Пластинчатый теплообменник для гидрогенизационных установок вторичной переработки нефти Российский патент 2018 года по МПК F28D9/00 

Описание патента на изобретение RU2669989C1

Изобретение относится к устройствам для проведения теплообменных процессов между двумя средами через стенку и может быть использовано в нефтеперерабатывающей промышленности.

В современных установках процессов вторичной переработки нефти, таких как каталитический риформинг, гидроочистка дизельных топлив и бензина, изомеризация пентан-гексановых фракций и др. широко используются теплообменные аппараты, обеспечивающие рекуперацию тепла в осуществляемой технологии. Одними из эффективных теплообменных аппаратов являются пластинчатые теплообменники, в которых теплообмен осуществляется между технологическими средами, движущимися противотоком или прямотоком между параллельно расположенными пластинами, разделяющими их. Количество пластин в теплообменнике может быть большим, причем каждая из пластин разделяет нагреваемую и охлаждаемую среды.

Известен пластинчатый теплообменник, применяемый для гидрогенизационых установок вторичной переработки нефти (Заявка на изобретение РФ №98107316), выбранный авторами в качестве ближайшего аналога. Теплообменник состоит из корпуса высокого давления, имеющего штуцера для входа и выхода нагреваемой и охлаждаемой сред, и установленного в корпусе пакета пластин, содержащего набор параллельных металлических теплообменных пластин, образующих два противоточных контура - для охлаждаемой и нагреваемой сред.

Недостатками известного технического решения является пониженная эффективность рекуперации тепла за счет тепловых потерь от пакета пластин, а также повышенные эксплуатационные затраты из-за потерь тепла через корпус теплообменника.

Задачей изобретения является повышение эффективности теплообменника и снижение эксплуатационных затрат при применении теплообменника.

Технический результат достигается тем, что пластинчатый теплообменник для гидрогенизационных установок вторичной переработки нефти, включает вертикальный цилиндрический стальной корпус со штуцерами входа и выхода компонентов переработки, установленный в корпусе пакет пластин, содержащий набор вертикально установленных металлических теплообменных пластин, образующих два противоточных теплообменных контура и рукава, соединяющие штуцера корпуса с теплообменными контурами, при этом пакет пластин имеет внешнюю тепловую изоляцию.

Предпочтительно, чтобы рукава теплообменника имели внешнюю тепловую изоляцию, а штуцера имели внутреннюю тепловую изоляцию.

Предпочтительно, чтобы термическое сопротивление тепловой изоляции составляло 0,05-0,3 (м2*К)/Вт.

Предпочтительно, чтобы тепловая изоляция выполнена из углеродного волокнистого материала, при этом предпочтительно использование углеродного войлока.

Предпочтительно, чтобы тепловая изоляция имела различное термическое сопротивление по высоте пакета пластин.

Предлагаемое техническое решение поясняется следующими графическими материалами:

Фигура 1. Общий вид конструктивного варианта пластинчатого теплообменника.

Фигура 2. Горизонтальное сечение пакета пластин.

Фигура 3. Сечение штуцера с тепловой изоляцией.

Обозначения на фигурах

1 - Цилиндрическая обечайка корпуса.

2 - Верхнее днище корпуса.

3 - Нижнее днище корпуса.

4 - Пакет пластин.

5 - Магистраль подачи газа в корпус теплообменника.

6 - Магистраль отвода газа из корпуса теплообменника.

7 - Штуцер входа нагреваемой смеси.

8 - Штуцер выхода нагретой смеси.

9 - Штуцер входа охлаждаемой смеси.

10 - Штуцер выхода охлаждаемой смеси.

11 - Рукава.

12 - Теплообменные пластины.

13 - Слой внешней теплоизоляции пакета пластин.

14 - Корпус штуцера.

15 - Слой внутренней теплоизоляции штуцера.

Пластинчатый теплообменник для гидрогенизационных установок вторичной переработки нефти по предлагаемому техническому решению имеет вертикальный цилиндрический стальной корпус. Корпус включает в себя цилиндрическую обечайку (1), верхнее (2) и нижнее (3) днища. Днища соединены с корпусом разъемным или неразъемным (сварным) соединением. Конструкция корпуса выполнена с условием обеспечения внутри корпуса высокого давления, например, 30 атм. На днищах корпуса установлены по два штуцера для входа (7, 9) и выхода (8, 10) нагреваемой и охлаждаемой смесей. Внутри корпуса, вертикально установлен пакет пластин (4). Пакет содержит набор вертикально установленных металлических теплообменных пластин, образующих два противоточных теплообменных контура. В корпус введены магистрали подачи газа в корпус теплообменника (5) и отвода газа из корпуса теплообменника (6). Внутри корпуса также установлены рукава (11), соединяющие штуцера корпуса с теплообменными контурами пакета пластин.

Пластины, входящие в пакет теплообменных пластин имеют ширину и длину, равные, соответственно, ширине и длине пакета. Толщина каждой из пластин, например, 0,7-1,3 мм. Пластины выполнены из жаростойкой коррозионностойкой стали. Пластины расположены с зазором между ними. Такой зазор может быть обеспечен, например, установкой проставок между пластинами, созданием на пластинах выступов, предотвращающих соединение пластин друг с другом, чередованием плоских и гофрированных пластин и др. Зазор между пластинами составляет, например, 3-20 мм. Пакет пластин имеет внешнюю тепловую изоляцию (13), т.е. закрепленный на всей его внешней поверхности слой теплоизоляционного материала. Предпочтительно, чтобы термическое сопротивление тепловой изоляции составляло 0,05-0,3 (м2*К)/Вт. Тепловая изоляция, может быть выполнена из различных материалов, сохраняющих работоспособность при температурах эксплуатации теплообменника. Предпочтительно, если теплоизоляция выполнена из углеродных волокнистых материалов, имеющих высокое термическое сопротивление, термостойкость и обеспечивающих технологичность изготовления изоляции. Среди углеволокнистых материалов наиболее предпочтительными являются углеродные войлоки. Предпочтительно, чтобы тепловая изоляция имела различное термическое сопротивление по высоте пакета пластин. Это связано с необходимостью большей теплоизоляцией области пакета пластин, имеющей более высокую температуру.

Предпочтительно, если рукава теплообменника также имеют внешнюю теплоизоляцию, а штуцера теплообменника имеют внутреннюю теплоизоляцию (15), аналогичные теплоизоляции пакета пластин. Это особенно относится к штуцерам и рукавам, через которые подаются смеси с более высокой температурой.

В наиболее часто используемых процессах вторичной переработки нефти, теплообменник работает следующим образом. Через магистраль подачи газа (5) в корпус теплообменника подается газ под давлением, например, 25 атм. Создаваемое этим газом давление внутри корпуса необходимо для компенсации давления в пакете пластин и предотвращает разрушение пакета пластин внутренним давлением. Подаваемый в корпус теплообменника газ, при необходимости, удаляется из корпуса через магистраль (6). В качестве газа может быть использована водородсодержащая газовая смесь, применяемая в технологии вторичной переработки нефти. Нагреваемая газовая смесь, состоящая из перерабатываемых компонентов (например, бензиновой фракции углеводородов) и газа-носителя, например водородсодержащей газовой смеси, имеющая давление, например, 22 атм. и температуру 90°С, подается через штуцер (7) и рукав (11) в пакет теплообменных пластин (4), заполняя все зазоры между пластинами (12), образующими теплообменный контур нагреваемой смеси. Двигаясь по контуру вверх смесь нагревается, например, до температуры 450°С, за счет тепла, получаемого газовым потоком смеси теплопередачей через пластины теплообменника от охлаждаемого потока, движущегося в противоположном направлении. На выходе из пакета пластин, смесь подается в рукав (11), а из него в выходной штуцер перерабатываемых компонентов (8) и далее подается, например, в реакторы вторичной переработки нефти. Охлаждаемая газовая смесь, например, с температурой 490°С и давлением 20 атм., образовавшаяся в реакторе вторичной переработки нефти, через входной штуцер (9) и рукав (11) подается в пакет теплообменных пластин (4) в контур охлаждаемой смеси и, двигаясь между пластинами, отдает часть своего тепла теплопередачей нагреваемой смеси, движущейся в противоположном направлении. На выходе из пакета пластин охлажденная смесь, например, с температурой 120°С, через рукав (11) и штуцер (10) выводится из теплообменника.

За счет того что пакет пластин имеет внешнюю теплоизоляцию (13), тепло, приходящее в теплообменник с охлаждаемой (т.е. наиболее нагретой) смесью, более полно передается нагреваемой смеси. В этом случае существенно уменьшаются потери тепла от охлаждаемой смеси во внутреннюю полость корпуса, а далее, через стенку корпуса наружу. Тем самым повышается степень рекуперации тепла в теплообменнике. Кроме того, за счет теплоизоляции пакета пластин существенно уменьшается тепловой поток на стенки корпуса теплообменника и снижается температура обечайки корпуса. Снижение температуры корпуса при длительной эксплуатации не только повышает его механическую надежность, но и позволяет использовать для изготовления корпуса менее жаропрочные, а следовательно, и более дешевые марки конструкционных сталей.

Таким образом, реализация предлагаемого технического решения повышает эффективность теплообменника за счет уменьшения потерь тепла от теплообменивающихся смесей, что обеспечивает снижение эксплуатационных затрат при применении теплообменника. Снижение эксплуатационной температуры корпуса повышает его надежность, а также позволяет использовать для изготовления корпуса более дешевые марки конструкционных сталей, что снижает эксплуатационные затраты.

Похожие патенты RU2669989C1

название год авторы номер документа
Пластинчатый теплообменник для гидрогенизационных установок вторичной переработки нефти 2018
  • Гордеев Сергей Константинович
  • Седов Владимир Михайлович
  • Барзинский Олег Викторович
RU2670996C1
Пластинчатый теплообменник для гидрогенизационных установок вторичной переработки нефти 2018
  • Седов Владимир Михайлович
  • Гордеев Сергей Константинович
  • Барзинский Олег Викторович
RU2683007C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАМЕЩЕНИЯ КОСТНЫХ ДЕФЕКТОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2015
  • Гордеев Сергей Константинович
  • Барзинский Олег Викторович
RU2609829C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ КОМПЕНСАЦИИ КОСТНЫХ ДЕФЕКТОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2015
  • Гордеев Сергей Константинович
  • Барзинский Олег Викторович
RU2601371C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОД-УГЛЕРОДОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2015
  • Гордеев Сергей Константинович
  • Барзинский Олег Викторович
  • Корчагина Светлана Борисовна
  • Белов Игорь Михайлович
RU2607401C1
КОМПОЗИЦИОННЫЙ УГЛЕРОДНЫЙ НАНОМАТЕРИАЛ ДЛЯ ЗАМЕЩЕНИЯ КОСТНЫХ ДЕФЕКТОВ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ИМПЛАНТАТ ИЗ КОМПОЗИЦИОННОГО УГЛЕРОДНОГО НАНОМАТЕРИАЛА 2016
  • Гордеев Сергей Константинович
  • Барзинский Олег Викторович
RU2617052C1
ИМПЛАНТАТ ДЛЯ ЗАМЕЩЕНИЯ ТЕЛ ПОЗВОНКОВ И МЕЖПОЗВОНКОВЫХ ДИСКОВ 2015
  • Гордеев Сергей Константинович
  • Барзинский Олег Викторович
RU2610027C1
ИМПЛАНТАТ ДЛЯ ЗАМЕЩЕНИЯ ПОЗВОНКОВ И МЕЖПОЗВОНКОВЫХ ДИСКОВ 2015
  • Гордеев Сергей Константинович
  • Барзинский Олег Викторович
  • Белов Игорь Михайлович
RU2616996C2
ИМПЛАНТАТ ДЛЯ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ВОСПАЛИТЕЛЬНЫХ И ОПУХОЛЕВЫХ БОЛЕЗНЕЙ ПОЗВОНОЧНИКА 2015
  • Гордеев Сергей Константинович
  • Барзинский Олег Викторович
RU2606182C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИМПЛАНТАТА 2015
  • Гордеев Сергей Константинович
  • Киселев Олег Иванович
  • Барзинский Олег Викторович
RU2609831C1

Иллюстрации к изобретению RU 2 669 989 C1

Реферат патента 2018 года Пластинчатый теплообменник для гидрогенизационных установок вторичной переработки нефти

Изобретение относится к устройствам для проведения теплообменных процессов между двумя средами через стенку и может быть использовано в нефтеперерабатывающей промышленности. Изобретение заключается в том, что пластинчатый теплообменник для гидрогенизационных установок вторичной переработки нефти включает вертикальный цилиндрический стальной корпус со штуцерами входа и выхода компонентов переработки, установленный в корпусе пакет пластин, содержащий набор вертикально установленных металлических теплообменных пластин, образующих два противоточных теплообменных контура и рукава, соединяющие штуцера корпуса с узлом подачи и с теплообменными контурами, при этом пакет пластин имеет внешнюю тепловую изоляцию. Технический результат - повышение эффективности теплообменника за счет уменьшения потерь тепла от теплообменивающихся смесей и повышение надежности за счет снижения эксплуатационной температуры корпуса. 5 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 669 989 C1

1. Пластинчатый теплообменник для гидрогенизационных установок вторичной переработки нефти, включающий вертикальный цилиндрический стальной корпус со штуцерами входа и выхода компонентов переработки, установленный в корпусе пакет пластин, содержащий набор вертикально установленных металлических теплообменных пластин, образующих два противоточных теплообменных контура и рукава, соединяющие штуцера корпуса с теплообменными контурами, отличающийся тем, что пакет пластин имеет внешнюю тепловую изоляцию.

2. Пластинчатый теплообменник по п. 1, отличающийся тем, что рукава имеют внешнюю тепловую изоляцию, а штуцера имеют внутреннюю тепловую изоляцию.

3. Пластинчатый теплообменник по п. 1, отличающийся тем, что термическое сопротивление тепловой изоляции составляет 0,05-0,3 (м2*К)/Вт.

4. Пластинчатый теплообменник по п. 1, отличающийся тем, что тепловая изоляция выполнена из углеродного волокнистого материала.

5. Пластинчатый теплообменник по п. 4, отличающийся тем, что тепловая изоляция выполнена из углеродного войлока.

6. Пластинчатый теплообменник по п. 1, отличающийся тем, что тепловая изоляция имеет различное термическое сопротивление по высоте пакета пластин.

Документы, цитированные в отчете о поиске Патент 2018 года RU2669989C1

RU 98107316 A, 27.01.2000
ТЕПЛООБМЕННЫЙ ЭЛЕМЕНТ И ПЛАСТИНЧАТЫЙ ТЕПЛООБМЕННИК 2006
  • Закиров Ильдус Мухаметгалеевич
  • Никитин Александр Владимирович
  • Акишев Ниаз Ирекович
RU2319095C1
WO 1992011500, A1 09.07.1992
US 6089313 A, 18.07.2000
СПОСОБ ПОЛУЧЕНИЯ ПОЛУФАБРИКАТОВ ИЗ ОТХОДОВ ТИТАНОВЫХ СПЛАВОВ 1998
  • Талалаев В.Д.
  • Вачьянц С.Г.
  • Санков О.Н.
RU2131791C1

RU 2 669 989 C1

Авторы

Седов Владимир Михайлович

Гордеев Сергей Константинович

Барзинский Олег Викторович

Даты

2018-10-17Публикация

2018-01-23Подача