Устройство для спектрально-флуоресцентного исследования содержания флуорохромов Российский патент 2018 года по МПК A61B5/00 G01N21/64 

Описание патента на изобретение RU2665628C1

Настоящее устройство относится к биомедицине, а более конкретно к устройствам для спектрально-флуоресцентного исследования содержания экзогенных флуорохромов (в частности, флуоресцирующих препаратов, например фотосенсибилизаторов) в биоткани, в частности в органах и тканях экспериментальных животных при исследованиях фармакокинетики и биораспределения.

При исследованиях фармакокинетики и биораспределения необходимо быстро и точно определять содержание введенного флуоресцирующего препарата в разных органах и тканях лабораторных животных, при том, что разница значений концентрации препарата в них может доходить до двух порядков (например, между плазмой крови или печенью, с одной стороны, и мышцами или кожей, с другой стороны). Поскольку при изучении биораспределения и концентрации измерения интенсивности флуоресценции происходят через отличающиеся по длительности интервалы времени после введения (от нескольких секунд или минут до недели), концентрация изучаемого препарата вследствие его элиминации также может изменяться в широких пределах (вплоть до двух порядков). Для адекватной оценки интегральной интенсивности и спектральной формы полосы флуоресценции важно, чтобы было обеспечено пропорциональное аналогово-цифровое преобразование как спектрального максимума, так и фронтов спектральной полосы, интенсивность которых может отличаться, по крайней мере, на порядок. Наконец, в несколько раз может отличаться доза, вводимая в разных опытах. Таким образом, для адекватного аппаратурного обеспечения необходимо с достаточно высокой точностью и линейностью проводить исследования сигналов флуоресценции, отличающихся более чем на 3 порядка.

Известно устройство для спектрально-флуоресцентного исследования содержания экзогенных флуорохромов, например, фотосенсибилизаторов, включающее источник света для возбуждения флуоресценции, в частности, лазер, спектрально-селективное устройство, в частности, полихроматор, оптическую систему для передачи возбуждающего излучения на изучаемый объект и передачи излучения флуоресценции на вход спектрально-селективного устройства, в частности, оптоволоконный зонд, содержащий осветительные световоды для доставки к биоткани возбуждающего излучения и приемные световоды для доставки излучения флуоресценции от биоткани на вход полихроматора, матричный фотоприемник на выходе спектрально-селективного устройства, в частности, ПЗС или КМОП-линейку, систему регистрации сигнала от каждой из ячеек фотоприемника, пропорционального ее заряду, включающую стандартное устройство сопряжения сигнала с компьютером (как правило, аналогово-цифровой преобразователь (АЦП)) и персональный компьютер (ПК) [ДА Рогаткин. Физические основы лазерной клинической флюоресцентной спектроскопии in vivo. Медицинская физика, 2014, №4, с. 78- 95].

Известно также устройство для спектрально-флуоресцентного исследования содержания экзогенных флуорохромов, например, фотосенсибилизаторов, включающее источник света для возбуждения флуоресценции, в частности, лазер, спектрально-селективное устройство, в частности, полихроматор, оптическую систему для передачи возбуждающего излучения на изучаемый объект и передачи излучения флуоресценции на вход спектрально-селективного устройства, в частности, оптоволоконный зонд, содержащий осветительные световоды для доставки к биоткани возбуждающего излучения и приемные световоды для доставки излучения флуоресценции от биоткани на вход полихроматора, матричный фотоприемник на выходе спектрально-селективного устройства, в которой система регистрации сигнала от каждого из ячеек фотоприемника, пропорционального ее заряду, включает аналогово-цифровой преобразователь (АЦП) для оцифровки сигнала фотоприемника и персональный компьютер (ПК) [Ю.В. Бажанов, Г.Л. Даниелян, С.Н. Марков. Разработка малогабаритного модульного спектрометра. Сборник трудов 7 международной конференции «Прикладная оптика-2006», т. 3, с. 139-143]. При проведении спектрально-флуоресцентного исследования с использованием известного устройства излучение с выхода лазера вводится в осветительный световод оптоволоконного зонда. Выходя из дистального конца осветительного световода, это излучение облучает биологическую ткань, содержащую флуорохром, и инициирует флуоресценцию его молекул, интенсивность характеристической полосы которой, в первом приближении, пропорциональна содержанию флуорохрома в биоткани. Система передачи излучения флуоресценции передает это на вход спектрально-селективного устройства, где происходит спектральное разложение этого излучения, после чего оно попадает на матричный фотоприемник. Сигнал с выхода линейки поступает на АЦП. ПК из поступающих с выхода АЦП цифровых данных, соответствующих интенсивности сигнала из каждой ячейки линейки, и номеров ячеек линейки, которым поставлена в соответствии с результатами калибровки определенная длина волны, формирует спектральную кривую (зависимость интенсивности от длины волны), которая отображается на мониторе ПК.

Динамический диапазон известных устройств определяется, в основном, диапазоном линейности фотоприемника. При высоких уровнях световых потоков, падающих на ячейку фотоприемника, может происходить зарядовое насыщение сигнала этой и прилегающих ячеек фотоприемника; при низких уровнях сигнал, связанный с падающим световым потоком, может оказаться малоразличимым на фоне аппаратных шумов устройства, в первую очередь - тепловых шумов фотоприемника. Из-за этого динамический диапазон известных устройств не превышает, как правило, двух порядков, что заметно меньше требований, которые были бы адекватными задаче точных исследований фармакокинетики и биораспределения флуоресцирующих препаратов. Это является основным недостатком известных устройств, существенно снижающим точность исследований.

Техническая проблема, на решение которой направлено предлагаемое изобретение, состоит в недостаточной точности исследований фармакокинетики и биораспределения фотосенсибилизаторов.

Техническим результатом является расширение динамического диапазона измерений интенсивности флуоресценции устройства для спектрально-флуоресцентного исследования содержания флуорохромов.

Технический результат достигается тем, что в устройстве для спектрально-флуоресцентного исследования содержания экзогенных флуорохромов, включающем источник света для возбуждения флуоресценции, спектрально-селективное устройство, оптическую систему для передачи возбуждающего излучения на изучаемый объект и передачи излучения флуоресценции на вход спектрально-селективного устройства, матричный фотоприемник на выходе спектрально-селективного устройства с сигнальным выходом и управляющим входом, систему регистрации сигнала фотоприемника, включающую аналогово-цифровой преобразователь (АЦП) и персональный компьютер (ПК), устройство содержит дополнительно блок буферной памяти, два двухвходовых компаратора, задатчик опорного сигнала верхнего уровня и задатчик опорного сигнала нижнего уровня, блок управления временем накопления, двухвходовой блок коррекции накопления, вход блока буферной памяти соединен с сигнальным выходом матричного фотоприемника, выход блока буферной памяти соединен с сигнальными входами компараторов и сигнальным входом блока коррекции накопления, задатчик опорного сигнала верхнего уровня соединен с опорным входом первого компаратора, задатчик опорного сигнала нижнего уровня соединен с опорным входом второго компаратора, выходы компараторов соединены со входом блока управления временем накопления, выход блока управления временем накопления соединен с управляющим входом матричного фотоприемника и управляющим входом блока коррекции накопления, выход блока коррекции накопления соединен со входом АЦП системы регистрации сигнала фотоприемника.

Технический результат достигается также тем, что источник света для возбуждения флуоресценции флуорохрома представляет собой лазер с длиной волны в полосе возбуждения флуорохрома.

Технический результат достигается также тем, что матричный фотоприемник представляет собой ПЗС- или КМОП-линейку.

Технический результат достигается также тем, что спектрально-селективное устройство представляет собой полихроматор.

Технический результат достигается также тем, что оптическая система для передачи возбуждающего излучения на изучаемый объект и передачи излучения флуоресценции на вход спектрально-селективного устройства представляет собой оптоволоконный зонд, содержащий осветительные световоды для доставки к биоткани возбуждающего излучения и приемные световоды для доставки излучения флуоресценции от биоткани на вход полихроматора.

Сущность изобретения поясняется Фиг. 1.

Использованы следующие обозначения:

1 - источник света для возбуждения флуоресценции;

2 - оптическая система для передачи возбуждающего излучения на изучаемый объект и передачи излучения флуоресценции на вход спектрально-селективного устройства;

3 - биологическая ткань;

4 - спектрально-селективное устройство;

5 - матричный фотоприемник;

6 - блок буферной памяти;

7 - компаратор;

8 - задатчик опорного сигнала верхнего уровня;

9 - компаратор;

10 - задатчик опорного сигнала нижнего уровня;

11 - блок управления временем накопления;

12 - блок коррекции накопления;

13 - аналого-цифровой преобразователь [АЦП);

14 - персональный компьютер.

Устройство для спектрально-флуоресцентных исследований содержит источник света для возбуждения флуоресценции 1, излучение которого через оптическую систему 2 облучает биологическую ткань 3. Флуоресцентное излучение фотосенсибилизатора через оптическую систему 2 поступает на вход спектрально-селективного устройства 4, а после спектрально-селективного устройства - на матричный фотоприемник 5. Сигнал с выхода матричного фотоприемника 5 поступает на вход блока 6 буферной памяти, а с блока буферной памяти на сигнальные входы компараторов 7 и 9, опорные входы которых соединены с выходами задатчиков 8 и 10. Выходы компараторов соединены со входами блока управления временем накопления 11. Выходы блока управления временем накопления 11 соединены со входом блока коррекции накопления 12, выход блока коррекции накопления соединен со входом АЦП 13 системы регистрации сигнала фотоприемника, выход АЦП соединен со входом персонального компьютера 14. Предлагаемое устройство работает следующим образом.

Излучение с выхода источник света 1 через оптическую систему 2 облучает биологическую ткань 3, содержащую флуорохром, и инициирует флуоресценцию его молекул. Интенсивность характеристической полосы флуоресценции флуорохрома, в первом приближении, пропорциональна содержанию флуорохрома в биоткани. Оптическая система 2 передает излучение флуоресценции на вход спектрально-селективного устройства 4, где происходит спектральное разложение этого излучения, после чего оно попадает на матричный фотоприемник 5. Сигнал с выхода матричного фотоприемника 5 поступает на вход блока 6 буферной памяти, а с блока 6 буферной памяти на сигнальные входы компараторов 7 и 9. На опорный вход компаратора 7 поступает напряжение верхнего уровня сигнала из задатчика 8 опорного сигнала верхнего уровня.

Если сигнал какой-нибудь из ячеек матричного фотоприемника меньше напряжения опорного сигнала, поступающего на опорный вход компаратора 7 из задатчика 8 опорного сигнала верхнего уровня, или больше напряжения опорного сигнала, поступающего на опорный вход компаратора 9 из задатчика 10 опорного сигнала нижнего уровня, совокупность сигналов, соответствующая спектру флуоресценции, из блока 6 буферной памяти подается на умножитель 12, и далее без изменения на АЦП 13, после чего поступает в цифровом виде на вход ПК 14 для построения и отображения спектра.

Если сигнал от какой-нибудь из ячеек матричного фотоприемника 5 больше напряжения опорного сигнала, поступающего на вход компаратора 7 из задатчика 8 опорного сигнала верхнего уровня, команда из компаратора 7 подается на блок управления временем накопления 11, который подает на матричный фотоприемник 5 команду уменьшения длительности времени накопления. При уменьшенном времени накопления сигнал с выхода матричного фотоприемника 4, уменьшенный пропорционально времени накопления, поступает на вход блока 6 буферной памяти, а с блока буферной памяти - на сигнальные входы компараторов 7 и 9. Если при уменьшенном времени накопления сигнал от любой из ячеек матричного фотоприемника меньше напряжения опорного сигнала, поступающего на вход компаратора 7 из задатчика 8 опорного сигнала верхнего уровня, совокупность сигналов, соответствующая спектру флуоресценции, из блока буферной памяти 6 подается на блок коррекции накопления 12, где изменяется (увеличивается) обратно пропорционально времени накопления, затем поступает на АЦП 13, после чего поступает в цифровом виде на вход ПК 14 для построения и отображения спектра.

Если сигнал от какой-нибудь из ячеек матричного фотоприемника 5 меньше напряжения опорного сигнала, поступающего на вход компаратора 9 из задатчика 10 опорного сигнала нижнего уровня, команда из компаратора 9 подается на блок управления временем накопления 11, который в свою очередь подает на линейку 5 команду увеличения длительности времени накопления. При увеличенном времени накопления сигнал с выхода матричного фотоприемника 5, увеличенный пропорционально времени накопления, поступает на вход блока 6 буферной памяти, а с блока буферной памяти на сигнальные входы компараторов 7 и 9. Если при увеличенном времени накопления сигнал от всех ячеек матричного фотоприемника больше напряжения опорного сигнала, поступающего на вход компаратора 9 из задатчика 10 опорного сигнала нижнего уровня, совокупность сигналов, соответствующая спектру флуоресценции, из блока 6 буферной памяти подается на блок коррекции накопления 12, где уменьшается обратно пропорционально времени накопления, затем поступает на АЦП 13, после чего поступает в цифровом виде на вход ПК 14 для построения и отображения спектра.

В наиболее предпочтительном варианте источник света для возбуждения флуоресценции 1 представляет собой лазер с длиной волны в полосе возбуждения флуорохрома.

В наиболее предпочтительном варианте спектрально-селективного устройство представляет собой полихроматор, а на его выходе в качестве матричного фотоприемника установлена ПЗС или КМОП-линейка.

В качестве оптической системы для передачи возбуждающего излучения на изучаемый объект и передачи излучения флуоресценции на вход спектрально-селективного устройства наиболее предпочтительно использовать оптоволоконный зонд, содержащий осветительные световоды для доставки к биоткани возбуждающего излучения и приемные световоды для доставки излучения флуоресценции от биоткани на вход полихроматора.

Как показали проведенные авторами исследования, предлагаемое устройство при исследовании фармакокинетики и биораспределения флуоресцирующих фотосенсибилизаторов на основе производных фталоцианинов и бактериохлоринов благодаря расширенному за счет предлагаемого изобретения динамическому диапазону обеспечило возможность точной регистрации интенсивности сигналов флуоресценции органов и тканей экспериментальных животных, отличающихся по интенсивности практически на 4 порядка.

Похожие патенты RU2665628C1

название год авторы номер документа
ФЛУОРИМЕТР С МНОГОКАНАЛЬНОЙ СИСТЕМОЙ ВОЗБУЖДЕНИЯ НА СВЕТОДИОДАХ 2017
  • Салюк Павел Анатольевич
  • Нагорный Иван Григорьевич
  • Майор Александр Юрьевич
  • Шмирко Константин Александрович
  • Крикун Владимир Александрович
RU2652528C1
Способ анализа соматических мутаций в генах GNAQ и GNA11 с использованием LNA-блокирующей мультиплексной ПЦР и последующей гибридизацией с олигонуклеотидным биологическим микрочипом (биочипом) 2017
  • Емельянова Марина Александровна
  • Заседателев Александр Сергеевич
  • Наседкина Татьяна Васильевна
RU2674687C1
УСТРОЙСТВО ДЛЯ ОПТИЧЕСКОЙ ДИАГНОСТИКИ КРОВОСНАБЖЕНИЯ И ЖИЗНЕОБЕСПЕЧЕНИЯ БИОЛОГИЧЕСКИХ ТКАНЕЙ 2017
  • Дрёмин Виктор Владимирович
  • Маковик Ирина Николаевна
  • Жеребцов Евгений Андреевич
  • Жеребцова Ангелина Ивановна
  • Жарких Елена Валерьевна
  • Потапова Елена Владимировна
  • Дунаев Андрей Валерьевич
RU2663938C1
НАНОКОМПОЗИЦИЯ ДЛЯ ЛЮМИНЕСЦЕНТНОЙ ДИАГНОСТИКИ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ 2014
  • Иванов Андрей Валентинович
  • Ивановская Нина Павловна
  • Барышников Анатолий Юрьевич
  • Румянцева Валентина Дмитриевна
  • Шилов Игорь Петрович
  • Маркушев Валерий Михайлович
RU2578976C2
Способ выявления химерного транскрипта DNAJB1-PRKACA в клинических образцах ткани пациентов с фиброламеллярной карциномой печени методом полимеразной цепной реакции в реальном времени 2023
  • Горев Артем Дмитриевич
  • Хесина Полина Андреевна
  • Шавочкина Дарья Андреевна
  • Лазаревич Наталия Леонидовна
RU2807306C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ БИОЛОГИЧЕСКОЙ ТКАНИ И ДИАГНОСТИЧЕСКАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2002
  • Горенков Р.В.
  • Казаков А.А.
  • Назаренко М.М.
  • Рогаткин Д.А.
  • Свирин В.Н.
  • Черкасов А.С.
  • Черненко В.П.
RU2234242C2
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ФОТОПИГМЕНТОВ ФИТОПЛАНКТОНА, РАСТВОРЁННОГО ОРГАНИЧЕСКОГО ВЕЩЕСТВА И РАЗМЕРНОГО СОСТАВА ВЗВЕСИ В МОРСКОЙ ВОДЕ IN SITU 2021
  • Ли Михаил Ен Гон
  • Кудинов Олег Борисович
RU2775809C1
Способ молекулярной количественной детекции локальной распространенности немелкоклеточного рака легкого методом двойного иммунофлуоресцентного окрашивания нормальной и опухолевой ткани органа 2020
  • Богуш Татьяна Анатольевна
  • Рябинина Ольга Михайловна
  • Башарина Анна Александровна
  • Гришанина Анна Николаевна
  • Богуш Елена Александровна
  • Косоруков Вячеслав Станиславович
RU2732973C1
УСТРОЙСТВО ДЛЯ БИОПСИИ ПАРЕНХИМАТОЗНЫХ ОРГАНОВ С ОДНОВРЕМЕННЫМ СПЕКТРОСКОПИЧЕСКИМ КОНТРОЛЕМ 2013
  • Потапов Александр Александрович
  • Лощенов Виктор Борисович
  • Гаврилов Антон Григорьевич
  • Маряшев Сергей Алексеевич
  • Горяйнов Сергей Алексеевич
  • Гольбин Денис Александрович
  • Жуков Вадим Юрьевич
  • Кисарьев Сергей Александрович
  • Назаров Вячеслав Вячеславович
  • Савельева Татьяна Александровна
  • Холодцова Марина Николаевна
  • Грачёв Павел Вячеславович
  • Зеленков Петр Владимирович
RU2529629C1
Способ диагностики рака молочной железы с экспрессией рецептора Her2/neu на мембране опухолевых клеток 2018
  • Тупицын Николай Николаевич
  • Шамилов Фархад Азерович
  • Безнос Ольга Алексеевна
  • Козлов Николай Александрович
  • Воротников Игорь Константинович
RU2701356C1

Иллюстрации к изобретению RU 2 665 628 C1

Реферат патента 2018 года Устройство для спектрально-флуоресцентного исследования содержания флуорохромов

Изобретение относится к биомедицине, а более конкретно к устройствам для спектрально-флуоресцентного исследования содержания экзогенных флуорохромов (в частности, флуоресцирующих препаратов, например фотосенсибилизаторов) в биоткани, в частности в органах и тканях экспериментальных животных при исследованиях фармакокинетики и биораспределения. Устройство для спектрально-флуоресцентного исследования содержания экзогенных флуорохромов включает источник света для возбуждения флуоресценции, спектрально-селективное устройство, оптическую систему для передачи возбуждающего излучения на изучаемый объект и передачи излучения флуоресценции на вход спектрально-селективного устройства, матричный фотоприемник на выходе спектрально-селективного устройства с сигнальным выходом и управляющим входом, систему регистрации сигнала фотоприемника, включающую аналогово-цифровой преобразователь и персональный компьютер. Также устройство содержит блок буферной памяти, два двухвходовых компаратора, задатчик опорного сигнала верхнего уровня и задатчик опорного сигнала нижнего уровня, блок управления временем накопления, двухвходовой блок коррекции накопления. Достигается расширение динамического диапазона измерений интенсивности флуоресценции устройства для спектрально-флуоресцентного исследования содержания флуорохромов. 4 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 665 628 C1

1. Устройство для спектрально-флуоресцентного исследования содержания экзогенных флуорохромов, включающее источник света для возбуждения флуоресценции, спектрально-селективное устройство, оптическую систему для передачи возбуждающего излучения на изучаемый объект и передачи излучения флуоресценции на вход спектрально-селективного устройства, матричный фотоприемник на выходе спектрально-селективного устройства с сигнальным выходом и управляющим входом, систему регистрации сигнала фотоприемника, включающую аналогово-цифровой преобразователь (АЦП) и персональный компьютер (ПК), устройство содержит дополнительно блок буферной памяти, два двухвходовых компаратора, задатчик опорного сигнала верхнего уровня и задатчик опорного сигнала нижнего уровня, блок управления временем накопления, двухвходовой блок коррекции накопления, вход блока буферной памяти соединен с сигнальным выходом матричного фотоприемника, выход блока буферной памяти соединен с сигнальными входами компараторов и сигнальным входом блока коррекции накопления, задатчик опорного сигнала верхнего уровня соединен с опорным входом первого компаратора, задатчик опорного сигнала нижнего уровня соединен с опорным входом второго компаратора, выходы компараторов соединены со входом блока управления временем накопления, выход блока управления временем накопления соединен с управляющим входом матричного фотоприемника и управляющим входом блока коррекции накопления, выход блока коррекции накопления соединен со входом АЦП системы регистрации сигнала фотоприемника.

2. Устройство по п. 1, отличающееся тем, что источник света для возбуждения флуоресценции флуорохрома представляет собой лазер с длиной волны в полосе возбуждения флуорохрома.

3. Устройство по п. 1, отличающееся тем, что матричный фотоприемник представляет собой ПЗС- или КМОП-линейку.

4. Устройство по п. 1, отличающееся тем, что спектрально-селективное устройство представляет собой полихроматор.

5. Устройство по п. 1, отличающееся тем, что оптическая система для передачи возбуждающего излучения на изучаемый объект и передачи излучения флуоресценции на вход спектрально-селективного устройства представляет собой оптоволоконный зонд, содержащий осветительные световоды для доставки к биоткани возбуждающего излучения и приемные световоды для доставки излучения флуоресценции от биоткани на вход полихроматора.

Документы, цитированные в отчете о поиске Патент 2018 года RU2665628C1

ОФТАЛЬМОЛОГИЧЕСКАЯ ЛИНЗА И СИСТЕМА ФЛУОРЕСЦЕНТНОГО АНАЛИЗА ТЕКУЧЕЙ СРЕДЫ ГЛАЗА 2014
  • Пью Рэндалл Б.
  • Флитш Фредерик А.
RU2596723C2
US 2006275775 A1, 07.12.2006
АВТОНОМНЫЙ ТЕПЛОВОЙ ПУСКАТЕЛЬ 1995
  • Балякин В.Ю.
  • Кичатов Г.В.
RU2098157C1
US 9332942 B2, 10.05.2016
СПОСОБ УГНЕТЕНИЯ АЛКОГОЛЬНОЙ МОТИВАЦИИ 2009
  • Торшин Владимир Иванович
  • Серова Ольга Николаевна
  • Шевченко Лидия Васильевна
  • Елфимов Александр Иванович
  • Котов Александр Владимирович
RU2402352C1

RU 2 665 628 C1

Авторы

Ахлюстина Екатерина Витальевна

Будько Андрей Павлович

Ланцова Анна Владимировна

Линьков Кирилл Геннадьевич

Лощенов Виктор Борисович

Меерович Геннадий Александрович

Савельева Татьяна Александровна

Даты

2018-09-03Публикация

2018-01-25Подача