Шихта для получения горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе Российский патент 2018 года по МПК C22C1/10 C22C19/00 B82Y30/00 

Описание патента на изобретение RU2672975C1

Предлагаемое изобретение относится к области технологий изготовления антифрикционных материалов методом порошковой металлургии, и может быть использовано для получения высокотемпературных антифрикционных материалов, эксплуатируемых в условиях высокоинтенсивных механических воздействий сил трения качения и вращения, и высоких температур, например, на АЭС.

Из уровня техники известен композиционный материал (АС СССР №449960, МПК С22С 1/00, публ. 15.11.1974 г.), антифрикционного назначения, согласно которому литой композиционный состав на основе промышленных литейных алюминиевых сплавов (типа силуминов) содержит дискретные наполнители двух видов: высокотвердые, высокомодульные керамические частицы карбидов, нитридов, оксидов размером не более 20 мкм и частицы графита фракционного состава 40-160 мкм, объемная доля керамического наполнителя от 2,5 до 5,0 об. %.

К недостаткам известного изобретения относится недостаточно высокие антифрикционные свойства, стойкость к воздействию высоких температур и радиационных воздействий, которыми характеризуются условия эксплуатации изделий на АЭС.

Задачей авторов изобретения является разработка антифрикционного материала, работоспособного в условиях высокоинтенсивных механических воздействий сил трения качения и вращения и высоких температур (в диапазоне 800-1000°C), характеризующегося повышенной механической прочностью.

Новый технический результат, обеспечиваемый использованием предлагаемого изобретения, заключается в улучшении антифрикционных свойств, прочности и термостойкости.

Указанные задача и новый технический результат, обеспечиваются предлагаемым изобретением, представляющим собой шихту для получения горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе, содержащую нанопорошки никеля (Ni), молибдена (Мо) и порошок дисульфида молибдена (MoS2), согласно изобретению она содержит в составе шихты дополнительно порошкообразную медь, а дисульфид молибдена в виде частиц, которые предварительно агломерированы с частицами молибдена при следующем соотношении ингредиентов, % мас.:

Мо - от 10 до 20%

Cu - от 1,0 до 10%

MoS2 - от 8 до 12%

Ni - остальное.

Предлагаемое изобретение поясняется следующим образом.

Антифрикционные материалы, характеризующиеся высокими трибологическими свойствами, довольно широко применяются в промышленности, в установках, где имеются вращающиеся детали, работающие при высоких динамических нагрузках усилий трения, вращения, вибраций (коэффициент трения которых порядка κ≤0,3). Особенно востребованы антифрикционные материалы, характеризующиеся повышенной работоспособностью при высоких температурных воздействиях, или в радиационных зонах (вращающиеся турбины на АЭС, в авиации, космических аппаратах).

Условиям получения антифрикционных материалов с повышенными механическими характеристиками и термической прочностью оптимально соответствует метод порошковой металлургии. Метод порошковой

металлургии наиболее эффективен для изготовления антифрикционных изделий различного химического состава с хорошей прирабатываемостью, высокой износостойкостью, низким и стабильным коэффициентом трения (обычно ≤0,3, при наличии смазки <0,1).

Преимуществом таких материалов является их способность работать в тяжелых условиях без смазки. Традиционно антифрикционные материалы изготавливаются, в основном, на основе медных сплавов (баббиты) и имеют недостаточную износостойкость при высоких механических нагрузках и повышенной температуре.

Экспериментально было установлено, что для повышения термостойкости антифрикционных материалов целесообразно использовать в качестве матрицы жаропрочные сплавы на основе Ni, а в качестве «твердой смазки» тугоплавкие соединения с гексагональной графитоподобной решеткой, например BN или MoS2.

Предметом настоящего изобретения являются высокотемпературные антифрикционные материалы, которые нашли широкое применение в различных отраслях промышленности и предназначены для производства изделий с низкими потерями на трение, с хорошей прирабатываемостью, и высокой износостойкостью.

Для решения задачи разработки высокотермостойкого антифрикционного материала необходимо удовлетворить следующим требованиям:

- низкий коэффициент трения,

- сравнительно высокая механическая прочность,

- способность сохранять работоспособность при повышенной (не менее 300°С) температуре. Антифрикционный материал, удовлетворяющий данным требованиям, должен представлять собой прочную матрицу, несущую основную механическую нагрузку, и смазывающий компонент, обеспечивающий низкий коэффициент трения.

В промышленности применяются самосмазывающиеся подшипники с матрицами на основе сплавов Fe или цветных металлов (в основном, Cu).

Традиционно в качестве смазки применяют минеральные масла (И-20А, МГ) или элементарную серу (S), которыми пропитывают пористые заготовки. Смазывающий компонент (BN, ZnS, MoS2, графит, соединения Se) вводится в металлическую матрицу в виде порошка. Однако, рабочая температура традиционных материалов не превышает 170°С для Fe-основы и 120°С для подшипников на основе сплавов Cu /1/, что оказывается недостаточно. Кроме того, антифрикционные материалы на железной основе подвержены влиянию коррозии, что также является недостатком.

В порошковой металлургии традиционным методом получения изделий является метод предварительного компактирования порошков (или их смесей) с последующим «свободным» спеканием при температуре, превышающей температуру начала рекристаллизации основного компонента: 0,5-0,7 Тпл. Однако, изделия, полученные таким методом, почти всегда имеют значительную остаточную пористость, что снижает их прочностные характеристики. Экспериментально показано, что материалы с невысокой пористостью получаются при использовании метода жидкофазного спекания. При этом компоненты материала, находящиеся в твердой фазе, должны хорошо смачиваться жидкостью (краевой угол смачивания близок или равен 0°). Наличие в составе материала «твердых смазок» препятствует процессу уплотнения в объеме готового изделия.

Однако предлагаемый полученный горячим прессованием материал на никелевой основе (58% Ni + 20% Mo + 10% Cu + 12% MoS2) характеризовался достаточно плотным (средняя плотность 7,63 г/см3) и прочным, при обработке хорошо «держал» острую кромку.

В результате проведения ряда опытов были получены образцы такого материала различных типоразмеров, которые подвергались контрольным испытаниям. После проведения контрольных испытаний установлено, что данный материал имеет очень высокие физико-механические характеристики - обладает высокой износостойкостью и термостойкостью в условиях радиационного воздействия и воздействия сил трения. Это подтверждено применением данного материала в составе экспериментального узла реакторной установки. Характеристики данного материала представлены в таблице 1.

Таким образом, при использовании предлагаемого состава высокотемпературного антифрикционного материала был достигнут высокий уровень физико-механических свойств в условиях радиационного воздействия - антифрикционные свойства, прочность, термостойкость.

Возможность промышленной реализации изобретения подтверждается следующими примерами.

Пример 1. В лабораторных условиях предлагаемый антифрикционный материал был получен горячим прессованием. Изготавливали образцы следующих составов: 58% Ni + 20% Мо + 10%Cu + 12% MoS2; ПН75Ю23В2 + 10% MoS2; ПН70Ю30 + 10% MoS2 (таблица 1).

Оценку качества полученных образцов проводили по следующим параметрам: внешний вид, обрабатываемость, склонность к осыпанию острых кромок, термостойкость, прочность.

Образцы имели следующую плотность: 7,63 г/см3 (состав 1), 6,34 г/см3 (состав 2) и 5,63 г/см3 (состав 3).

Материал на основе ПН70Ю30 получился непрочным, легко осыпался по кромкам, материал на основе ПН75Ю23В2 практически не обрабатывался резцом из-за очень высокой твердости и также осыпался по кромкам. Кроме того, на шлифованных поверхностях при небольшом увеличении (×20) наблюдалась значительная пористость.

Материал на никелевой основе (58% Ni + 20% Мо + 10% Cu + 12% MoS2) получился достаточно плотным (средняя плотность 7.63 г/см3) и прочным, при обработке хорошо «держал» острую кромку.

Таким образом, наилучшее качество имел материал на основе никелевого сплава (состав 1).

Похожие патенты RU2672975C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО КОМПОЗИЦИОННОГО АНТИФРИКЦИОННОГО МАТЕРИАЛА 2018
  • Сморчков Георгий Юрьевич
  • Кондрохин Дмитрий Николаевич
  • Рачковский Анатолий Иванович
  • Курганов Станислав Сергеевич
  • Трушин Владимир Сергеевич
RU2695854C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО АНТИФРИКЦИОННОГО МАТЕРИАЛА 2013
  • Сморчков Георгий Юрьевич
  • Рачковский Анатолий Иванович
  • Кондрохин Дмитрий Николаевич
RU2542039C1
АНТИФРИКЦИОННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОРОШКОВОЙ МЕДИ 2014
  • Шалунов Евгений Петрович
  • Смирнов Валентин Михайлович
  • Урянский Илья Павлович
RU2576740C1
ВЫСОКОТЕМПЕРАТУРНЫЙ АНТИФРИКЦИОННЫЙ МАТЕРИАЛ 2013
  • Сморчков Георгий Юрьевич
  • Рачковский Анатолий Иванович
  • Кондрохин Дмитрий Николаевич
RU2535419C1
ШИХТА ДЛЯ АНТИФРИКЦИОННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЯ И СПЕЧЕННЫЙ АНТИФРИКЦИОННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АЛЮМИНИЯ, ПОЛУЧЕННЫЙ С ЕЕ ИСПОЛЬЗОВАНИЕМ 2007
  • Савицкий Арнольд Петрович
  • Прибытков Геннадий Андреевич
  • Коржова Виктория Викторовна
  • Вагнер Марина Ивановна
RU2359051C2
МЕТАЛЛОКЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДНОЙ МАТРИЦЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2018
  • Каблов Евгений Николаевич
  • Гращенков Денис Вячеславович
  • Базылева Ольга Анатольевна
  • Аргинбаева Эльвира Гайсаевна
  • Купцов Роман Сергеевич
  • Ефимочкин Иван Юрьевич
RU2686831C1
Способ получения антифрикционного алюмоматричного композиционного материала 2022
  • Иванов Дмитрий Алексеевич
  • Сенкевич Кирилл Сергеевич
RU2796870C1
АНТИФРИКЦИОННЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ СУДОВЫХ ВАЛОПРОВОДОВ И ГРЕБНЫХ ВАЛОВ 2013
  • Андриенко Александр Анатольевич
  • Ершов Ярослав Владимирович
  • Федорова Ольга Евгеньевна
RU2554182C1
СПОСОБ НАНЕСЕНИЯ АНТИФРИКЦИОННОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ИЗДЕЛИЕ ИЗ МЕТАЛЛА ИЛИ СПЛАВА 2008
  • Савостиков Виктор Михайлович
  • Табаченко Анатолий Никитович
  • Сергеев Сергей Михайлович
  • Кудрявцев Василий Алексеевич
  • Потекаев Александр Иванович
  • Кузьмиченко Владимир Михайлович
  • Ивченко Николай Николаевич
RU2392351C2
Термитный состав для разрушения негабаритных кусков горных пород и неметаллических строительных конструкций 2017
  • Березин Игорь Геннадьевич
  • Брагин Павел Александрович
  • Горинов Сергей Александрович
  • Маслов Илья Юрьевич
RU2660862C1

Реферат патента 2018 года Шихта для получения горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе

Изобретение относится к получению горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе. Шихта содержит нанопорошки никеля (Ni) и молибдена (Мо), порошок дисульфида молибдена (MoS2) и порошок меди (Cu). При этом частицы порошка дисульфида молибдена агломерированы с частицами порошка молибдена. Обеспечивается получение антифрикционного материала, работоспособного в условиях высокоинтенсивных механических воздействий сил трения качения и вращения и высоких температур, составляющих 800-1000°С, и обладающего повышенной механической прочностью. 1 табл., 1 пр.

Формула изобретения RU 2 672 975 C1

Шихта для получения горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе, содержащая нанопорошки никеля (Ni), молибдена (Мо) и порошок дисульфида молибдена (MoS2), отличающаяся тем, что она содержит порошкообразную медь, при этом частицы порошка дисульфида молибдена агломерированы с частицами порошка молибдена при следующем соотношении ингредиентов, мас.%:

Мо от 10 до 20 Cu от 1,0 до 10 MoS2 от 8 до 12 Ni остальное

Документы, цитированные в отчете о поиске Патент 2018 года RU2672975C1

Спеченный антифрикционный материал на основе никеля 1972
  • Альтман Виталий Александрович
  • Валакина Валентина Михайловна
  • Глускин Яков Абрамович
  • Мемелов Вениамин Лазаревич
  • Фридман Александр Аронович
SU449960A1
Металлокерамический антифрикционный материал 1969
  • Винокуров Василий Иванович
  • Антонова Галина Семеновна
  • Костечко Роза Федоровна
  • Голубев Евгений Ильич
  • Лучинский Виталий Анатольевич
SU452618A1
Пневматическое ударное устройство для работ по вскрытию летки доменных печей 1929
  • Гоммель С.П.
  • Лопатин Н.В.
SU29845A1
Приспособление для удаления из топок гидравлическим путем золы и шлаков 1932
  • Калабухов П.Н.
SU31545A1
WO 2001083652 A1, 08.11.2001.

RU 2 672 975 C1

Авторы

Сморчков Георгий Юрьевич

Кондрохин Дмитрий Николаевич

Рачковский Анатолий Иванович

Курганов Станислав Сергеевич

Трушин Владимир Сергеевич

Даты

2018-11-21Публикация

2017-09-25Подача