Изобретение относится к области охраны окружающей среды и может быть использовано для очистки водных сред и твердых поверхностей от нефти и нефтепродуктов и других углеводородных продуктов.
Известен способ получения магнитного композиционного сорбента [RU 2547496, 10.04.2015]. Полученный продукт содержит в своем составе магнитный наполнитель, и обладает магнитными свойствами и повышенной сорбционной емкостью.
Однако известный композиционный сорбент предназначен в основном для сбора (удаления) тяжелых металлов и радионуклидов в загрязненных средах.
Найден способ получения графитового сорбента [RU 2134155, 10.08.1999], включающий использование для создания магнитного сорбента графита и органической жидкости.
Недостатками указанного способа является потенциальная опасность используемых органических жидкостей для живых организмов водоемов и почв, а также дороговизна основного компонента - графита.
Известен также способ получения сорбента с магнитными свойствами для сбора нефтепродуктов с водной поверхности [RU 2518586, 10.06.2014]. Полученный продукт обладает магнитными свойствами за счет включения в его состав железосодержащих отходов металлургического производства.
Недостатком этого способа является низкая сорбционная емкость сорбента, наличие в составе сорбента ПАВ, что может привести к вторичному загрязнению водной поверхности.
Существует другой способ получения порошкообразного магнитного сорбента для сбора нефти, масел и других углеводородов [RU 2462303, 27.09.2012], включающий применение ферромагнетиков железной руды в виде Fe3O4 и/или Fe2O3.
Недостатком этого способа является применение сорбента в порошкообразном виде из-за чего возможно запыление атмосферы, а также низкая сорбционная емкость сорбента.
Известен способ магнитной конгломерации нефтяных загрязнений водной поверхности и устройство для его реализации [RU 2000119194, 10.07.2002], который включает смешение углеродсодержащего сырья с магнитными наполнителями, карбонизацию в интервале температур 400-800°С.
Недостатком известного технического решения, является применение карбонизата опилок в качестве углеродной части магнитного сорбента. Наличие мелких пылящих частиц в полученном сорбенте может вызвать запыленность атмосферы над очищаемой поверхностью, что затрудняет дальнейшую работу и опасно с точки зрения экологии.
Наиболее близким техническим решением того же назначения к заявляемому по совокупности признаков является способ [Квашевая Е.А., Ушакова Е.С. Применение высокодисперсных коллоидов ферромагнетиков для повышения эффективности действия сорбентов жидких углеводородов // Сборник материалов Международной научно-практической конференции "Современные тенденции развития науки и производства". - Кемерово, 2014. - С. 59-62], включающий смешение углеродсодержащего сырья (древесных отходов) со связующим (отходами животноводческих предприятий), гранулирование, карбонизацию и смешение с магнетитом.
Недостатком указанного технического решения, принятого за прототип, является нанесение магнетита на готовый немагнитный сорбент, что, во-первых, способствует закупориванию магнетитом части внешних пор, имеющихся в немагнитном сорбенте; во-вторых, при механическом воздействии на намагниченный сорбент магнетит отшелушивается, что может создать при нанесении запыленность атмосферы, а при попадании в водоем загрязнение дна за счет оседания (плотность магнетита не ниже 4900 кг/м3).
Задачей изобретения является получение гранулированного магнитного сорбента для очистки водных сред и твердых поверхностей от нефти и нефтепродуктов и других углеводородных продуктов.
Технический результат заявляемого изобретения - в увеличении нефтеемкости и плавучести магнитного сорбента; уменьшения вторичного негативного влияния сорбента на окружающую среду; расширении сырьевой базы для получении магнитных сорбентов.
Указанный технический результат достигается тем, что в способе получения магнитного сорбента, включающем смешение древесных отходов в виде опилок, стружки, пыли или угольных и коксовых отходов в виде шлама, мелочи, пыли со связующим, представляющим собой навоз, или помет, или активный ил, взятые в исходном состоянии или после анаэробного сбраживания с магнетитом и карбонизацию в интервале температур 400-800°С, согласно изобретению исходные компоненты предварительно смешивают, гранулируют, после чего подвергают карбонизации.
Увеличение плавучести и нефтеемкости готового продукта достигается нахождением магнетита не на поверхности магнитного сорбента, а внутри карбонизированного углеродсодержащего материала, который по природе имеет сродство с углеводородными материалами (нефтью, маслами и т.д.) и при этом гидрофобен. Так как магнетит располагается внутри гранулы магнитного сорбента, то не может вызвать при отшелушивании запыленность атмосферы и загрязнение дна водоема, следовательно, уменьшается вторичное негативное влияние сорбента на окружающую среду. Расширение сырьевой базы для получения магнитного сорбента достигается возможностью применения не только древесных отходов в виде опилок, стружки, пыли, а также угольных и коксовых отходы в виде шлама, мелочи, пыли, а в качестве связующего - навоз, или помет, или активный ил, взятые в исходном состоянии или после анаэробного сбраживания.
Предлагаемый способ заключается в том, что древесные отходы в виде опилок, стружки, пыли, а также угольные и коксовые отходы в виде шлама, мелочи, пыли смешивают с магнетитом, полученным различными методами, и связующим (навоз, или помет, или активный ил, взятые в исходном состоянии или после анаэробного сбраживания), гранулируют и карбонизируют при температуре 400-800°С.
Примерами применения предлагаемого способа может служить:
Пример 1. 60 г опилок тщательно смешивали с 5 г магнетита, после чего вводили 40 г остатка после анаэробного сбраживания навоза крупного рогатого скота. Смесь гранулировали до размера 2-10 мм, высушивали в электросушильном шкафу. Полученные сухие гранулы карбонизировали в собственной атмосфере при температуре 600°С в течение 30 минут. Выход магнитного сорбента составил 63,7 мас.%, нефтеемкость 4,3 г/г, плавучесть более 7 дней.
Пример 2. 7 г древесной пыли перемешивали с 12 г магнетита, полученного по реакции Элмора смешением сульфата железа(II) и хлорида железа(III) в среде гидроксида аммония. В полученную смесь вводили 50 г активного ила городских очистных сооружений и направляли на грануляцию для получения гранул 10-20 мм. После сушки гранулы карбонизировали при температуре 500°С в течение 60 минут. Выход продукта составил 82,5 мас.%, нефтеемкость равна 6,2 г/г при плавучести более 5 дней.
Пример 3. 10 г коксовой пыли и 7 г магнетита смешивали с 40 г остатка после анаэробного сбраживания птичьего помета и гранулировали с получением гранул 5-10 мм. После сушки гранулы карбонизировали при температуре 400-500°С в течение 30 минут. Выход продукта составил 90,0 мас.%, нефтеемкость равна 6,0 г/г при плавучести более 5 дней.
Пример 4. 10 г угольной мелочи пыли и 5 г магнетита смешивали с 40 г остатка после анаэробного сбраживания навоза крупного рогатого скота и 20 г птичьего помета. В результате гранулирования получаем гранулы 10-20 мм, которые после сушки направляли на карбонизацию при температуре 700-800°С в течение 0 минут. Средний выход продукта составил 75,3 мас.%, нефтеемкость равна 5,5 г/г при плавучести более 7 дней.
Заявляемый способ позволяет получить из широкого ассортимента сырья магнитный сорбент с повышенными характеристика нефтеемкости и плавучести, который при очистке водных сред и твердых поверхностей от нефти и нефтепродуктов и других углеводородных продуктов, не оказывает вторичного негативного влияния на окружающую среду.
название | год | авторы | номер документа |
---|---|---|---|
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ТВЕРДОГО КОМПОЗИЦИОННОГО ВЫСОКОУГЛЕРОДСОДЕРЖАЩЕГО ТОПЛИВА | 2010 |
|
RU2440406C1 |
Композиционный магнитосорбент для удаления нефти, нефтепродуктов и масел с поверхности воды | 2020 |
|
RU2757811C2 |
Порошкообразный магнитный сорбент для сбора нефти | 2022 |
|
RU2805655C1 |
ТОПЛИВНЫЙ БРИКЕТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1998 |
|
RU2130047C1 |
ФИЛЬТРУЮЩИЙ СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДЫ ОТ НЕФТЕПРОДУКТОВ | 1992 |
|
RU2045334C1 |
УГЛЕРОДСОДЕРЖАЩИЕ ФОРМОВКИ И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ | 2003 |
|
RU2246530C1 |
СПОСОБ ОЧИСТКИ ВОДНОЙ ПОВЕРХНОСТИ ОТ НЕФТЯНОГО ЗАГРЯЗНЕНИЯ | 1995 |
|
RU2088725C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛУРГИЧЕСКОГО БРИКЕТА | 2017 |
|
RU2638260C1 |
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ФОРМОВАННОГО ТОПЛИВА | 2009 |
|
RU2424280C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ УГЛЕРОДСОДЕРЖАЩИХ ОТХОДОВ | 2010 |
|
RU2443749C1 |
Изобретение относится к производству сорбентов для очистки водных сред и твердых поверхностей от нефти и нефтепродуктов. Предложен способ получения магнитного сорбента. Осуществляют смешение древесных отходов в виде опилок, стружки, пыли или угольных и коксовых отходов в виде шлама, мелочи, пыли со связующим, представляющим собой навоз, или помет, или активный ил, взятых в исходном состоянии или после анаэробного сбраживания, и с магнетитом. Полученную смесь гранулируют. Производят карбонизацию гранул при 400-800°С. Технический результат заключается в получении сорбента с большей поглотительной способностью и плавучестью, а также расширение сырьевой базы для получения магнитных сорбентов. 4 пр.
Способ получения магнитного сорбента, включающий смешение древесных отходов в виде опилок, стружки, пыли или угольных и коксовых отходов в виде шлама, мелочи, пыли со связующим, представляющим собой навоз, или помет, или активный ил, взятых в исходном состоянии или после анаэробного сбраживания, и с магнетитом, и карбонизацию в интервале температур 400-800°С, отличающийся тем, что вначале все исходные компоненты смешивают, гранулируют, после чего подвергают карбонизации.
КВАШЕВАЯ Е.А | |||
Применение высокодисперсных коллоидов ферромагнетиков для повышения действия сорбентов жидких углеводородов | |||
Современные тенденции развития науки и производства | |||
Сб | |||
материалов Международной научно-практической конф., Кемерово, т | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором | 1915 |
|
SU59A1 |
СПОСОБ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОГО УГЛЕРОДНОГО АДСОРБЕНТА | 2011 |
|
RU2445156C1 |
СПОСОБ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОГО УГЛЕРОДНОГО СОРБЕНТА | 2013 |
|
RU2547740C2 |
БАГЛАЕВА М.С | |||
Локализация разливов нефтепродуктов в водоёмах углеродными сорбентами | |||
Экология и безопасность в техносфере: современные проблемы и пути решения | |||
Сб | |||
трудов ВНПК молодых учёных, аспирантов и студентов, Юрга, 2014, с | |||
РАССЕИВАЮЩИЙ ТОПЛИВО МЕХАНИЗМ | 1920 |
|
SU298A1 |
Авторы
Даты
2018-08-29—Публикация
2017-01-19—Подача