнивается с пороговым значением ε, близким к нулю, выполнение условия

свидетельствует об отсутствии воздействия уводящей по скорости помехи и оценка формируется в соответствии с процедурой (1)-(6) на основе наблюдения и динамической модели радиальных функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС, невыполнение условия (7) свидетельствует о воздействии уводящей по скорости помехи и оценка вычисляется без наблюдения и только на основе динамической модели радиальных функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС [2].

Недостатком данного способа сопровождения воздушной цели является низкая достоверность оценок радиальных функционально-связанных дальности до воздушной цели и скорости сближения носителя РЛС с нею при воздействии совместно или раздельно уводящих по скорости и дальности помех.

Цель изобретения - повышение достоверности оценок радиальных функционально-связанных дальности до воздушной цели и скорости сближения носителя РЛС с нею при воздействии совместно или раздельно уводящих по скорости и дальности помех.

Для достижения цели в способе сопровождения ВЦ из класса «самолет с ТРД» при воздействии уводящей по скорости помехи, заключающимся в том, что сигнал, отраженный от цели, подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планера сопровождаемой воздушной цели и вращающихся лопаток рабочего колеса КНД ее силовой установки, определяется отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который соответствует его отражениям от планера воздушной цели и поступает на вход оптимального фильтра сопровождения воздушной цели, функционирующего в соответствии с процедурой (1)-(6) оптимальной многомерной линейной дискретной калмановской фильтрации, определяется отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, находящейся справа по доплеровской частоте относительно спектральной составляющей сигнала, отраженного от планера воздушной цели, который поступает на вход оптимального фильтра сопровождения первой компрессорной составляющей спектра сигнала, обусловленной его отражениями от лопаток рабочего колеса первой ступени КНД и функционирующего в соответствии с процедурой (1)-(6), определяется оценка разности между оцененными значениями доплеровских частот, обусловленных отражениями от планера и лопаток рабочего колеса первой ступени КНД силовой установки воздушной цели, вычисляется модуль производной оценки разности между оцененными значениями доплеровских частот, обусловленных отражениями от планера и лопаток рабочего колеса первой ступени КНД силовой установки воздушной цели, которая сравнивается с пороговым значением 8, близким к нулю, выполнение или невыполнение условия (7) свидетельствует соответственно об отсутствии или воздействии уводящей по скорости помехи, дополнительно измеряется дальность до воздушной цели, в соответствии с процедурой (1-6) осуществляется формирование оценки дальности , вычисляется производная оценки дальности , вычисляется дальность на основе динамической модели радиальных функционально-связанных координат взаимного перемещения носителя РЛС и воздушной цели вида

где

Д(t), V(t)=V0(t)+ΔV(t) и a(t) - радиальные функционально-связанные координаты соответственно дальность, скорость и ускорение сближения носителя РЛС с воздушной целью;

V0(t) и ΔV(t) - соответственно детерминированная и флюктуационная составляющие скорости сближения носителя РЛС с воздушной целью;

α - величина, обратная времени корреляции скоростных флюктуаций взаимного перемещения носителя РЛС и воздушной цели;

β - квадрат собственной частоты скоростных флюктуаций взаимного перемещения носителя РЛС и воздушной цели;

σ - среднеквадратическое отклонение флюктуаций ускорения взаимного перемещения носителя РЛС и воздушной цели;

n(t) - формирующий белый гауссовский шум с нулевым математическим ожиданием и единичной интенсивностью,

представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), размерностями 4×4, ненулевыми элементами которых являются соответственно ϕ1,12,14,4=1; ϕ1,21,42,3=T; ϕ3,2=-βТ; ϕ3,3=1-αT; и q3,3=2αТσ2, где Т - период дискретизации, вычисляется модуль разности между оценкой производной дальности и оценкой скорости , величина которого сравнивается с порогом ε1,

где - оценка скорости, сформированная на основе измерения скорости Y(k+1)=[V(k+1)]T и динамической модели радиальных функционально-связанных координат вида

представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), размерностями 3×3, ненулевыми элементами которых являются соответственно ϕ1,13,3=1; ϕ1,2=Т; ϕ2,1=-βT; ϕ2,2=1-αT; и q2,2=2αTσ2, вычисляется модуль разности между оценкой дальности и вычисленной дальностью на основе динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), величина которого сравнивается с порогом ε2,

одновременное выполнение условий (7) и (9) свидетельствует об отсутствии уводящих по скорости и дальности помех, в этом случае оценки дальности и скорости формируются в соответствии с процедурой (1)-(6) на основе наблюдения Y(k+1)=[Д(k+1), V(k+1)]T и динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), одновременное выполнение условия (7) и невыполнение условия (9) свидетельствует о воздействии только уводящей по дальности помехи, в этом случае оценка скорости формируется в соответствии с процедурой (1)-(6) на основе наблюдения Y(k+1)=[V(k+1)] и динамической модели радиальных функционально-связанных координат (10), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), а оценка дальности вычисляется без учета измерения дальности путем интегрирования оценки скорости , одновременное невыполнение условия (7) и выполнение условия (9) свидетельствует о воздействии уводящих по дальности и скорости помех с функционально-связанным законом увода, в этом случае оценки дальности и скорости вычисляются в соответствии с процедурой (1)-(6) без учета измерений дальности и скорости Y(k+1)=0 и только на основе динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), одновременное невыполнение условий (7) и (11) свидетельствует о воздействии уводящих по дальности и скорости помех без функционально-связанного закона увода, в этом случае оценки дальности и скорости также вычисляются в соответствии с процедурой (1)-(6) без учета измерений дальности и скорости Y(k+1)=0 и только на основе динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), одновременное невыполнение условия (7) и выполнение условия (11) свидетельствует о воздействии только уводящей по скорости помехи, в этом случае оценки дальности и скорости формируются в соответствии с процедурой (1)-(6) на основе измерения только дальности Y(k+1)=[Д(k+1)] и динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1).

Новыми признаками, обладающими существенными отличиями, являются:

1. Идентификация отсутствия воздействия уводящих по скорости и дальности помех при одновременном выполнении условий (7) и (9) и формирование оценок дальности и скорости в соответствии с процедурой (1)-(6) на основе наблюдения Y(k+1)=[Д(k+1), V(k+1)]T и динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1).

2. Идентификация воздействия только уводящей по дальности помехи при одновременном выполнении условия (7) и невыполнении условия (9) и формирование оценки скорости в соответствии с процедурой (1)-(6) на основе наблюдения Y(k+1)=[V(k+1)] и динамической модели радиальных функционально-связанных координат (10), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), а оценки дальности вычисляется без учета измерения дальности и на основе интегрирования оценки скорости .

3. Идентификация воздействия уводящих по дальности и скорости помех с функционально-связанным законом увода при одновременном невыполнении условия (7) и выполнении условия (9) и вычисление оценок дальности и скорости в соответствии с процедурой (1)-(6) без учета измерений дальности и скорости Y(k+1)=0 и только на основе динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1).

4. Идентификация воздействия уводящих по дальности и скорости помех без функционально-связанного закона увода при одновременном невыполнении условий (7) и (11) и вычисление оценок дальности и скорости в соответствии с процедурой (1)-(6) без учета измерений дальности и скорости Y(k+1)=0 и только на основе динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1).

5. Идентификация воздействия только уводящей по скорости помехи при одновременном невыполнении условия (7) и выполнении условия (11) и формирование оценок дальности и скорости в соответствии с процедурой (1)-(6) на основе измерения только дальности Y(k+1)=[Д(k+1)] и динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1).

Данные признаки обладают существенными отличиями, так как в известных способах не обнаружены.

Применение всех новых признаков позволит идентифицировать воздействие совместно или раздельно уводящих по дальности и скорости помех с одновременным формированием достоверных оценок дальности до воздушной цели и скорости сближения носителя РЛС с нею.

На фигуре приведена блок-схема, поясняющая предлагаемый способ сопровождения ВЦ из класса «самолет с ТРД» при воздействии уводящих по скорости и дальности помех.

Способ сопровождения ВЦ из класса «самолет с ТРД» » при воздействии уводящих по скорости и дальности помех осуществляется следующим образом (фигура).

На вход блока 1 БПФ на промежуточной частоте с выхода приемника РЛС поступает сигнал S(t), отраженный от ВЦ, который подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планера сопровождаемой ВЦ и вращающихся частей КНД ее силовой установки. В формирователе 2 наблюдения, во-первых, определяется отсчет доплеровской частоты Fn(k+1), соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который соответствует его отражениям от планера ВЦ, во-вторых, данный отсчет доплеровской частоты Fn(k+1) преобразуется в значение скорости, как V(k+1)=λFn(k+1)/2 (где λ - рабочая длина волны РЛС), в-третьих, поступающее на вход измерение дальности в непрерывном времени Д(t) преобразуется в дискретные отсчеты дальности Д(k+1), в-четвертых, определяется отсчет доплеровской частоты Fк(k+1), соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, находящейся справа по доплеровской частоте относительно спектральной составляющей сигнала, отраженного от планера ВЦ. В результате на выходах формирователя 2 наблюдения формируются наблюдения (измерения) значений Д(k+1), V(k+1) и Fк(k+1). Причем, дискретные измерения Д(k+1) и V(k+1) поступают на соответствующие входы оптимального фильтра 4 (ОФД,V), работающего в соответствии с процедурой многомерной линейной дискретной калмановской фильтрации (1)-(6), априорные сведения в котором представлены в виде динамической модели (8). С выхода оптимального фильтра 4 (ОФД,V) оценки дальности и скорости поступают на соответствующие входы формирователя оценок 9 и анализатора 5. Кроме того, дискретные отсчеты скорости V(k+1) поступают на вход оптимального фильтра 6 (ОФV), работающего также в соответствии с процедурой многомерной линейной дискретной калмановской фильтрации (1)-(6), априорные сведения в котором представлены в виде динамической модели (10), с выхода которого оценка скорости также поступает на соответствующие входы формирователя 9 оценок и анализатора 5, а ее интегрированное значение с выхода интегратора 8 в виде оценки дальности также поступает на соответствующий вход формирователя 9 оценок.

Одновременно отсчеты доплеровских частот Fк(k+1) с выхода формирователя 2 наблюдения поступают на вход оптимального фильтра 3 (ОФк) сопровождения первой компрессорной составляющей спектра сигнала, работающего аналогично, как и оптимальный фильтр 6 (ОФV) в соответствии с процедурой многомерной линейной дискретной калмановской фильтрации (1)-(6) и динамической моделью, аналогичной выражениям (10), за исключением того, что радиальные функционально-связанные флюктуационные составляющие модели и ее параметры соответствуют взаимному перемещению не планера ВЦ и носителя РЛС, а лопаток рабочего колеса первой ступени КНД силовой установки ВЦ и носителя РЛС. Кроме того, величина V00 будет соответствовать постоянному значению доплеровской частоты (скорости), отличной от планерной составляющей доплеровской частоты (скорости) на величину разноса доплеровских частот (скоростей), обусловленных отражениями сигнала от планера ВЦ и первой ступени КНД ее силовой установки. Сформированная на выходе оптимального фильтра 3 оценка поступает на соответствующий вход анализатора 5.

В вычислителе 7 на основе динамической модели радиальных функционально-связанных координат (без учета измеренных значений дальности и скорости) вычисляются оценки дальности и скорости , которые подаются на соответствующие входы формирователя 9 оценок, а оценка дальности дополнительно поступает на соответствующий вход анализатора 5.

В анализаторе 5, во-первых, вычисляется модуль производной оценки разности между оцененными значениями доплеровских частот, обусловленных отражениями от планера (преобразованное в анализаторе 5 значение оценки скорости в доплеровскую частоту, как и лопаток рабочего колеса первой ступени КНД силовой установки воздушной цели, которая сравнивается с пороговым значением ε, близким к нулю (формула (7), во-вторых, вычисляется модуль разности между оценкой производной дальности и оценкой скорости , величина которого сравнивается с порогом ε1 (формула (9), в-третьих, вычисляется модуль разности между оценкой дальности и вычисленной дальностью на основе динамической модели радиальных функционально-связанных координат (8), величина которого сравнивается с порогом ε2 (формула (11).

В анализаторе 5 осуществляется анализ выполнения условий (7), (9) и (11). В результате анализа на его выходах формируются следующие команды.

При одновременном выполнении условий (7) и (9), что свидетельствует об отсутствии уводящих по скорости и дальности помех, на вход формирователя 2 наблюдения с выхода анализатора 5 поступает команда, в результате выполнения которой на его выходе формируется наблюдение вида Y(k+1)=[Д(k+1), V(k+1)]T, в этом случае оценки дальности и скорости с выхода оптимального фильтра 4 (ОФД,V) через формирователь 9 оценок по соответствующей команде с выхода анализатора 5 поступают на выход канала сопровождения ВЦ в РЛС.

При одновременном выполнении условия (7) и невыполнении условия (9), что свидетельствует о воздействии только уводящей по дальности помехи, на вход формирователя 2 наблюдения с выхода анализатора 5 поступает команда, в результате выполнения которой на его выходе формируется наблюдение вида Y(k+1)=[V(k+1)], в этом случае оценки скорости с выхода оптимального фильтра 6 (ОФV) и дальности , полученная путем интегрирования оценки скорости в интеграторе 8, через формирователь 9 оценок по соответствующей команде с выхода анализатора 5 поступают на выход канала сопровождения ВЦ в РЛС.

При одновременном невыполнении условия (7) и выполнении условия (9), что свидетельствует о воздействии уводящих по дальности и скорости помех с функционально-связанным законом увода, на вход формирователя 2 наблюдения с выхода анализатора 5 поступает команда, в результате выполнения которой на его выходе будет отсутствовать какое-либо наблюдение, т.е. Y(k+1)=0, в этом случае оценки дальности и скорости с выхода вычислителя 7 через формирователь 9 оценок по соответствующей команде с выхода анализатора 5 поступают на выход канала сопровождения ВЦ в РЛС.

Аналогично, при одновременном невыполнении условий (7) и (10), что свидетельствует о воздействии уводящих по дальности и скорости помех без функционально-связанного закона увода, на вход формирователя 2 наблюдения с выхода анализатора 5 поступает команда, в результате выполнения которой на его выходе будет также отсутствовать какое-либо наблюдение, т.е. Y(k+1)=0 и оценки дальности и скорости с выхода вычислителя 7 через формирователь 9 оценок по соответствующей команде с выхода анализатора 5 будут поступают на выход канала сопровождения ВЦ в РЛС.

При одновременном невыполнении условия (7) и выполнении условия (11), что свидетельствует о воздействии только уводящей по скорости помехи, на вход формирователя 2 наблюдения с выхода анализатора 5 поступает команда, в результате выполнения которой на его выходе формируется наблюдение вида Y(k+1)=[Д(k+1)], в этом случае оценки дальности и скорости с выхода оптимального фильтра 4 (ОФД,V) через формирователь 9 оценок по соответствующей команде с выхода анализатора 5 поступают на выход канала сопровождения ВЦ в РЛС.

Таким образом, применение предлагаемого изобретения позволит на основе идентификации воздействия или отсутствия совместного или раздельного воздействия уводящих по дальности и скорости помех повысить достоверность оценок радиальных функционально-связанных дальности до воздушной цели и скорости сближения носителя РЛС с нею.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Казаринов Ю.М., Соколов А.И., Юрченко Ю.С. Проектирование устройств фильтрации радиосигналов. - Л.: изд. Ленинградского университета, 1985, страницы 150, 151 (аналог).

2. Богданов А.В., Закомолдин Д.В., Новичёнок И.А. Способ сопровождения воздушной цели из класса «Самолет с турбореактивным двигателем» при воздействии уводящей по скорости помехи. Патент на изобретение №2575383, 2016 (прототип).

Похожие патенты RU2665031C1

название год авторы номер документа
Способ комплексирования информации радиолокационной станции и радиолокационных головок самонаведения ракет, пущенных носителем по воздушной цели при воздействии уводящих по дальности и скорости помех 2021
  • Филонов Андрей Александрович
  • Тезиков Андрей Николаевич
  • Скрынников Андрей Александрович
  • Болдинов Виктор Александрович
  • Федотов Александр Юрьевич
  • Николаев Александр Борисович
  • Хлопков Михаил Игоревич
  • Плаксов Роман Алексеевич
  • Попов Антон Олегович
RU2765145C1
Способ сопровождения в радиолокационной станции воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех 2019
  • Мужичек Сергей Михайлович
  • Филонов Андрей Александрович
  • Скрынников Андрей Александрович
  • Федотов Александр Юрьевич
  • Ткачева Ольга Олеговна
  • Викулова Юлия Михайловна
  • Корнилов Андрей Александрович
  • Макашин Сергей Леонидович
RU2713635C1
Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех 2020
  • Филонов Андрей Александрович
  • Тезиков Андрей Николаевич
  • Скрынников Андрей Александрович
  • Болдинов Виктор Александрович
  • Федотов Александр Юрьевич
  • Николаев Александр Борисович
  • Хлопков Михаил Игоревич
  • Плаксов Роман Алексеевич
  • Попов Антон Олегович
RU2764781C1
Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции при воздействии имитирующих помех 2020
  • Богданов Александр Викторович
  • Закомолдин Денис Викторович
  • Голубенко Валентин Александрович
  • Ибрагим Фади
  • Каширец Вадим Александрович
  • Салум Мохамед Али
  • Якунина Гаяне Размиковна
RU2735314C1
СПОСОБ СОПРОВОЖДЕНИЯ ВОЗДУШНОЙ ЦЕЛИ ИЗ КЛАССА "САМОЛЁТ С ТУРБОРЕАКТИВНЫМ ДВИГАТЕЛЕМ" ПРИ ВОЗДЕЙСТВИИ УВОДЯЩЕЙ ПО СКОРОСТИ ПОМЕХИ 2015
  • Закомолдин Денис Викторович
  • Богданов Александр Викторович
  • Новичёнок Ирина Александровна
RU2579353C1
Способ сопровождения в радиолокационной станции групповой воздушной цели из класса "самолёты с турбореактивными двигателями" при воздействии уводящих по скорости помех 2016
  • Богданов Александр Викторович
  • Васильев Олег Валерьевич
  • Закомолдин Денис Викторович
  • Каневский Михаил Игоревич
  • Коротков Сергей Сергеевич
  • Кочетов Игорь Вячеславович
  • Кучин Александр Александрович
RU2617110C1
СПОСОБ СОПРОВОЖДЕНИЯ ВОЗДУШНОЙ ЦЕЛИ ИЗ КЛАССА "САМОЛЕТ С ТУРБОРЕАКТИВНЫМ ДВИГАТЕЛЕМ" 2009
  • Богданов Александр Викторович
  • Васильев Олег Валерьевич
  • Исаков Илья Николаевич
  • Ситников Александр Германович
  • Филонов Андрей Александрович
RU2419815C1
Способ сопровождения крылатой ракеты при огибании рельефа местности в различных тактических ситуациях 2021
  • Филонов Андрей Александрович
  • Тезиков Андрей Николаевич
  • Скрынников Андрей Александрович
  • Болдинов Виктор Александрович
  • Федотов Александр Юрьевич
  • Белобородов Андрей Валентинович
  • Хлопков Михаил Игоревич
  • Плаксов Роман Алексеевич
  • Попов Антон Олегович
RU2760951C1
Способ распознавания типа самолёта с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции при воздействии уводящей по скорости помехи 2019
  • Богданов Александр Викторович
  • Закомолдин Денис Викторович
  • Иванов Иван Михайлович
  • Коваленко Александр Григорьевич
  • Кочетов Игорь Вячеславович
  • Лобанов Александр Александрович
RU2732281C1
Способ сопровождения воздушной цели при воздействии сигналоподобной с модуляцией доплеровской частоты помехи типа DRFM 2020
  • Закомолдин Денис Викторович
  • Богданов Александр Викторович
  • Голубенко Валентин Александрович
  • Кочетов Игорь Вячеславович
  • Акимов Сергей Иванович
RU2727963C1

Иллюстрации к изобретению RU 2 665 031 C1

Реферат патента 2018 года Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех

Изобретение относится к области вторичной цифровой обработки радиолокационных сигналов и может быть использовано в радиолокационной станции (РЛС) для формирования при сопровождении воздушной цели (ВЦ) из класса «самолет с турбореактивным двигателем» достоверной оценки радиальных функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС при воздействии уводящих по дальности и скорости помех. Достигаемый технический результат - повышение достоверности оценок радиальных функционально-связанных дальности до ВЦ и скорости сближения носителя РЛС с нею при воздействии совместно или раздельно уводящих по скорости и дальности помех. Способ заключается в идентификации раздельного или совместного воздействия уводящих по дальности и скорости помех на основе совместного анализа модуля производной оценки разности между оцененными значениями доплеровских частот, обусловленных отражениями сигнала от планера и лопаток рабочего колеса первой ступени компрессора низкого давления силовой установки ВЦ, модуля разности между оценкой производной дальности и оценкой скорости, модуля разности между оценкой дальности и вычисленной дальностью на основе динамической модели радиальных функционально-связанных координат, формировании в результате совместного анализа на основе многомерной линейной дискретной калмановской фильтрации оценок дальности и скорости с учетом динамической модели радиальных функционально-связанных координат взаимного перемещения ВЦ и носителя РЛС и измерений дальности и скорости, когда идентифицировано отсутствие воздействия уводящих по дальности и скорости помех, либо измерения только дальности, когда идентифицировано воздействие только уводящей по скорости помехи, либо измерения только скорости, когда идентифицировано воздействие только уводящей по дальности помехи, а также вычислении оценок дальности и скорости только на основе динамической модели функционально-связанных координат без измерений дальности и скорости, когда идентифицировано одновременное воздействие уводящих по дальности и скорости помех. 1 ил.

Формула изобретения RU 2 665 031 C1

Способ сопровождения в радиолокационной станции воздушной цели из класса «самолет с турбореактивным двигателем» при воздействии уводящих по дальности и скорости помех, заключающийся в том, что сигнал, отраженный от цели, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планера сопровождаемой воздушной цели и вращающихся лопаток рабочего колеса компрессора низкого давления ее силовой установки, определяется отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который соответствует его отражениям от планера воздушной цели и поступает на вход оптимального фильтра сопровождения воздушной цели, функционирующего в соответствии с процедурой оптимальной многомерной линейной дискретной калмановской фильтрации

где

k = 0,1, …, К, …, - номер такта работы фильтра;

P-(k+1) и Р(k+1) - ковариационные матрицы ошибок экстраполяции и фильтрации соответственно;

Ф(k) - переходная матрица состояния;

Q(k+1) и R(k+1) - ковариационные матрицы шумов возбуждения и наблюдения соответственно;

S(k+1) - матрица весовых коэффициентов;

I - единичная матрица;

и - вектор текущих и экстраполированных оценок радиальных функционально-связанных координат взаимного перемещения носителя радиолокационной станции и воздушной цели;

Н(k) - матрица наблюдения;

Y(k) - вектор наблюдения;

Z(k+1) - матрица невязок измерения;

Ψ(k+l) - матрица априорных ошибок фильтрации;

«-1» - операция вычисления обратной матрицы;

«т» - операция транспонирования матрицы,

определяется отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, находящейся справа по доплеровской частоте относительно спектральной составляющей сигнала, отраженного от планера воздушной цели, который поступает на вход оптимального фильтра сопровождения первой компрессорной составляющей спектра сигнала, обусловленной его отражениями от лопаток рабочего колеса первой ступени компрессора низкого давления и функционирующего в соответствии с процедурой (1)-(6), определяется оценка разности между оцененными значениями доплеровских частот, обусловленных отражениями от планера и лопаток рабочего колеса первой ступени компрессора низкого давления силовой установки воздушной цели, вычисляется модуль производной оценки разности между оцененными значениями доплеровских частот, обусловленных отражениями от планера и лопаток рабочего колеса первой ступени компрессора низкого давления силовой установки воздушной цели, которая сравнивается с пороговым значением ε, близким к нулю, выполнение или невыполнение которого

свидетельствует соответственно об отсутствии или воздействии уводящей по скорости помехи, отличающийся тем, что измеряется дальность до воздушной цели, в соответствии с процедурой (1-6) осуществляется формирование оценки дальности , вычисляется производная оценки дальности , вычисляется дальность Д*(k+1) на основе динамической модели радиальных функционально-связанных координат взаимного перемещения носителя радиолокационной станции и воздушной цели вида

где

Д(t), V(t) = V0 (t) + ΔV(t) и a(t) - радиальные функционально-связанные координаты: соответственно дальность, скорость и ускорение сближения носителя радиолокационной станции с воздушной целью;

V0(t) и ΔV (t) - соответственно детерминированная и флюктуационная составляющие скорости сближения носителя радиолокационной станции с воздушной целью;

α - величина, обратная времени корреляции скоростных флюктуаций взаимного перемещения носителя радиолокационной станции и воздушной цели;

β - квадрат собственной частоты скоростных флюктуаций взаимного перемещения носителя радиолокационной станции и воздушной цели;

σ - среднеквадратическое отклонение флюктуаций ускорения взаимного перемещения носителя радиолокационной станции и воздушной цели;

n(t) - формирующий белый гауссовский шум с нулевым математическим ожиданием и единичной интенсивностью,

представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), размерностями 4×4, ненулевыми элементами которых являются соответственно ϕ1,1 = ϕ2,1 = ϕ4,4 =1; ϕ1,2 = ϕ1,4 = ϕ2,3 = Т; ϕ3,2 = - βТ; ϕ3,3 = 1 - αТ; и q3,3 = 2αТσ2, где Т - период дискретизации, вычисляется модуль разности между оценкой производной дальности и оценкой скорости , величина которого сравнивается с порогом ε1,

где - оценка скорости, сформированная на основе измерения скорости Y(k+1) = [V(k+1)]Т и динамической модели радиальных функционально-связанных координат вида

представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), размерностями 3×3, ненулевыми элементами которых являются соответственно ϕ1,1 = ϕ3,3 =1; ϕ1,2 = Т; ϕ2,1 = - βТ; ϕ2,2 = 1 - αТ; и q2,2 = 2αТσ2, вычисляется модуль разности между оценкой дальности и вычисленной дальностью Д*(k+1) на основе динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), величина которого сравнивается с порогом ε2,

одновременное выполнение условий (7) и (9) свидетельствует об отсутствии уводящих по скорости и дальности помех, в этом случае оценки дальности и скорости формируются в соответствии с процедурой (1)-(6) на основе наблюдения Y(k+1) = [Д(k+1), V(k+1)]T и динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), одновременное выполнение условия (7) и невыполнение условия (9) свидетельствует о воздействии только уводящей по дальности помехи, в этом случае оценка скорости формируется в соответствии с процедурой (1)-(6) на основе наблюдения Y(k+1) = [V(k+1)] и динамической модели радиальных функционально-связанных координат (10), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), а оценка дальности вычисляется без учета измерения дальности путем интегрирования оценки скорости , одновременное невыполнение условия (7) и выполнение условия (9) свидетельствует о воздействии уводящих по дальности и скорости помех с функционально-связанным законом увода, в этом случае оценки дальности и скорости вычисляются в соответствии с процедурой (1)-(6) без учета измерений дальности и скорости Y(k+1) = 0 и только на основе динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), одновременное невыполнение условий (7) и (11) свидетельствует о воздействии уводящих по дальности и скорости помех без функционально-связанного закона увода, в этом случае оценки дальности и скорости также вычисляются в соответствии с процедурой (1)-(6) без учета измерений дальности и скорости Y(k+1) = 0 и только на основе динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1), одновременное невыполнение условия (7) и выполнение условия (11) свидетельствует о воздействии только уводящей по скорости помехи, в этом случае оценки дальности и скорости формируются в соответствии с процедурой (1)-(6) на основе измерения только дальности Y(k+1) = [Д(k+1)] и динамической модели радиальных функционально-связанных координат (8), представляемой в процедуре (1)-(6) матрицами Ф(k+1) и Q(k+1).

Документы, цитированные в отчете о поиске Патент 2018 года RU2665031C1

СПОСОБ СОПРОВОЖДЕНИЯ ВОЗДУШНОЙ ЦЕЛИ ИЗ КЛАССА "САМОЛЁТ С ТУРБОРЕАКТИВНЫМ ДВИГАТЕЛЕМ" ПРИ ВОЗДЕЙСТВИИ УВОДЯЩЕЙ ПО СКОРОСТИ ПОМЕХИ 2015
  • Закомолдин Денис Викторович
  • Богданов Александр Викторович
  • Новичёнок Ирина Александровна
RU2579353C1
Способ сопровождения в радиолокационной станции групповой воздушной цели из класса "самолёты с турбореактивными двигателями" при воздействии уводящих по скорости помех 2016
  • Богданов Александр Викторович
  • Васильев Олег Валерьевич
  • Закомолдин Денис Викторович
  • Каневский Михаил Игоревич
  • Коротков Сергей Сергеевич
  • Кочетов Игорь Вячеславович
  • Кучин Александр Александрович
RU2617110C1
СПОСОБ СОПРОВОЖДЕНИЯ ВОЗДУШНОЙ ЦЕЛИ ИЗ КЛАССА "САМОЛЕТ С ТУРБОРЕАКТИВНЫМ ДВИГАТЕЛЕМ" 2009
  • Богданов Александр Викторович
  • Васильев Олег Валерьевич
  • Исаков Илья Николаевич
  • Ситников Александр Германович
  • Филонов Андрей Александрович
RU2419815C1
РАДИОЛОКАЦИОННОЕ РАСПОЗНАЮЩЕЕ УСТРОЙСТВО 1996
  • Митрофанов Д.Г.
  • Максаков И.М.
  • Печенев А.А.
RU2095824C1
JP 2002323559 A, 08.11.2002
JP 2011226796 A, A, 10.11.2011
KR 2016078066 A, 04.07.2016
US 6603421 B1, 05.08.2003.

RU 2 665 031 C1

Авторы

Богданов Александр Викторовоич

Васильев Олег Валерьевич

Докучаев Ярослав Сергеевич

Закомолдин Денис Викторович

Каневский Михаил Игоревич

Кочетов Игорь Вячеславович

Кучин Александр Александрович

Новичёнок Виктор Алексеевич

Федотов Александр Юрьевич

Даты

2018-08-27Публикация

2018-01-31Подача