ПОЛУЧЕНИЕ ПОЛИОЛЕФИНОВЫХ ПРОДУКТОВ Российский патент 2018 года по МПК C08F210/16 C08F4/659 C08F4/6592 C08F2/00 

Описание патента на изобретение RU2674254C1

Настоящая заявка испрашивает приоритет согласно предварительным заявкам на патент США, имеющим следующие серийные номера: серийный номер 61/938466, Ching-Tai Lue et al., поданная 11 февраля 2014 года (2014U002.PRV); серийный номер 61/938472, Ching-Tai Lue et al, поданная 11 февраля 2014 года (2014U003.PRV); серийный номер 61/981,291, Francis С. Rix et al., поданная 18 апреля 2014 года (2014U010.PRV); серийный номер 61/985151, Francis С. Rix et al., поданная 28 апреля 2014 года (2014U012.PRV); серийный номер 62/032383, Sun-Chueh Као et al., поданная 1 августа 2014 года (2014U018.PRV); серийный номер 62/087905, Francis С. Rix et al, поданная 5 декабря 2014 года (2014U035.PRV); серийный номер 62/088196, Daniel P. Zilker, Jr. et al., поданная 5 декабря 2014 года (2014U036.PRV), серийный номер 62/087911, Ching-Tai Lue et al., поданная 5 декабря 2014 года (2014U037.PRV), и серийный номер 62/087,914, Francis С. Rix et al., поданная 5 декабря 2014 года (2014U038.PRV), полное описание которых включено в настоящий документ посредством ссылки.

Уровень техники

Сополимеры этилена и альфа-олефина (полиэтилен) обычно получают в реакторе низкого давления, используя, например, растворный, суспензионный или газофазный процесс полимеризации. Полимеризация происходит в присутствии каталитических систем, таких как системы с применением, например, катализатора Циглера-Натта, катализатора на основе хрома, металлоценового катализатора или их комбинаций.

Для получения сополимеров полиэтилена используют множество каталитических композиций, содержащих катализатор с единым центром полимеризации, например, металлоценовый катализатор, с получением относительно однородных сополимеров с хорошей скоростью полимеризации. В отличие от традиционных композиций катализатора Циглера-Натта, композиции катализатора с единым центром полимеризации, такие как металлоценовые катализаторы, представляют собой каталитические соединения, в которых каждая молекула катализатора содержит один или лишь несколько центров полимеризации. Катализаторы с единым центром полимеризации зачастую обеспечивают получение сополимеров полиэтилена, которые имеют узкое молекулярно-массовое распределение. Хотя существуют катализаторы с единым центром полимеризации, которые обеспечивают получение более широкого молекулярно-массового распределения, такие катализаторы зачастую демонстрируют сужение молекулярно-массового распределения при повышении температуры реакции, например, для повышения производительности. Кроме того, катализатор с единым центром полимеризации зачастую обеспечивает внедрение сомономера в молекулы сополимера полиэтилена с относительно равномерной скоростью. Молекулярно-массовое распределение и количество внедренного сомономера может быть использовано для определения распределения состава.

Распределение состава сополимера этилена и альфа-олефина относится к распределению сомономера, который образует короткие боковые цепи, среди молекул, которые образуют полимер полиэтилена. Если количество коротких боковых цепей варьируется среди молекул полиэтилена, то о смоле говорят, что она имеет «широкое» распределение состава. Если количество сомономера на 1000 атомов углерода является одинаковым среди молекул полиэтилена с разной длиной цепи, то распределение состава называют «узким».

Известно, что распределение состава влияет на свойства сополимеров, например, жесткость, прочность, содержание экстрагируемых веществ, стойкость к растрескиванию под действием окружающей среды и термическая сварка, среди прочих свойств. Распределение состава полиолефина может быть легко измерено методами, известными в данной области техники, например, элюционное фракционирование при повышении температуры (TREF) или анализ фракционирования при кристаллизации (CRYSTAF).

В данной области техники известно, что распределение состава полиолефинов в значительной степени обусловлено типом используемого катализатора и обычно является постоянным для данной каталитической системы. Катализаторы Циглера-Натта и катализаторы на основе хрома обеспечивают получение смол с широким распределением состава (BCD), тогда как металлоценовые катализаторы обычно обеспечивают получение смол с узким распределением состава (NCD).

Смолы, имеющие широкое ортогональное распределение состава (BOCD), в которых сомономер внедрен, главным образом, в высокомолекулярные цепи, могут обладать улучшенными физическими свойствами, например, свойствами прочности и стойкости к растрескиванию под действием окружающей среды (ESCR). Поскольку улучшенные физические свойства смол с ортогональным распределением состава необходимы для получения востребованных в промышленности продуктов, существует потребность в контролируемых технологиях получения сополимеров полиэтилена, имеющих широкое ортогональное распределение состава.

Краткое описание

В иллюстративном варианте реализации, описанном в настоящем документе, предложен способ выбора катализаторов для получения специфического для изделия полиолефина с применением карты комбинированного коэффициента полидисперсности (bPDI). Способ включает получение ряда полимеров для по меньшей мере двух катализаторов, где каждый полимер получают с разным соотношением водорода к этилену. Один из катализаторов обеспечивает получение более высокомолекулярного (hmw) полимера, а другой из по меньшей мере двух катализаторов обеспечивает получение более низкомолекулярного (lmw) полимера. Для каждого полимера измеряют средневесовую молекулярную массу и PDI. Определяют зависимость между молекулярной массой полимеров, полученных на каждом из по меньшей мере двух катализаторов, и соотношением водорода к этилену. Строят группу кривых bPDI для полимеров, которые будут получены с применением множества соотношений смеси по меньшей мере двух катализаторов для каждого из множества соотношений водорода к этилену. Выбирают соотношение для смеси катализаторов, которое обеспечивает получение полимера с bPDI, соответствующим процессу переработки полимера. Соотношение катализаторов подтверждают посредством получения полимера с каждым из множества соотношений водорода к этилену.

В другом иллюстративном варианте реализации предложен способ получения специфического для изделия полиолефина. Способ включает выбор каталитической смеси на основании, по меньшей мере отчасти, карты коэффициента полидисперсности (PDI). Карту полидисперсности получают посредством получения ряда полимеров для по меньшей мере двух катализаторов, где каждый полимер получают с разным соотношением водорода к этилену. По меньшей мере один из катализаторов обеспечивает получение более высокомолекулярного полимера, а другой из катализаторов обеспечивает получение более низкомолекулярного полимера. Измеряют молекулярную массу каждого полимера. Определяют зависимость между молекулярной массой полимеров, полученных на каждом из по меньшей мере двух катализаторов, и соотношением водорода к этилену. Строят группу кривых bPDI для полимеров, которые будут получены с применением множества соотношений смеси катализаторов для каждого из множества соотношений водорода к этилену. Выбирают соотношение для каталитической смеси по меньшей мере двух катализаторов, которое обеспечивает получение полимера с bPDI, соответствующим процессу переработки полимера. Получают специфический для изделия полиолефин с применением указанной каталитической смеси.

В другом иллюстративном варианте реализации предложен катализатор полимеризации для получения сополимера полиэтилена. Катализатор полимеризации содержит подложку катализатора и смесь по меньшей мере двух катализаторов. Катализаторы выбирают посредством получения ряда полимеров для указанных катализаторов, где каждый полимер получают с разным соотношением водорода к этилену. Один из катализаторов обеспечивает получение полимера с более высокой средневесовой молекулярной массой (hmw), а другой из катализаторов обеспечивает получение полимера с более низкой средневесовой молекулярной массой (lmw). Соотношение hmw к lmw составляет более примерно 5,0 при средневесовой молекулярной массе от примерно 30000 до примерно 150000. Измеряют молекулярную массу каждого полимера и определяют взаимосвязь между молекулярной массой полимеров, полученных на каждом из по меньшей мере двух катализаторов, и соотношением водорода к этилену. Строят группу кривых bPDI для полимеров, которые будут получены с применением множества соотношений смеси катализаторов для каждого из множества соотношений водорода к этилену. Выбирают соотношение для каталитической смеси катализаторов, которое обеспечивает получение полимера с bPDI, соответствующим процессу переработки полимера.

В другом иллюстративном варианте реализации предложен катализатор полимеризации для получения сополимера полиэтилена. Катализатор полимеризации содержит подложку катализатора и первый катализатор, которым пропитана подложка катализатора, при этом первый катализатор обеспечивает получение полимеров, имеющих тангенс угла наклона на графике зависимости Н22 от 1/Mw от примерно 1,0×10-6 до примерно 1,5×10-6, и причем при соотношении C6/C2 от примерно 0,008 до примерно 0,012, первый катализатор обеспечивает получение полимера, имеющего MI примерно 1,0 град./10 мин., плотность примерно 0,92 г/см3 и отношение индекса расплава (MIR) менее примерно 25. Вторым катализатором пропитывают каталитическую подложку с первым катализатором, при этом второй катализатор обеспечивает получение полимеров, имеющих тангенс угла наклона на графике зависимости Н22 от 1/Mw от примерно 3,0×10-6 до примерно 4×10-6, и причем при соотношении С62 от примерно 0,03 до примерно 0,04, второй катализатор обеспечивает получение полимера, имеющего MI примерно 1,0 град./10 мин., плотность примерно 0,92 г/см3 и соотношение индекса расплава (MIR) менее примерно 25.

Краткое описание графических материалов

На фиг. 1 представлено схематическое изображение системы газофазного реактора, на котором показано добавление по меньшей мере двух катализаторов, по меньшей мере один из которых добавляют в качестве балансировочного катализатора.

На фиг. 2 представлена диаграмма серии полимеров, полученных для испытания относительной способности серии металлоценовых катализаторов обеспечивать получение смолы, имеющей индекс расплава (MI) примерно 1 и плотность (D) примерно 0,92.

На фиг. 3 представлена диаграмма серии полимеров, представленных на фиг. 2, демонстрирующая отношение индекса расплава (MIR) серии полимеров, полученных с применением различных металлоценовых (MCN) катализаторов.

На фиг. 4 представлена технологическая схема способа получения катализатора полимеризации на общей подложке.

На фиг. 5А, 5В и 5С представлены логарифмические графики зависимости обратного значения молекулярной массы от соотношения Н22 для каждой из гипотетических комбинаций.

На фиг. 6А, 6В и 6С представлены графики чувствительности к водороду каждого из катализаторов.

На фиг. 7А, 7В и 7С представлены карты bPDI, построенные для полимеров, полученных на смеси катализаторов.

На фиг. 8 представлена технологическая блок-схема способа применения карты bPDI для облегчения получения полимера.

На фиг. 9 представлена технологическая блок-схема способа 900 выбора каталитической смеси, например, в блоке 802, представленном на фиг. 8.

Подробное описание

Было обнаружено, что при пропитывании подложки несколькими катализаторами могут быть получены новые полимерные материалы с улучшенным балансом жесткости, прочности и технологичности, например, посредством контролирования количества и типов катализаторов, присутствующих на подложке. Как описано в вариантах реализации, представленных в настоящем документе, подходящий выбор катализаторов и соотношений может быть использован для регулирования молекулярно-массового распределения (MWD), распределения коротких боковых цепей (SCBD) и распределения длинных цепей (LCBD) полимера, например, для получения полимера с широким ортогональным распределением состава (BOCD). MWD, SCBD и LCBD контролируют путем комбинирования катализаторов с подходящей средневесовой молекулярной массой (Mw), внедрением сомономера и образованием длинных боковых цепей (LCB) в условиях полимеризации.

Применение нескольких предкатализаторов, которые имеют одну подложку, смешанных с активатором, таким как метилалюминоксан на диоксиде кремния (SMAO), может обеспечивать экономическое преимущество вследствие получения продукта в одном реакторе, а не в нескольких реакторах. Кроме того, применение одной подложки также обеспечивает однородное смешивание полимеров и улучшенную технологичность по сравнению с получением смеси полимеров с разной Mw и плотностью независимо на нескольких катализаторах в одном реакторе. В данном контексте предкатализатор представляет собой каталитическое соединение до воздействия активатора.

Например, для применения в пленках из линейного полиэтилена низкой плотности (LLDPE) необходимо получить сополимер этилена и гексена с молекулярной массой от примерно 90 кг/моль до 110 кг/моль или примерно 100 кг/моль и со средней плотностью от примерно 0,9 до 0,925 или примерно 0,918. Типичное MWD для линейных металлоценовых смол составляет 2,5-3,5. Исследования смесей показали, что необходимо расширить указанное распределение посредством применения двух катализаторов, которые обеспечивают разные средние молекулярные массы. Соотношение Mw низкомолекулярного компонента и высокомолекулярного компонента должно составлять от 1:1 до 1:10 или от примерно 1:2 до 1:5.

Плотность сополимера полиэтилена указывает на внедрение сомономера в полимер, при этом более низкая плотность указывает на более высокую степень внедрения. Разность плотностей низкомолекулярного (LMW) компонента и высокомолекулярного (HMW) компонента должна быть предпочтительно более примерно 0,02 или более примерно 0,04, при этом HMW компонент имеет более низкую плотность, чем LMW компонент. Для двух смол с Mw 25 кг/моль и 125 кг/моль разность плотности требует разности способности к внедрению сомономера, составляющей примерно 1,5:1 или предпочтительно примерно 2:1, или более предпочтительно примерно 3:1, или более предпочтительно 4:1, или даже более 4:1. Необходимо также минимизировать степень образования длинных боковых цепей (LCB) в полимере, поскольку оно приводит к сильной ориентации при производстве пленки, что приводит к нарушению баланса раздира в продольном/поперечном направлении и снижает прочность.

Указанные факторы могут быть подобраны регулированием MWD и SCBD, которые, в свою очередь, могут быть подобраны изменением относительного количества двух предкатализаторов на подложке. Оно может быть подобрано при получении предкатализаторов, например, нанесением двух катализаторов на одну подложку. В некоторых вариантах реализации относительные количества предкатализаторов могут быть подобраны добавлением одного из компонентов в каталитическую смесь по пути в реактор в процессе, называемом «балансировкой». Обратная информация, полученная относительно данных о свойствах полимера, может быть использована для регулирования количества добавляемого катализатора. Известно, что металлоцены (MCN) хорошо балансируют с другими катализаторами.

Кроме того, из ограниченного количества катализаторов могут быть получены многие смолы с различными MWD, SCBD и LCBD. Для осуществления указанной функции предкатализаторы должны хорошо балансировать на подложках активатора. Два параметра, которые способствуют этому, представляют собой растворимость в алкановых растворителях и быстрое нанесение на каталитическую суспензию по пути в реактор. Это способствует применению MCN для достижения контролируемых MWD, SCBD и LCBD. В настоящем документе описаны технологии выбора катализаторов, которые могут быть выбраны для получения композиций с требуемой молекулярной массой, включая полимерные системы с BOCD.

Для получения полимеров и композиций с описанной молекулярной массой могут быть использованы различные каталитические системы и компоненты. Они описаны в представленных ниже разделах. В первом разделе описаны каталитические соединения, которые могут быть использованы в различных вариантах реализации изобретения. Во втором разделе описано получение каталитических суспензий, которые могут быть использованы для осуществления описанных технологий. В третьем разделе описаны каталитические подложки, которые могут быть использованы. В четвертом разделе описаны активаторы катализаторов, которые могут быть использованы. В пятом разделе описаны растворы каталитических компонентов, которые могут быть использованы для внесения дополнительных катализаторов в балансировочные системы. В процессах газофазной полимеризации могут быть использованы агенты статического регулирования или сплошности, которые описаны в шестом разделе. Реактор газофазной полимеризации с балансировочной системой питания описан в седьмом разделе. Применение каталитической композиции для регулирования свойств продукта описано в восьмом разделе, а иллюстративный процесс полимеризации описан в девятом разделе. Примеры осуществления описанных способов включены в десятый раздел.

Каталитические соединения

Металлоценовые каталитические соединения

Металлоценовые каталитические соединения могут содержать «полусэндвичевые» и/или «полностью сэндвичевые» соединения, имеющие один или более лигандов Ср (циклопентадиенил и лиганды, изолобальные циклопентадиенилу), связанных с по меньшей мере одним атомом металла из групп 3-12, и одну или более уходящих групп, связанных с по меньшей мере одним атомом металла. В данном контексте все упоминания периодической таблицы элементов и ее групп относятся к новой системе (NEW NOTATION), опубликованной в книге HAWLEY, CONDENSED CHEMICAL DICTIONARY, тринадцатое издание, John Wiley & Sons, Inc., (1997) (представленную с разрешения ИЮПАК), за исключением случаев, в которых сделана ссылка на предыдущую форму ИЮПАК, записанную римскими цифрами (также представленную в том же источнике), или за исключением случаев, в которых указано иное.

Лиганды Ср представляют собой одно или более колец или кольцевых систем, по меньшей мере часть которых содержит π-связанные системы, такие как циклоалкадиенильные лиганды и гетероциклические аналоги. Кольцо(-а) или кольцевая система(-ы) обычно содержит атомы, выбранные из группы, состоящей из атомов групп 13-16, и, в конкретном иллюстративном варианте реализации, атомы, которые образуют лиганды Ср, выбраны из группы, состоящей из углерода, азота, кислорода, кремния, серы, фосфора, германия, бора, алюминия и их комбинаций, где атомы углерода составляют по меньшей мере 50% кольцевых членов. В более конкретном иллюстративном варианте реализации лиганд(-ы) Ср выбраны из группы, состоящей из замещенных и незамещенных циклопентадиенильных лигандов и лигандов, изолобальных циклопентадиенилу, неограничивающие примеры которых включают циклопентадиенил, инденил, флуоренил и другие структуры. Дополнительные неограничивающие примеры таких лигандов включают циклопентадиенил, циклопентафенантренил, инденил, бензинденил, флуоренил, октагидрофлуоренил, циклооктатетраенил, циклопентациклододецен, фенантринденил, 3,4-бензофлуоренил, 9-фенилфлуоренил, 8Н-циклопента[а]аценафтиленил, 7Н-дибензофлуоренил, индено[1,2-9]антрен, тиофеноинденил, тиофенофлуоренил, их гидрированные варианты (например, 4,5,6,7-тетрагидроинденил или «Н4 Ind»), их замещенные варианты (более подробно рассмотренные и описанные ниже), а также их гетероциклические варианты.

Атом металла «М» металлоценового каталитического соединения может быть выбран из группы, состоящей из атомов групп 3-12, а также атомов лантаноидной группы в одном иллюстративном варианте реализации; и выбран из группы, состоящей из атомов групп 3-10 в более конкретном иллюстративном варианте реализации, и выбран из группы, состоящей из Sc, Ti, Zr, Hf, V, Nb, Та, Mn, Re, Fe, Ru, Os, Co, Rh, Ir и Ni в еще более конкретном иллюстративном варианте реализации; и выбран из группы, состоящей из атомов групп 4, 5 и 6 в еще более конкретном иллюстративном варианте реализации, и из атомов Ti, Zr, Hf в еще более конкретном иллюстративном варианте реализации, и Hf в еще более конкретном иллюстративном варианте реализации. Степень окисления атома металла «М» может составлять от 0 до +7 в одном иллюстративном варианте реализации; и в более конкретном иллюстративном варианте реализации может составлять +1, +2, +3, +4 или +5; и в еще более конкретном иллюстративном варианте реализации может составлять +2, +3 или +4. Группы, связанные с атомом металла «М», являются такими, чтобы соединения, описанные ниже на формулах и структурах, были электрически нейтральными, если не указано иное. Лиганд Ср образует по меньшей мере одну химическую связь с атомом металла М с образованием «металлоценового каталитического соединения». Лиганды Ср отличаются от уходящих групп, связанных с каталитическим соединением, тем, что они не являются в значительной степени восприимчивыми к реакциям замещения/отщепления.

Одно или более металлоценовых каталитических соединений могут быть представлены формулой (I):

в которой М является такими, как описано выше; каждый X химически связан с М; каждая группа Ср химически связана с М; и n равен 0 или целому числу от 1 до 4, и равен 1 или 2 в конкретном иллюстративном варианте реализации.

Лиганды, обозначенные как СрА и CpB в формуле (I), могут быть одинаковыми или различными циклопентадиенильными лигандами или лигандами, изолобальными циклопентадиенилу, любой из которых или оба могут содержать гетероатомы, и любой из которых или оба могут быть замещены группой R. В по меньшей мере одном конкретном варианте реализации СрА и CpB независимо выбраны из группы, состоящей из циклопентадиенила, инденила, тетрагидроинденила, флуоренила и их замещенных производных.

Каждый СрА и CpB в формуле (I) может быть независимо незамещенным или замещенным любой из групп заместителей R или их комбинацией. Неограничивающие примеры групп заместителей R, используемых в структуре (I), а также в качестве кольцевых заместителей в структурах Va-d, рассмотренних и описанных ниже, включают группы, выбранные из группы, состоящей из водородных радикалов, алкилов, алкенилов, алкинилов, циклоалкилов, арилов, ацилов, ароилов, алкокси, арилокси, алкилтиолов, диалкиламинов, алкиламидо, алкоксикарбонилов, арилоксикарбонилов, карбамоилов, алкил- и диалкилкарбамоилов, ацилокси, ациламино, ароиламино и их комбинаций. Более конкретные неорганичивающие примеры алкильных заместителей R в формулах (I)-(Va-d) включают метальные, этильные, пропильные, бутильные, пентильные, гексильные, циклопентильные, циклогексильные, бензильные, фенильные, метилфенильные и трет-бутилфенильные группы и т.п., включая все их изомеры, например, трет-бутил, изопропил и т.п.

В данном контексте и в формуле изобретения углеводородные заместители или группы состоят из 1-100 или более атомов углерода, а остальные атомы являются атомами водорода. Неорганичивающие примеры углеводородных заместителей включают линейные или разветвленные, или циклические: алкильные радикалы; алкенильные радикалы; алкинильные радикалы; циклоалкильные радикалы; арильные радикалы; алкиленовые радикалы или их комбинации. Неограничивающие примеры включают метил, этил, пропил, бутил, пентил, гексил, циклопентил, циклогексил; олефиновые ненасыщенные заместители, включая винил-концевые лиганды (например, бут-3-енил, проп-2-енил, гекс-5-енил и т.п.), бензильные или фенильные группы и т.п., включая все их изомеры, например, трет-бутил, изопропил и т.п.

В данном контексте и в формуле изобретения замещенные углеводородные заместители или группы состоят из 1-100 или более атомов углерода, а остальные атомы являются атомами водорода, фтора, хлора, брома, йода, кислорода, серы, азота, фосфора, бора, кремния, германия или олова, или другими атомными системами, подходящими для систем полимеризации олефинов. Замещенные углеводородные заместители представляют собой радикалы на основе углерода. Неограничивающие примеры замещенных углеводородных заместителей представляют собой трифторметильный радикал, триметилсиланметильный (Me3SiCH2-) радикал.

В данном контексте и в формуле изобретения гетероатомные заместители или группы представляют собой радикалы на основе фтора, хлора, брома, йода, кислорода, серы, азота, фосфора, бора, кремния, германия или олова. Они сами могут представлять собой гетероатом. Кроме того, гетероатомные заместители включают органометаллоидные радикалы. Неограничивающие примеры гетероатомных заместителей включают радикалы хлора, радикалы фтора, метокси-радикалы, дифениламино-радикалы, тиоалкилы, тиоалкенилы, триметилсилильные радикалы, радикалы диметилалюминия, алкоксиди(углеводородный радикал)силильные радикалы, силоксиди(углеводородный радикал)силильные радикалы, трис(перфторфенил)бор и т.п.

Другие возможные радикалы включают замещенные алкилы и арилы, такие как, например, фторметил, фторэтил, дифторэтил, йодпропил, бромгексил, хлорбензил, замещенные углеводородным радикалом органометаллоидные радикалы, включая триметилсилил, триметилгермил, метилдиэтилсилил и т.п., а также замещенные галогенуглеводородным радикалом органометаллоидные радикалы, включая трис(трифторметил)силил, метилбис(дифторметил)силил, бромметилдиметилгермил и т.п.; и радикалы дизамещенного бора, включая, например, диметилбор; и радикалы дизамещенных атомов группы 15, включая диметиламин, диметилфосфин, дифениламин, метилфенилфосфин, а также радикалы группы 16, включая метокси, этокси, пропокси, фенокси, метилсульфид и этилсульфид. Другие группы заместителя R включают, но не ограничиваются ими, олефины, такие как олефиновые ненасыщенные заместители, включая винил-концевые лиганды, такие как, например, 3-бутенил, 2-пропенил, 5-гексенил и т.п.В одном иллюстративном варианте реализации по меньшей мере две группы R (две соседние группы R в конкретном иллюстративном варианте реализации) связаны с образованием кольцевой структуры, имеющей от 3 до 20 атомов, выбранных из группы, состоящей из углерода, азота, кислорода, фосфора, кремния, германия, алюминия, бора и их комбинаций. Кроме того, группа заместителя R, такая как 1-бутанил, может образовывать связывающую ассоциацию с элементом М.

Каждый X в формуле (I), приведенной выше, и в формулах/структурах (II)-(Va-d), приведенных ниже, независимо выбран из группы, состоящей из: любой уходящей группы, в одном иллюстративном варианте реализации; ионов галогена, гидридов, С112 алкилов, С212 алкенилов, С612 арилов, С720 алкиларилов, C112 алкокси, С6-C16 арилокси, С78 алкиларилокси, C112 фторалкилов, С6-C12 фторарилов и C112 углеводородов, содержащих гетероатом, и их замещенных производных, в более конкретном иллюстративном варианте реализации; гидрида, ионов галогена, C16 алкилов, С26 алкенилов, С7-C18 алкиларилов, C16 алкокси, С614 арилокси, С7-C16 алкиларилокси, C16 алкилкарбоксилатов, C16 фторированных алкилкарбоксилатов, С612 арилкарбоксилатов, С7-C18 алкиларилкарбоксилатов, C16 фторалкилов, С26 фторалкенилов и С7-C18 фторалкиларилов, в еще более конкретном иллюстративном варианте реализации; гидрида, хлорида, фторида, метила, фенила, фенокси, бензокси, тозила, фторметилов и фторфенилов, в еще более конкретном иллюстративном варианте реализации; C112 алкилов, С212 алкенилов, С612 арилов, С720 алкиларилов, замещенных C112 алкилов, замещенных С612 арилов, замещенных С720 алкиларилов и С112 алкилов, содержащих гетероатом, C112 арилов, содержащих гетероатом, и C112 алкиларилов, содержащих гетероатом, в еще более конкретном иллюстративном варианте реализации; хлорида, фторида, С16 алкилов, С26 алкенилов, С7-C18 алкиларилов, галогенированных С16 алкилов, галогенированных С26 алкенилов и галогенированных С7-C18 алкиларилов, в еще более конкретном иллюстративном варианте реализации; фторида, метила, этила, пропила, фенила, метилфенила, диметилфенила, триметилфенила, фторметилов (моно-, ди- и трифторметилов) и фторфенилов (моно-, ди-, три-, тетра- и пентафторфенилов), в еще более конкретном иллюстративном варианте реализации; и фторида, в еще более конкретном иллюстративном варианте реализации.

Другие неограничивающие примеры групп X включают амины, фосфины, простые эфиры, карбоксилаты, диены, углеводородные радикалы, содержащие от 1 до 20 атомов углерода, фторированные углеводородные радикалы (например, -C6F5 (пентафторфенил)), фторированные алкилкарбоксилаты (например, CF3C(О)O-), гидриды, ионы галогенов и их комбинации. Другие примеры лигандов X включают алкильные группы, такие как циклобутильные, циклогексильные, метальные, гептильные, толильные, трифторметильные, тетраметиленовые, пентаметиленовые, метилиденовые, метилокси, этилокси, пропокси, фенокси, бис(М-метиланилидные), диметиламидные, диметилфосфидные радикалы и т.п. В одном иллюстративном варианте реализации два или более X образуют часть конденсированного кольца или кольцевой системы. В по меньшей мере одном конкретном варианте реализации X может представлять собой уходящую группу, выбранную из группы, состоящей из хлорид-ионов, бромид-ионов, C110 алкилов и С212 алкенилов, карбоксилатов, ацетилацетонатов и алкоксидов.

Металлоценовое каталитическое соединение включает соединения формулы (I), где СрА и CpB связаны друг с другом мостиком посредством по меньшей мере одной мостиковой группы (А), так что структура представлена формулой (II):

Такие мостиковые соединения, представленные формулой (II), известные как «мостиковые металлоцены». Элементы СрА, CpB, М, X и n в структуре (II) являются такими, как описано выше для формулы (I); где каждый лиганд Ср химически связан с М, и (А) химически связан с каждым Ср. Мостиковая группа (А) может содержать двухвалентную углеводородную группу, содержащую по меньшей мере один атом группы 13-16, такой как, но не ограничиваясь ими, по меньшей мере один из атома углерода, кислорода, азота, кремния, алюминия, бора, германия, олова и их комбинаций; где указанный гетероатом также может быть С112 алкил- или арил-замещенным для удовлетворения требования нейтральной валентности. В по меньшей мере одном конкретном варианте реализации мостиковая группа (А) также может содержать группы заместителя R, описанные выше (для формулы (I)), включая радикалы галогена и железо. В по меньшей мере одном конкретном варианте реализации мостиковая группа (А) может быть представлена С1-C6 алкиленами, замещенными С16 алкиленами, кислородом, серой, R'2C=, R'2Si=, =Si(R')2Si(R'2)=, R'2Ge= и R'P= , где «=» представляет собой две химические связи, R' независимо выбран из группы, состоящей из гидрида, углеводородного радикала, замещенного углеводородного радикала, галогенуглеводородного радикала, замещенного галогенуглеводородного радикала, замещенного углеводородным радикалом органометаллоида, замещенного галогенуглеводородным радикалом органометаллоида, дизамещенного бора, дизамещенных атомов группы 15, замещенных атомов группы 16 и радикала галогена; и где два или более R' могут быть связаны с образованием кольца или кольцевой системы. В по меньшей мере одном конкретном варианте реализации мостиковое металлоценовое каталитическое соединение формулы (II) содержит две или более мостиковых групп (А). В одном или более вариантах реализации (А) может представлять собой двухвалентную мостиковую группу, связанную с СрА и CpB, выбранную из группы, состоящей из двухвалентных C120 углеводородных радикалов и C120 углеводородных радикалов, содержащих гетероатом, где углеовдородные радикалы, содержащие гетероатом, содержат от одного до трех гетероатомов.

Мостиковая группа (А) может содержать метилен, этилен, этилиден, пропилиден, изопропилиден, дифенилметилен, 1,2-диметилэтилен, 1,2-дифенилэтилен, 1,1,2,2-тетраметилэтилен, диметилсилил, диэтилсилил, метилэтилсилил, трифторметилбутилсилил, бис(трифторметил)силил, ди(н-бутил)силил, ди(н-пропил)силил, ди(изопропил)силил, ди(н-гексил)силил, дициклогексилсилил, дифенилсилил, циклогексилфенилсилил, трет-бутилциклогексилсилил, ди(трет-бутилфенил)силил, ди(п-толил)силил и соответствующие фрагменты, в которых атом Si заменен на атом Ge или С; а также диметилсилил, диэтилсилил, диметилгермил и диэтилгермил. Мостиковая группа (А) также может содержать группы -Si(углеводородный радикал)2-O-(углеводородный радикал)2Si-, -Si(замещенный углеводородный радикал)2-O-(замещенный углеводородный радикал)2Si- и т.п., такие как -SiMe2-O-SiMe2- и -SiPh2-O-SiPh2-.

Мостиковая группа (А) также может быть циклической, имеющей, например, от 4 до 10 кольцевых членов; в более конкретном иллюстративном варианте реализации мостиковая группа (А) может иметь от 5 до 7 кольцевых членов. Кольцевые члены могут быть выбраны из элементов, упомянутых выше, и, в конкретном варианте реализации, могут быть выбраны из одного или более из В, С, Si, Ge, N и О. Неограничивающие примеры кольцевых структур, которые могут присутствовать в качестве мостикового фрагмента или его части, представляют собой циклобутилиден, циклопентилиден, циклогексилиден, циклогептилиден, циклооктилиден и соответствующие кольца, в которых один или два атома углерода заменены по меньшей мере одним из Si, Ge, N и О. В одном или более вариантах реализации один или два атома углерода могут быть заменены по меньшей мере одним из Si и Ge. Расположение связей между кольцом и группами Ср может быть цис-, транс- или их комбинацией.

Циклические мостиковые группы (А) могут быть насыщенными или ненасыщенными и/или могут содержать один или более заместителей, и/или могут быть конденсированными с одной или более другими кольцевыми структурами. При их наличии, один или более заместителей могут быть, по меньшей мере в одном конкретном варианте реализации, выбраны из группы, состоящей из углеводородного радикала (например, алкила, такого как метил) и галогена (например, F, С1). Одна или более групп Ср, с которыми могут быть необязательно конденсированы вышеуказанные циклические мостиковые фрагменты, могут быть насыщенными или ненасыщенными, и они выбраны из группы, состоящей из групп, имеющих от 4 до 10, более конкретно, 5, 6 или 7 кольцевых членов (выбранных из группы, состоящей из С, N, О и S, в конкретном иллюстративном варианте реализации), таких как, например, циклопентил, циклогексил и фенил. Кроме того, такие кольцевые структуры сами могут быть конденсированными, как, например, в случае нафтильной группы. Кроме того, указанные (необязательно конденсированные) кольцевые структуры могут иметь один или более заместителей. Иллюстративные, неограничивающие примеры указанных заместителей представляют собой углеводородные (в частности, алкильные) группы и атомы галогена. Лиганды СрА и CpB в формуле (I) и (II) могут отличаться друг от друга. Лиганды СрА и CpB в формуле (I) и (II) могут быть одинаковыми. Металлоценовое каталитическое соединение может включать мостиковые монолигандные металлоценовые соединения (например, моноциклопентадиенильные каталитические компоненты).

Подразумевается, что металлоценовые каталитические компоненты, рассмотренные и описанные выше, включают их структурные или оптические, или энантиомерные изомеры (рацемические смеси) и, в одном иллюстративном варианте реализации, могут быть чистым энантиомером. В данном контексте одиночное, мостиковое, асимметрично замещенное металлоценовое каталитическое соединение, имеющее рацемический и/или мезо-изомер, само по себе не составляет по меньшей мере два разных мостиковых металлоценовых каталитических компонента.

Как указано выше, количество компонента переходного металла в одном или более металлоценовых каталитических соединениях в каталитической системе может составлять от примерно 0,01 масс. %, примерно 0,2 масс. %, примерно 3 масс. %, примерно 0,5 масс. % или примерно 0,7 масс. % до примерно 1 масс. %, примерно 2 масс. %, примерно 2,5 масс. %, примерно 3 масс. %, примерно 3,5 масс. % или примерно 4 масс. % от общей массы каталитической системы.

«Металлоценовое каталитическое соединение» может содержать любую комбинацию любого «варианта реализации», рассмотренного и описанного в настоящем документе. Например, металлоценовое каталитическое соединение может содержать, но не ограничиваясь ими, бис(н-пропилциклопентадиенил)гафний (СН3)2, бис(н-пропилциклопентадиенил)гафний F2, бис(н-пропилциклопентадиенил)гафний Cl2 или бис(н-бутил, метилциклопентадиенил)цирконий Cl2, или любую их комбинацию.

Другие металлоценовые каталитические соединения, которые могут быть использованы, представляют собой катализаторы с затрудненной геометрией на подложке (sCGC), которые содержат (а) ионный комплекс, (b) соединение переходного металла, (с) органометаллическое соединение и (d) материал подложки. В некоторых вариантах реализации катализатор sCGC может содержать борат-ион. Борат-анион представлен формулой [BQ4-z'(Gq(T--H)r)z']d-, где: В представляет собой атом бора в валентном состоянии 3; Q выбран из группы, состоящей из гидрида, ди(углеводородный радикал)амидо, галогенида, оксида углеводородного радикала, углеводородного радикала и замещенных углеводородных радикалов; z' представляет собой целое число от 1 до 4; G представляет собой поливалентный углеводородный радикал, имеющий r+1 валентностей, связанных с М' и группами r (Т--Н); q представляет собой целое число, 0 или 1; группа (Т--Н) представляет собой радикал, где Т содержит О, S, NR. или PR, в котором атом О, S, N или Р связан с атомом водорода Н, где R представляет собой углеводородный радикал, три(углеводородный радикал)силильный радикал, три(углеводородный радикал)гермильный радикал или водород; г представляет собой целое число от 1 до 3; и d равен 1. В альтернативном варианте борат-ион может быть представлен формулой [BQ4-z'(Gq(T--MoRCx-1Xay)r)z']d-, где: В представляет собой бор в валентном состоянии 3; Q выбран из группы, состоящей из гидрида, ди(углеводородный радикал)амидо, галогенида, оксида углеводородного радикала, углеводородного радикала и замещенных углеводородных радикалов; z' представляет собой целое число в диапазоне от 1 до 4; G представляет собой поливалентный углеводородный радикал, имеющий r+1 валентностей, связанных с В и группами r (Т--MoRCx-1Xay); q представляет собой целое число, 0 или 1; группа (Т--MoRCx-1Xay) представляет собой радикал, где Т содержит О, S, NR или PR, в котором атом О, S, N или Р связан с Mo, где R представляет собой углеводородный радикал, три(углеводородный радикал)силильный радикал, три(углеводородный радикал)гермильный радикал или водород; Mo представляет собой металл или металлоид, выбранный из атомов групп 1-14 периодической таблицы элементов, RC в каждом случае независимо представляет собой водород или группу, имеющую от 1 до 80 неводородных атомов, которые представляют собой (углеводородный радикал)силил или (углеводородный радикал)силил(углеводородный радикал); Ха представляет собой немешающую группу, имеющую от 1 до 100 неводородных атомов, которые представляют собой галоген-замещенный углеводородный радикал, (углеводородный радикал)амино-замещенный углеводородный радикал, (углеводородный радикал)окси-замещенный углеводородный радикал, (углеводородный радикал)амино, ди(углеводородный радикал)амино, (углеводородный радикал)окси или галогенид; х представляет собой ненулевое целое число, которое может составлять от 1 до целого числа, равному валентности Mo; у равен нулю или представляет собой ненулевое целое число, которое может составлять от 1 до целого числа, которое на 1 меньше значения валентности Mo; и х+у равно валентности Mo; r представляет собой целое число от 1 до 3; и d равен 1. В некоторых вариантах реализации борат-ион может иметь любую из описанных выше формул, где z' равен 1 или 2, q равен 1, и r равен 1.

Каталитическая система может содержать другие катализаторы с единым центром полимеризации, такие как катализаторы, содержащие элементы группы 15. Каталитическая система может содержать один или более вторых катализаторов помимо каталитического соединения с единым центром полимеризации, таких как катализаторы на основе хрома, катализаторы Циглера-Натта, один или более дополнительных катализаторов с единым центром полимеризации, таких как металлоцены или катализаторы, содержащие элементы группы 15, биметаллические катализаторы и смешанные катализаторы. Каталитическая система также может содержать AlCl3, кобальт, железо, палладий или любую их комбинацию.

Примеры структур MCN соединений, которые могут быть использованы ы вариантах реализации настоящего изобретения, включают соединения гафния, представленные формулой (III), соединения циркония, представленные формулами (IV-A-С), и мостиковые соединения циркония, представленные формулами (V-A-B).

или

Хотя указанные соединения показаны с метил- и хлор-группами, присоединенными к центральному атому металла, понятно, что указанные группы могут быть другими без изменения рассматриваемого катализатора. Например, каждый из указанных заместителей может независимо представлять собой метальную группу (Me), группу хлора (Cl), группу фтора (F) или любое количество других групп, включая органические группы или гетероатомные группы. Кроме того, указанные заместители изменяются в процессе реакции, поскольку предкатализатор превращается в активный катализатор для реакции. Кроме того, в кольцевых структурах может быть использовано любое количество других заместителей, включая любые заместители, описанные выше в отношении формул (I) и (II).

Каталитические соединения, содержащие атом группы 15 и металл

Каталитическая система может содержать одно или более каталитических соединений, содержащих металл группы 15, таких как [(2,3,4,5,6 Me5C6N)CH2CH2]2NHZrBn2, где Bn представляет собой бензильную группу. Соединение, содержащее металл группы 15, обычно содержит атом металла группы 3-14, группы 3-7 или атом металла группы 4-6. Во многих вариантах реализации соединение, содержащее металл группы 15, содержит атом металла группы 4, связанный с по меньшей мере одной уходящей группой и связанный также с по меньшей мере двумя атомами группы 15, по меньшей мере одна из которых связана также с атомом группы 15 или 16 через другую группу.

В одном или более вариантах реализации по меньшей мере один из атомов группы 15 связан также с атомом группы 15 или 16 через другую группу, которая может представлять собой С120 углеводородную группу, содержащую гетероатом группу, кремний, германий, олово, свинец или фосфор, где атом группы 15 или 16 также может быть не связан ни с чем или связан с водородом, группой, содержащей атом группы 14, галогеном или содержащей гетероатом группой, и где каждый из двух атомов группы 15 связан также с циклической группой и может быть необязательно связан с водородом, галогеном, гетероатомом или углеводородной группой, или содержащей гетероатом группой.

Соединения, содержащие металл группы 15, могут быть более конкретно описаны формулами (VI) или (VII):

в которых М представляет собой переходный металл группы 3-12 или металл основной группы 13 или 14, металл группы 4, 5 или 6. Во многих вариантах реализации М представляет собой металл группы 4, такой как цирконий, титан или гафний. Каждый X независимо представляет собой уходящую группу, такую как анионная уходящая группа. Уходящая группа может содержать водород, углеводородную группу, гетероатом, галоген или алкил; у равен 0 или 1 (если у равен 0, то группа L' отсутствует). Термин «n» представляет собой степень окисления М. В различных вариантах реализации n равен +3, +4 или +5. Во многих вариантах реализации n равен +4. Термин «m» представляет собой формальный заряд лиганда YZL или YZL' и равен 0, -1, -2 или -3 в различных вариантах реализации. Во многих вариантах реализации m равен -2. L представляет собой элемент группы 15 или 16, такой как азот; L' представляет собой элемент группы 15 или 16 или группу, содержащую элемент группы 14, такую как углерод, кремний или германий. Y представляет собой элемент группы 15, такой как азот или фосфор. Во многих вариантах реализации Y представляет собой азот. Z представляет собой элемент группы 15, такой как азот или фосфор. Во многих вариантах реализации Z представляет собой азот. R1 и R2 независимо представляют собой C120 углеводородную группу, содержащую гетероатом группу, имеющую до двадцати атомов углерода, кремния, германия, олова, свинца или фосфора. Во многих вариантах реализации R1 и R2 представляют собой С220 алкильную, арильную или аралкильную группу, такую как линейная, разветвленная или циклическая С220 алкильная группа или C26 углеводородная группа. R1 и R2 также могут быть взаимосвязаны друг с другом. R3 может отсутствовать или может представлять собой углеводородную группу, водород, галоген, содержащую гетероатом группу. Во многих вариантах реализации R3 отсутствует или представляет собой водород или линейную, циклическую или разветвленную алкильную группу, имеющую от 1 до 20 атомов углерода. R4 и R5 независимо представляют собой алкильную группу, арильную группу, замещенную арильную группу, циклическую алкильную группу, замещенную циклическую алкильную группу, циклическую аралкильную группу, замещенную циклическую аралкильную группу или многокольцевую систему, зачастую имеющую до 20 атомов углерода. Во многих вариантах реализации R4 и R5 имеют от 3 до 10 атомов углерода или представляют собой С120 углеводородную группу, C120 арильную группу или C120 аралкильную группу, или содержащую гетероатом группу. R4 и R5 могут быть взаимосвязаны друг с другом. R6 и R7 независимо отсутствуют, представляют собой водород, алкильную группу, галоген, гетероатом или углеводородную группу, такую как линейная, циклическая или разветвленная алкильная группа, имеющая от 1 до 20 атомов углерода. Во многих вариантах реализации R6 и R7 отсутствуют. R* может отсутствовать или может представлять собой водород, группу, содержащую атом группы 14, галоген или содержащую гетероатом группу.

«Формальный заряд лиганда YZL или YZL'» означает заряд всего лиганда в отсутствие металла и уходящих групп X. «R1 и R2 также могут быть взаимосвязаны» означает, что R1 и R2 могут быть напрямую связаны друг с другом или могут быть связаны друг с другом через другие группы. «R4 и R5 также могут быть взаимосвязаны» означает, что R4 и R5 могут быть напрямую связаны друг с другом или могут быть связаны друг с другом через другие группы. Алкильная группа может представлять собой линейные, разветвленные алкильные радикалы, алкенильные радикалы, алкинильные радикалы, циклоалкильные радикалы, арильные радикалы, ацильные радикалы, ароильные радикалы, алкокси-радикалы, арилокси-радикалы, алкилтио-радикалы, диалкиламино-радикалы, алкоксикарбонильные радикал, арилоксикарбонильные радикалы, карбамоильные радикалы, алкил- или диалкилкарбамоильные радикалы, ацилокси-радикалы, ациламино-радикалы, ароиламино-радикалы, неразветвленные, разветвленные или циклические алкиленовые радикалы или их комбинации. Аралкильная группа по определению представляет собой замещенную арильную группу.

В одном или более вариантах реализации R4 и R5 независимо представляют собой группу, представленную следующей формулой (VIII).

Если R4 и R5 являются такими, как в формуле VII, R8-R12, каждый независимо, представляют собой водород, C140 алкильную группу, галогенид, гетероатом, содержащую гетероатом группу, содержащую до 40 атомов углерода. Во многих вариантах реализации R8-R12 представляют собой C120 линейную или разветвленную алкильную группу, такую как метильная, этильная, пропильная или бутильная группа. Любая из двух групп R может образовывать циклическую группу и/или гетероциклическую группу. Циклические группы могут быть ароматическими. В одном из вариантов реализации R9, R10 и R12 независимо представляют собой метальную, этильную, пропильную или бутильную группу (включая все изомеры). В другом варианте реализации R9, R10 и R12 представляют собой метальные группы, a R8 и R11 представляют собой водород.

В одном или более вариантах реализации оба R4 и R5 представляют собой группу, представленную следующей формулой (IX).

Если R4 и R5 соответствуют формуле IX, то М представляет собой металл группы 4, такой как цирконий, титан или гафний. Во многих вариантах реализации М представляет собой цирконий. Каждый из L, Y и Z может представлять собой азот. Каждый из R1 и R2 может представлять собой -СН2-СН2-. R3 может представлять собой водород, a R6 и R7 могут отсутствовать.

Каталитическое соединение, содержащее металл группы 15, может быть представлено следующей формулой (X).

В формуле X Ph представляет собой фенил.

Каталитическая суспензия

Каталитическая система может содержать катализатор или каталитический компонент в суспензии, которая может содержать исходное каталитическое соединение и дополнительный раствор каталитического компонента, который добавляют в указанную суспензию. Суспензия исходного каталитического компонента может не содержать катализаторов. В таком случае к суспензии может быть добавлено два или более растворов катализаторов для их нанесения на подложку.

В различных вариантах реализации может быть использовано любое количество комбинаций каталитических компонентов. Например, суспензия каталитического компонента может содержать активатор и подложку или активатор на подложке. Кроме того, суспензия может содержать каталитическое соединение в дополнение к активатору и подложке. Как уже было указано, каталитическое соединение в суспензии может быть на подложке.

Суспензия может содержать один или более активаторов и подложек, а также одно или более каталитических соединений. Например, суспензия может содержать два или более активаторов (таких как алюмоксан и модифицированный алюмоксан) и каталитическое соединение, или суспензия может содержать активатор на подложке и более одного каталитического соединения. В одном из вариантов реализации суспензия содержит подложку, активатор и два каталитических соединения. В другом варианте реализации суспензия содержит подложку, активатор и два разных каталитических соединения, которые могут быть добавлены в суспензию по отдельности или в комбинации. Суспензия, содержащая диоксид кремния и алюмоксан, может быть приведена в контакт с каталитическим соединением, оставлена для взаимодействия, а затем суспензию приводят в контакт с другим каталитическим соединением, например, в балансировочной системе.

Молярное соотношение металла в активаторе к металлу в предкаталитическом соединении в суспензии может составлять от 1000:1 до 0,5:1, от 300:1 до 1:1 или от 150:1 до 1:1. Суспензия может содержать материал подложки, который может быть любым инертным материалом носителя в виде частиц, известным в данной области техники, включая, но не ограничиваясь ими, диоксид кремния, пирогенный диоксид кремния, оксид алюминия, глину, тальк или другие материалы подложки, такие как описаны выше. В одном из вариантов реализации суспензия содержит диоксид кремния и активатор, такой как метилалюминоксан («МАО»), модифицированный метилалюминоксан («ММАО»), как описано далее.

Для облегчения комбинирования любых двух или более компонентов каталитической системы в суспензии или в балансировочном растворе катализатора может быть использован один или более разбавителей или носителей. Например, каталитическое соединение с единым центром полимеризации и активатор могут быть объединены друг с другом в присутствии толуола или другого инертного углеводорода или углеводородной смеси с получением каталитической смеси. Помимо толуола, другие подходящие разбавители могут включать, но не ограничиваются ими, этилбензол, ксилол, пентан, гексан, гептан, октан, другие углеводороды или любые их комбинации. Затем подложка, сухая или смешанная с толуолом, может быть добавлена к каталитической смеси, или смесь катализатора/активатора может быть добавлена к подложке.

Подложки катализатора

В данном контексте термины «подложка» и «носитель» использованы взаимозаменяемо и относятся к любому материалу подложки, включая пористые материалы подложки, такие как тальк, неорганические оксиды и неорганические хлориды. Одно или более каталитических соединений с единым центром полимеризации в суспензии могут быть нанесены на одну и ту же или на разные подложки вместе с активатором, или активатор может быть использован в форме без подложки, или может быть нанесен на другую подложку, чем подложка для каталитических соединений с единым центром полимеризации, или может быть использована любая их комбинация. Это может быть осуществлено с помощью любой технологии, обычно используемой в данной области техники. В данной области техники существует множество других способов нанесения на подложку каталитического соединения с единым центром полимеризации. Например, каталитическое соединение с единым центром полимеризации может содержать полимерсвязанный лиганд. Каталитические соединения с единым центром полимеризации в суспензии могут быть высушены распылением. Подложка, используемая для каталитического соединения с единым центром полимеризации, может быть функционализирована.

Подложка может представлять собой или может содержать один или более неорганических оксидов, например, элементов группы 2, 3, 4, 5, 13 или 14. Неорганические оксиды могут включать, но не ограничиваются ими, диоксид кремния, оксид алюминия, диоксид титана, оксид циркония, оксид бора, оксид цинка, оксид магния или любую их комбинацию. Иллюстративные комбинации неорганических оксидов могут включать, но не ограничиваются ими, оксид алюминия-диоксид кремния, диоксид кремния-диоксид титана, оксид алюминия-диоксид кремния-диоксид титана, оксид алюминия-оксид циркония, оксид алюминия-диоксид титана и т.п.Подложка может представлять собой или может содержать оксид алюминия, диоксид кремния или их комбинацию. В одном из вариантов реализации, описанных в настоящем документе, подложка представляет собой диоксид кремния.

Подходящие имеющиеся в продаже подложки из диоксида кремния могут включать, но не ограничиваются ими, ES757, ES70 и ES70W производства компании PQ Corporation. Подходящие имеющиеся в продаже подложки и диоксида кремния-оксида алюминия могут включать, но не ограничиваются ими, SIRAL® 1, SIRAL® 5, SIRAL® 10, SIRAL® 20, SIRAL® 28М, SIRAL® 30 и SIRAL® 40 производства SASOL®. В целом, в описанных балансировочных системах используют подложки катализаторов, содержащие силикагели с активаторами, такими как метилалюминоксаны (МАО), поскольку такие подложки могут лучше действовать для катализаторов на общей подложке. Подходящие подложки также могут быть выбраны из материалов Cab-o-sil® производства корпорации Cabot и материалов из диоксида кремния производства корпорации Grace Davison.

Подложки для катализаторов также могут содержать полимеры, которые ковалентно связаны с лигандом на катализаторе. Например, две или более молекул катализатора могут быть связаны с одной полиолефиновой цепью.

Активаторы катализаторов

В данном контексте термин «активатор» может относиться к любому соединению или к комбинации соединений на подложке или без подложки, которые могут активировать каталитическое соединение или компонент с единым центром полимеризации, например, посредством образования катионных частиц каталитического компонента. Например, это может включать отщепление по меньшей мере одной уходящей группы (группы «X» в каталитических соединениях с единым центром полимеризации, описанных в настоящем документе) от металлического центра каталитического соединения/компонента с единым центром полимеризации. Активатор также может быть упомянут как «сокатализатор».

Например, активатор может содержать кислоту Льюиса или некоординирующий ионный активатор, или ионизирующий активатор, или любое другое соединение, включая основания Льюиса, алкилалюминий и/или сокатализаторы обычного типа. Помимо метилалюминоксана («МАО») и модифицированного метилалюминоксана («ММАО»), упомянутых выше, иллюстративные активаторы могут включать, но не ограничиваются ими, алюминоксан или модифицированный алюминоксан и/или ионизирующие соединения, нейтральные или ионные, такие как диметиланилиния тетракис(пентафторфенил)борат, трифенилкарбения тетракис(пентафторфенил)борат, диметиланилиния тетракис(3,5-(CF3)2фенил)борат, трифенилкарбения тетракис(3,5-(CF3)2фенил)борат, диметиланилиния тетракис(перфторнафтил)борат, трифенилкарбения тетракис(перфторнафтил)борат, диметиланилиния тетракис(пентафторфенил)алюминат, трифенилкарбения тетракис(пентафторфенил)алюминат, диметиланилиния тетракис(перфторнафтил)алюминат, трифенилкарбения тетракис(перфторнафтил)алюминат, трис(перфторфенил)бор, трис(перфторнафтил)бор, трис(перфторфенил)алюминий, трис(перфторнафтил)алюминий или любые их комбинации.

Понятно, что указанные активаторы могут связываться или могут не связываться непосредственно с поверхностью подложки или могут быть модифицированы для обеспечения их связывания с поверхностью подложки при сохранении их совместимости с полимеризационной системой. Такие связывающие агенты могут быть получены из групп, которые реагируют с гидроксильными группами поверхности. Неограничивающие примеры реакционноспособных функциональных групп, которые могут быть использованы для образования связок, включают галогениды алюминия, гидриды алюминия, алкилалюминий, арилалюминий, алкоксиды алюминия, электрофильные кремниевые реагенты, алкоксисиланы, аминосиланы, бораны.

Алюминоксаны могут быть описаны как олигомерные соединения алюминия, имеющие субъединицы -Al(R)-O-, где R представляет собой алкильную группу. Примеры алюминоксанов включают, но не ограничиваются ими, метилалюминоксан («МАО»), модифицированный метилалюминоксан («ММАО»), этилалюминоксан, изобутилалюминоксан или их комбинации. Алюминоксаны могут быть получены гидролизом соответствующего соединения триалкилалюминия. ММАО могут быть получены гидролизом триметилалюминия и высшего триалкилалюминия, такого как триизобутилалюминий. ММАО, в целом, более растворимы в алифатических растворителях и более стабильны при хранении. Существует множество способов получения алюминоксанов и модифицированных алюминоксанов.

В одном или более вариантах реализации может быть использован визуально прозрачный МАО. Например, мутный или желатинизированный алюминоксан может быть отфильтрован с получением прозрачного алюминоксана, или прозрачный алюминоксан может быть декантирован из мутного раствора алюминоксана. В другом варианте реализации может быть использован мутный и/или желатинизированный алюминоксан. Другой алюминоксан может включать модифицированный метилалюминоксан («ММАО») типа ЗА (имеющийся в продаже у компании Akzo Chemicals, Inc. под торговым названием модифицированный метилалюминоксан типа 3А). Подходящим источником МАО может быть раствор, содержащий, например, от примерно 1 масс. % до примерно 50 масс. % МАО. Имеющиеся в продаже растворы МАО могут включать 10 масс. % и 30 масс. % растворы МАО производства компании Albemarle Corporation, штат Батон-Руж, штат Луизиана).

Как указано выше, в сочетании с алюминоксанами может быть использовано одно или более органоалюминиевых соединений, таких как одно или более алкилалюминиевых соединений. Например, алкилалюминиевые соединения, которые могут быть использованы, представляют собой этоксид диэтилалюминия, хлорид диэтилалюминия и/или гидрид диизобутилалюминия. Примеры триалкилалюминиевых соединений включают, но не ограничиваются ими, триметилалюминий, триэтилалюминий («TEAL»), тризиобутилалюминий («TiBAl»), три-н-гексилалюминий, три-н-октилалюминий, трипропилалюминий, трибутилалюминий и т.п.

Растворы каталитических компонентов

Раствор каталитического компонента может содержать только одно каталитическое соединение или может содержать активатор помимо каталитического соединения. Раствор катализатора, используемый в процессе балансировки, может быть получен растворением каталитического соединения и необязательных активаторов в жидком растворителе. Жидкий растворитель может представлять собой алкан, такой как С530 алкан или С510 алкан. Также могут быть использованы циклические алканы, такие как циклогексан, и ароматические соединения, такие как толуол. Кроме того, в качестве растворителя может быть использовано минеральное масло. Используемый раствор должен быть жидким в условиях полимеризации и относительно инертным. В одном из вариантов реализации жидкость, используемая в растворе каталитического соединения, отлична от разбавителя, используемого в суспензии каталитического компонента. В другом варианте реализации жидкость, используемая в растворе каталитического соединения, является такой же, как разбавитель, используемый в суспензии каталитического компонента.

Если раствор катализатора содержит и активатор, и каталитическое соединение, то соотношение металла в активаторе к металлу, такому как алюминий, или металлоиду, такому как бор, к металлу в соединении-предкатализаторе в растворе может составлять от 1000:1 до 0,5:1, от 300:1 до 1:1 или от 150:1 до 1:1. В некоторых случаях может быть преимущественно иметь избыток каталитического соединения, так что указанное соотношение составляет <1:1, например, от 1:1 до 0,5:1 или от 1:1 до 0,1:1, или от 1:1 до 0,01. В различных вариантах реализации активатор и каталитическое соединение присутствуют в растворе в количестве до примерно 90 масс. %, до примерно 50 масс. %, до примерно 20 масс. %, предпочтительно до примерно 10 масс. %, до примерно 5 масс. %, по меньшей мере 1 масс. % или от 100 ppm до 1 масс. % от массы растворителя и активатора или каталитического соединения.

Раствор каталитического компонента может содержать одно или более растворимых каталитических соединений, описанных в настоящем документе в разделе «Катализатор». Поскольку катализатор растворен в растворе, то необходима более высокая растворимость. Соответственно, каталитическое соединение в растворе каталитического компонента зачастую может содержать металлоцен, который имеет более высокую растворимость, чем другие катализаторы.

В процессе полимеризации, описанном ниже, любой из описанных выше растворов, содержащих каталитический компонент, может быть комбинирован с любой суспензией/суспензиями, содержащими каталитический компонент, описанными выше. Кроме того, может быть использовано более одного раствора каталитического компонента.

Добавка для сплошности/агенты для статического регулирования В процессах газофазного получения полиэтилена, описанных в настоящем документе, может быть необходимо дополнительно использовать один или более агентов для статического регулирования для облегчения регулирования статических уровней в реакторе. В данном контексте агент статического регулирования представляет собой химическую композицию, которая при введении в реактор с псевдоожиженным слоем может влиять на статический заряд или изменять его (отрицательно, положительно или до нуля) в псевдоожиженном слое. Конкретный используемый агент для статического регулирования может зависеть от природы статического заряда, и выбор агента для статического регулирования может варьироваться в зависимости от получаемого полимера и используемых каталитических соединений с единым центром полимеризации.

Могут быть использованы агенты регулирования, такие как стеарат алюминия. Используемый агент статического регулирования может быть выбран на основании его способности принимать статический заряд в псевдоожиженном слое без ухудшения производительности. Другие подходящие агенты статического регулирования также могут включать дистеарат алюминия, этоксилированные амины и антистатические композиции, такие как композиции производства компании Innospec Inc., выпускаемые под торговым названием OCTASTAT. Например, OCTASTAT 2000 представляет собой смесь полисульфонового сополимера, полимерного полиамина и маслорастворимой сульфоновой кислоты.

Любой из вышеупомянутых агентов для регулирования, а также любые карбоксилатные соли металлов и в том числе химические соединения и композиции, перечисленные как антистатические агенты, могут быть использованы в качестве агента для регулирования по отдельности или в комбинации. Например, указанная карбоксилатная соль металла может быть комбинирована с аминосодержащим агентом регулирования (например, карбоксилатная соль металла с любым членом семейства KEMAMINE® (производства компании Crompton Corporation) или семейства продуктов ATMER® (производства компании ICI Americas Inc.).

Другие подходящие добавки для сплошности включают этилениминные добавки, подходящие для различных вариантов реализации, описанных в настоящем документе, которые могут включать полиэтиленимины, имеющие следующую общую формулу:

в которой n может быть равен от примерно 10 до примерно 10000. Полиэтиленимины могут быть линейными, разветвленными или гиперразветвленными (например, образующими дендритные или древовидные полимерные структуры). Они могут представлять собой гомополимер или сополимер этиленимина или их смеси (здесь и далее упоминаемые как полиэтиленимин(-ы)). Хотя в качестве полиэтиленимина могут быть использованы линейные полимеры, представленные химической формулой --[СН2-CH2-NH]--, могут быть использованы также материалы, имеющие первичные, вторичные и третичные ответвления. Промышленный полиэтиленимин может представлять собой соединение, имеющее ответвления этилениминного полимера. Подходящие полиэтиленимины имеются в продаже у компании BASF Corporation под торговым названием Lupasol. Указанные соединения могут быть получены с широким диапазоном молекулярных масс и активности продукта. Примеры промышленных полиэтилениминов, выпускаемых компанией BASF, подходящих для применения согласно настоящему изобретению, включают, но не ограничиваются ими, Lupasol FG и Lupasol WF. Другая подходящая добавка для сплошности может содержать смесь дистеарата алюминия и соединения типа этоксилированного амина, например, IRGASTAT AS-990 производства компании Huntsman (бывшая Ciba Specialty Chemicals). Смесь дистеарата алюминия и соединения типа этоксилированного амина может быть суспендирована в минеральном масле, например, Hydrobrite 380. Например, смесь дистеарата алюминия и соединения типа этоксилированного амина может быть суспендирована в минеральном масле так, что общая концентрация суспензии составляет от примерно 5 масс. % до примерно 50 масс. % или от примерно 10 масс. % до примерно 40 масс. %, или от примерно 15 масс. % до примерно 30 масс. %.

Добавка(-и) для сплошности или агент(-ы) для статического регулирования могут быть добавлены в реактор в количестве от 0,05 до 200 ppm от массы всех материалов, загружаемых в реактор, за исключением рецикла. В некоторых вариантах реализации добавка для сплошности может быть добавлена в количестве от 2 до 100 ppm или в количестве от 4 до 50 ppm.

Реактор газофазной полимеризации

На фиг. 1 представлено схематическое изображение системы 100 газофазного реактора, на котором показано добавление по меньшей мере двух катализаторов, по меньшей мере один из которых добавляют в качестве балансировочного катализатора. Суспензия каталитического компонента, предпочтительно суспензия в минеральном масле, содержащая по меньшей мере одну подложку и по меньшей мере один активатор, по меньшей мере один активатор на подложке и необязательные каталитические соединения, может быть помещена в емкость или сосуд 102 для катализатора. В одном из вариантов реализации сосуд 102 для катализатора представляет собой перемешиваемый сборный бак, выполненный с возможностью поддержания однородной концентрации твердых веществ. Раствор каталитического компонента, полученный смешиванием растворителя и по меньшей мере одного каталитического соединения и/или активатора, помещают в другую емкость, которая может быть обозначена как балансировочный бак 104. Затем суспензия каталитического компонента может быть комбинирована in-line с раствором каталитического компонента с получением готовой каталитической композиции. Зародышеобразователь 106, такой как диоксид кремния, оксид алюминия, пирогенный диоксид кремния или любое другое вещество в виде частиц, может быть добавлен в суспензию и/или раствор in-line или в емкостях 102 или 104. Таким же образом, могут быть in-line добавлены дополнительные активаторы или каталитические соединения. Например, вторая каталитическая суспензия, содержащая другой катализатор, может быть введена из второго бака для катализатора. Две каталитические суспензии могут быть использованы в качестве каталитической системы с добавлением или без добавления раствора катализатора из балансировочного бака.

Суспензия каталитического компонента и раствор могут быть смешаны in-line. Например, раствор и суспензия могут быть смешаны с помощью статического смесителя 108 или перемешивающей емкости (не показана). Смешивание суспензии каталитического компонента и раствора каталитического компонента должно быть достаточно продолжительным для обеспечения возможности диспергирования каталитического соединения, находящегося в растворе каталитического компонента, в суспензии каталитического компонента, так чтобы каталитический компонент, изначально находящийся в растворе, мигрировал в активатор на подложке, изначально находящийся в суспензии. Указанное комбинирование приводит к получению равномерной дисперсии каталитических соединений на активаторе на подложке с образованием каталитической композиции. Продолжительность контакта суспензии и раствора обычно составляет до примерно 120 минут, например, от примерно 0,01 до примерно 60 минут, от примерно 5 до примерно 40 минут или от примерно 10 до примерно 30 минут.

При комбинировании катализаторов, активатора и необязательной подложки или дополнительных сокатализаторов, в углеводородных растворителях непосредственно перед реактором полимеризации необходимо, чтобы указанное комбинирование обеспечивало получение нового катализатора полимеризации менее чем за 1 час, менее чем за 30 минут или менее чем за 15 минут. Более короткие промежутки времени являются более эффективными, поскольку новый катализатор становится готовым до введения в реактор, обеспечивая возможность увеличения скорости потоков.

В другом варианте реализации к смеси суспензии и раствора in-line добавляют алкилалюмини, этоксилированный алкилалюминий, алюминоксан, антистатический агент или боратный активатор, такой как С115 алкилалюминий (например, триизобутилалюминий, триметилалюминий или т.п.), C115 этоксилированный алкилалюминий или метилалюминоксан, этилалюминоксан, изобутилалюминоксан, модифицированный алюминоксан или т.п.Алкильные соединения, антистатические агенты, боратные активаторы и/или алюминоксаны могут быть добавлены из алкильной емкости 110 непосредственно к комбинации раствора и суспензии или могут быть добавлены в потоке-носителе дополнительного алкана (такого как изопентан, гексан, гептан и/или октан), например, из углеводородной емкости 112. Дополнительные алкильные соединения, антистатические агенты, боратные активаторы и/или алюминоксаны могут присутствовать в количестве до примерно 500 ppm, от примерно 1 до примерно 300 ppm, от 10 до примерно 300 ppm или от примерно 10 до примерно 100 ppm. Движущиеся потоки, которые могут быть использованы, включают, среди прочих, изопентан и/или гексан. Обычно носитель может быть добавлен к смеси суспензии и раствора со скоростью от примерно 0,5 до примерно 60 фунтов в час (27 кг/час) или более, в зависимости от размера реактора. Таким же образом, газ-носитель 114, такой как азот, аргон, этан, пропан и т.п., может быть добавлен in-line к смеси суспензии и раствора. Как правило, газ-носитель может быть добавлен со скоростью от примерно 1 до примерно 100 фунтов в час (от 0,4 до 45 кг/час) или от примерно 1 до примерно 50 фунтов в час (от 5 до 23 кг/час), или от примерно 1 до примерно 25 фунтов в час (от 0,4 до 11 кг/час).

В другом варианте реализации жидкий поток-носитель вводят в комбинацию раствора и суспензии, которая движется в нисходящем направлении. Смесь раствора, суспензии и жидкого потока-носителя может проходить через смеситель или длинную трубу для обеспечения смешивания до приведения в контакт с газообразным потоком-носителем.

Таким же образом, сомономер 116, такой как гексен, другой альфа-олефин или диолефин, может быть добавлен in-line к смеси суспензии и раствора. Смесь суспензии/раствора затем пропускают через инжекционную трубку 118 в реактор 120. Для облегчения надлежащего образования частиц в реакторе 120 непосредственно в реактор 120 может быть добавлен зародышеобразователь 122, такой как пирогенный диоксид кремния. В некоторых вариантах реализации инжекционная трубка может обеспечивать превращение смеси суспензии/раствора в аэрозоль. Для превращения в аэрозоль и впрыска смеси суспензии/раствора может быть использовано любое количество труб подходящих размеров и конфигураций. В одном из вариантов реализации газовый поток 124, такой как циркулирующий газ или рециркулирующий газ 126, мономер, азот или другие материалы, вводят в штангу 128 инжекционной трубки, которая окружает инжекционную трубку 118.

При использовании в газофазном реакторе металлоценового катализатора или другого аналогичного катализатора, непосредственно в реактор 120 или в газовый поток 124 может быть добавлен кислород или фторбензол для регулирования скорости полимеризации. Таким образом, при использовании в газофазном реакторе металлоценового катализатора (чувствительного к кислороду или фторбензолу) в комбинации с другим катализатором (нечувствительным к кислороду) кислород может быть использован для изменения скорости полимеризации на металлоцене относительно скорости полимеризации на другом катализаторе. Примером такой комбинации катализаторов является бис(н-пропилциклопентадиенил)циркония дихлорид и [(2,4,6-Me3C6H2)NCH2CH2]2NHZrBn2, где Me представляет собой метил, или бис(инденил)циркония дихлорид и [(2,4,6-Me3C6H2)NCH2CH2]2NHHfBn2, где Me представляет собой метил. Например, если концентрация кислорода в подаваемом азоте варьируется от 0,1 ppm до 0,5 ppm, то количество полимера, образующегося на бис-инденил ZrCl2, будет существенно меньше, а относительное количество полимера, образующегося на [(2,4,6-Me3C6H2)NCH2CH2]2NHHfBn2, будет увеличиваться. В реакторы газофазной полимеризации может быть добавлена вода или диоксид углерода, например, для той же цели. В одном из вариантов реализации температура контакта суспензии и раствора составляет от 0°С до примерно 80°С, от примерно 0°С до примерно 60°С, от примерно 10°С до примерно 50°С и от примерно 20°С до примерно 40°С.

Приведенный выше пример не является ограничивающим, поскольку могут быть включены дополнительные растворы и суспензии. Например, суспензия может быть комбинирована с двумя или более растворами, имеющими одинаковые или разные каталитические соединения и/или активаторы. Таким же образом, раствор может быть комбинирован с двумя или более суспензиями, которые имеют одинаковые или разные подложки и одинаковые или разные каталитические соединения и/или активаторы. Точно так же, две или более суспензий могут быть комбинированы с двумя или более растворами, предпочтительно in-line, где суспензии содержат одинаковые или разные подложки и могут содержать одинаковые или разные каталитические соединения и/или активаторы, и растворы содержат одинаковые или разные каталитические соединения и/или активаторы. Например, суспензия может содержать активатор на подложке и два разных каталитических соединения, и два раствора, каждый из которых содержит один из катализаторов, присутствующих в суспензии, по отдельности независимо комбинируют с суспензией in-line.

Применение каталитической композиции для регулирования свойств продукта

Свойства полимерного продукта могут быть отрегулированы посредством подбора временного интервала, температуры, концентраций и последовательности смешивания раствора, суспензии и любых необязательно добавляемых материалов (зародышеобразователей, каталитических соединений, активаторов и т.д.), описанных выше. MWD, распределение состава, индекс плавления, относительное количество полимера, образующегося на каждом катализаторе, и другие свойства получаемого полимера также могут быть изменены посредством управления технологическими параметрами. Может быть подобрано любое количество технологических параметров, включая управление концентрацией водорода в полимеризационной системе, изменение количества первого катализатора в полимеризационной системе, изменение количества второго катализатора в полимеризационной системе. Другие технологические параметры, которые могут быть отрегулированы, включают изменение относительного соотношения катализатора в полимеризационном процессе (и необязательно регулирование его скорости подачи для поддержания устойчивой или постоянной скорости производства смолы). Концентрации реагентов в реакторе 120 могут быть отрегулированы посредством изменения количества жидкости или газа, который откачивают или выпускают из процесса, изменения количества и/или состава выделяемой жидкости и/или выделяемого газа, который возвращают в процесс полимеризации, где выделенная жидкость или выделенный газ может быть выделен из полимера, выгружаемого из процесса полимеризации. Дополнительные параметры концентрации, которые могут быть отрегулированы, включают изменение температуры полимеризации, изменение парциального давления этилена в процессе полимеризации, изменение соотношения этилена к сомономеру в процессе полимеризации, изменение соотношения активатора к переходному металлу на стадии активации. Могут быть отрегулированы зависящие от времени параметры, такие как изменение относительной скорости подачи суспензии или раствора, изменение времени смешивания, температуры и/или степени смешивания суспензии и раствора in-line, добавление различных типов соединений-активаторов в процесс полимеризации и добавление кислорода или фторбензола или другого каталитического яда в процесс полимеризации. Любые комбинации указанных регулировок могут быть использованы для регулирования свойств готового полимерного продукта.

В одном из вариантов реализации с постоянными интервалами измеряют распределение состава полимерного продукта, и при необходимости изменяют один из вышеуказанных технологических параметров, таких как температура, скорость подачи каталитического соединения, соотношение двух или более катализаторов друг к другу, соотношение сомономера к мономеру, парциальное давление мономера и/или концентрация водорода, для приведения состава к требуемому значению. Распределение состава может быть определено посредством элюционного фракционирования при повышении температуры (TREF) или аналогичных технологий. TREF обеспечивает измерение состава как функции от температуры элюирования.

В одном из вариантов реализации in-line измеряют свойство полимерного продукта и в качестве ответной меры изменяют соотношение комбинируемых катализаторов. В одном из вариантов реализации молярное соотношение каталитического соединения в суспензии каталитического компонента к каталитическому соединению в растворе каталитического компонента после смешивания суспензии и раствора с получением готовой каталитической композиции составляет от 500:1 до 1:500 или от 100:1 до 1:100, или от 50:1 до 1:50, или от 10:1 до 1:10, или от 5:1 до 1:5. В другом варианте реализации молярное соотношение каталитического соединения группы 15 в суспензии к лиганду металлоценового каталитического соединения в растворе после смешивания суспензии и раствора с получением каталитической композиции составляет 500:1, 100:1, 50:1, 10:1, 5:1, 1:5, 1:10, 1:100 или 1:500. Измеренное свойство продукта может включать индекс текучести, индекс расплава, плотность, MWD, содержание сомономера, распределение состава полимерного продукта и их комбинации. В другом варианте реализации, при изменении соотношения каталитических соединений, изменяют скорость введения каталитической композиции в реактор или другие технологические параметры для поддержания требуемой скорости производительности.

Не привязываясь к какой-либо теории или не ограничиваясь какой-либо теорией, полагают, что процессы, описанные в настоящем документе, обеспечивают иммобилизацию каталитического соединения, находящегося в растворе, в и на подложке, предпочтительно в и на активаторе на подложке. Технология in-line иммобилизации, описанная в настоящем документе, предпочтительно приводит к получению каталитической системы на подложке, которая при введении в реактор обеспечивает получение подходящих свойств полимера при соответствующей морфологии частиц, насыпной плотности или более высокой активности катализатора и без необходимости в дополнительном оборудовании для введения раствора каталитического соединения в реактор, в частности, газофазный или суспензионный реактор.

Процесс полимеризации

Описанная каталитическая система может быть использована для полимеризации одного или более олефинов с получением из них одного или более полимерных продуктов. Может быть использован любой подходящий процесс полимеризации, включая, но не ограничиваясь ими, процессы полимеризации при высоком давлении, растворные, суспензионные и/или газофазные процессы полимеризации. В тех вариантах реализации, в которых используют другие технологии, помимо газофазной полимеризации, могут быть использованы такие же модификации системы добавления катализатора, как описаны в отношении фиг. 1. Например, может быть использована балансировочная система для подачи катализатора в петлевой суспензионный реактор для получения сополимера полиэтилена.

Термины «полиэтилен» и «сополимер полиэтилена» относятся к полимеру, содержащему по меньшей мере 50 масс. % звеньев, полученных из этилена. В различных вариантах реализации полиэтилен может содержать по меньшей мере 70 масс. % звеньев, полученных из этилена, по меньшей мере 80 масс. % звеньев, полученных из этилена, по меньшей мере 90 масс. % звеньев, полученных из этилена, по меньшей мере 95 масс. % звеньев, полученных из этилена, или 100 масс. % звеньев, полученных из этилена. Таким образом, полиэтилен может представлять собой гомополимер или сополимер, включая терполимер, имеющий одно или более других мономерных звеньев. Как описано в настоящем документе, полиэтилен может содержать, например, по меньшей мере один или более других олефинов или сомономеров. Подходящие сомономеры могут содержать от 3 до 16 атомов углерода, от 3 до 12 атомов углерода, от 4 до 10 атомов углерода и от 4 до 8 атомов углерода. Примеры сомономеров включают, но не ограничиваются ими, пропилен, 1-бутен, 1-пентен, 1-гексен, 1-гептен, 1-октен, 4-метилпент-1-ен, 1-децен, 1-додецен, 1-гексадецен и т.п. Кроме того, в процесс полимеризации могут быть добавлены небольшие количества диеновых мономеров, таких как 1,7-октадиен, для регулирования свойств полимера.

Снова обращаясь к фиг. 1, реактор 120 с псевдоожиженным слоем может содержать реакционную зону 130 и зону 132 снижения скорости. Реакционная зона 130 может содержать слой 134, который содержит растущие полимерные частицы, сформированные полимерные частицы и небольшое количество частиц катализатора, кипящих под действием непрерывного потока газообразного мономера и разбавителя для удаления тепла полимеризации через реакционную зону. Необязательно, некоторые рециркулированные газы 124 могут быть охлаждены и сжаты с получением жидкостей, которые повышают способность отвода теплоты циркулирующего газового потока при повторной подаче в реакционную зону. Подходящая скорость газового потока может быть легко определена экспериментальным путем. Подпитка циркулирующего газового потока газообразным мономером может быть осуществлена со скоростью, равной скорости, с которой полимерный продукт в виде частиц и связанный с ним мономер выводят из реактора, а состав газа, проходящего через реактор, может быть подобран так, чтобы поддерживать по существу неизменный состав газа в реакционной зоне. Газ, выходящий из реакционной зоны 130, может быть направлен в зону 132 снижения скорости, где удаляют захваченные частицы, например, посредством их замедления и возвращения в реакционную зону 130. При необходимости более мелкие захваченные частицы и пыль могут быть удалены в разделительной системе 136, такой как циклон и/или фильтр тонкой очистки. Газ 124 может быть пропущен через теплообменник 138, где может быть выделена по меньшей мере часть тепла полимеризации. Затем газ может быть сжат в компрессоре 140 и возвращен в реакционную зону 130.

Температура реактора в процессе с псевдоожиженным слоем может составлять более примерно 30°С, примерно 40°С, примерно 50°С, примерно 90°С, примерно 100°С, примерно 110°С, примерно 120°С, примерно 150°С или более. В целом, температуру реакции устанавливают на максимально возможную температуру, учитывая температуру спекания полимерного продукта в реакторе. Предпочтительная температура реактора составляет от 70 до 95°С. Более предпочтительная температура реактора составляет от 75 до 90°С. Таким образом, верхний температурный предел в одном из вариантов реализации представляет собой температуру плавления сополимера полиэтилена, получаемого в реакторе. Однако более высокие температуры могут приводить к получению более узкого MWD, которое может быть улучшено добавлением MCN или других сокатализаторов, описанных в настоящем документе.

В процессе полимеризации олефинов может быть использован газообразный водород для регулирования конечных свойств полиолефина. При использовании некоторых каталитических систем, повышение концентрации (парциального давления) водорода может обеспечивать увеличение индекса текучести (FI) получаемого сополимера полиэтилена. Таким образом, индекс текучести может зависеть от концентрации водорода. Количество водорода в процессе полимеризации может быть выражено как молярное соотношение относительно общего полимеразуемого мономера, например, этилена, или смеси этилена и гексена или пропилена.

Количество водорода, используемого в процессе полимеризации, может представлять собой количество, необходимое для достижения требуемого индекса текучести готовой полиолефиновой смолы. Например, молярное соотношение водорода к общему содержанию мономера (Н2:мономер) может быть более примерно 0,0001, более примерно 0,0005 или более примерно 0,001. Кроме того, молярное соотношение водорода к общему содержанию мономера (Н2:мономер) может быть меньше примерно 10, меньше примерно 5, меньше примерно 3 и меньше примерно 0,10. Требуемый диапазон молярного соотношения водорода к мономеру может включать любую комбинацию любого верхнего предела молярного соотношения с любым нижним пределом молярного соотношения, описанным в настоящем документе. В другом выражении количество водорода в реакторе в любое время может составлять до примерно 5000 ppm, до примерно 4000 ppm в другом варианте реализации, до примерно 3000 ppm или от примерно 50 ppm до 5000 ppm, или от примерно 50 ppm до 2000 ppm в другом варианте реализации. Количество водорода в реакторе может составлять от примерно 1 ppm, примерно 50 ppm или примерно 100 ppm до примерно 400 ppm, примерно 800 ppm, примерно 1000 ppm, примерно 1500 ppm или примерно 2000 ppm. Кроме того, соотношение водорода к общему содержанию мономера (Н2:мономер) может составлять от примерно 0,00001:1 до примерно 2:1, от примерно 0,005:1 до примерно 1,5:1 или от примерно 0,0001:1 до примерно 1:1. Одно или более давлений в реакторе газофазного процесса (одностадийного или двух- или более стадийного) может составлять от 690 кПа (100 фунт/кв.дюйм) до 3448 кПа (500 фунт/кв.дюйм), от 1379 кПа (200 фунт/кв.дюйм) до 2759 кПа (400 фунт/кв.дюйм) или от 1724 кПа (250 фунт/кв.дюйм) до 2414 кПа (350 фунт/кв.дюйм).

Газофазный реактор может иметь производительность от примерно 10 кг полимера в час (25 фунт/час) до примерно 90900 кг/час (200000 фунт/час) или более, и более примерно 455 кг/час (1000 фунт/час), более примерно 4540 кг/час (10000 фунт/час), более примерно 11300 кг/час (25000 фунт/час), более примерно 15900 кг/час (35000 фунт/час) и более примерно 22700 кг/час (50000 фунт/час), и от примерно 29000 кг/час (65000 фунт/час) до примерно 45500 кг/час (100000 фунт/час).

Как отмечено, в различных вариантах реализации может быть использован также процесс суспензионной полимеризации. В процессе суспензионной полимеризации обычно используют давление от примерно 101 кПа (1 атмосфера) до примерно 5070 кПа (50 атмосфер) или более, и температуру от примерно 0°С до примерно 120°С и, более конкретно, от примерно 30°С до примерно 100°С. При суспензионной полимеризации в жидкой среде разбавителя, к которой вместе с катализатором может быть добавлен этилен, сомономеры и водород, может быть образована суспензия твердого полимера в виде частиц. Суспензия, содержащая разбавитель, может быть периодически или непрерывно выгружена из реактора, при этом из полимера выделяют и возвращают в реактор летучие компоненты, необязательно после перегонки. Жидкий разбавитель, используемый в полимеризационной среде, может представлять собой алкан, имеющий от 3 до 7 атомов углерода, такой как, например, разветвленный алкан. Используемая среда должна быть жидкостью в условиях полимеризации и относительно инертной. При использовании пропановой среды процесс необходимо проводить при температуре и давлении выше критической температуры и давления реакционного разбавителя. В одном из вариантов реализации может быть использована гексановая, изопентановая или изобутановая среда. Суспензия может циркулировать в непрерывной петлевой системе.

Полиэтиленовый продукт может иметь отношение индекса расплава (MIR или I21/I2) от примерно 5 до примерно 300 или от примерно 10 до менее примерно 150, или, во многих вариантах реализации, от примерно 15 до примерно 50. Индекс текучести (FI, HLMI или I21 может быть измерен в соответствии с ASTM D1238 (190°С, 21,6 кг). Индекс расплава (MI, I2) может быть измерен в соответствии с ASTM D1238 (при 190°С, масса 2,16 кг).

Плотность может быть определена в соответствии с ASTM D-792. Плотность выражают в граммах на кубический сантиметр (г/см3), если не указано иное. Полиэтилен может иметь плотность от примерно 0,89 г/см3, примерно 0,90 г/см3 или примерно 0,91 г/см3 до примерно 0,95 г/см3, примерно 0,96 г/см3 или примерно 0,97 г/см3. Полиэтилен может иметь насыпную плотность, измеренную в соответствии с ASTM D1895, метод В, составляющую от примерно 0,25 г/см3 до примерно 0,5 г/см3. Например, насыпная плотность полиэтилена может составлять от примерно 0,30 г/см3, примерно 0,32 г/см3 или примерно 0,33 г/см3 до примерно 0,40 г/см3, примерно 0,44 г/см3 или примерно 0,48 г/см3.

Полиэтилен может подходить для таких изделий как пленки, волокна, нетканые и/или тканые материалы, экструдированные изделия и/или литьевые изделия. Примеры пленок включают выдувные или поливные пленки, полученные соэкструзией или ламинированием, которые подходят в качестве усадочной пленки, липкой пленки, стретч-пленки, герметизирующей пленки, ориентированной пленки, упаковки для закусок, мешков для тяжелых грузов, мешков для бакалейных товаров, упаковки для выпечки и замороженных продуктов, упаковки для медицинских товаров, промышленных вкладышей, мембран и т.д., используемых в контакте с пищевыми продуктами или без контакта с пищевыми продуктами, сельскохозяйственной пленки и листов. Примеры волокон включают волокна, полученные формованием из расплава, волокна, полученные формованием из раствора, и волокна, полученные аэродинамическим способом из расплава, для применения в тканой или нетканой форме для получения фильтров, узорчатых тканей, гигиенических продуктов, медицинской одежды, геотекстиля и т.д. Примеры экструдированных изделий включают трубки, медицинские трубки, покрытия для проводов и кабелей, трубы, геомембраны и гидроизоляционные материалы для водоемов. Примеры литьевых изделий включают однослойные и многослойные конструкции в форме бутылок, баков, крупных полых изделий, жестких пищевых контейнеров и игрушек и т.д.

Примеры

Для лучшего понимания изложенного выше описания представлены следующие неограничивающие примеры. Все доли, пропорции и проценты выражены относительно массы, если не указано иное.

Как описано в настоящем документе, сомономер, такой как С4-С8 альфа-олефин добавляют в реакцию вместе с этиленовым мономером с получением коротких боковых цепей (SCB) в сополимерах полиэтилена. Не ограничиваясь теорией, SCB могут вызывать высвобождение длинных РЕ цепей из кристаллита и их частичное внедрение в другие кристаллиты. Соответственно, полимеры, которые имеют SCB на длинных цепях, могут демонстрировать более высокую прочность.

Напротив, длинные боковые цепи (LCB) представляют собой точки, в которых две полимерные цепи могут выделяться из одной полимерной цепи. LCB могут усиливать прочность, но увеличивать чувствительность полимера к ориентированию, вызывая более низкое сопротивление раздиру в направлении экструзии.

В полимерные реакции может быть добавлен водород для регулирования молекулярной массы. Водород действует как агент обрыва цепи, по существу заменяя молекулу мономера или сомономера в реакции. Это приводит к остановке образования существующей полимерной цепи и обеспечивает возможность начала новой полимерной цепи.

Внедрение в сомономер каталитической системы в сравнении с контрольным MWD, результаты шестидюймового газофаного реактора

Эксперименты полимеризации в газофазном реакторе диаметром 6 дюймов

Катализаторы A-J, представленные в таблице 1, получали так, как описано в настоящем документе. Все полученные катализаторы проверяли в реакторе с псевдоожиженным слоем, оснащенном устройствами для регулирования температуры, оборудованием для подачи или впрыска катализатора, хроматографическим газоанализатором (GC) для мониторинга и регулирования подачи газообразного мономера и сомономера, а также оборудованием для отбора образцов полимера и сбора полимера. Реактор состоял из секции для слоя катализатора диаметром 6 дюймов (15,24 см), увеличивающимся до 10 дюймов (25,4 см) в верхней части реактора. Газ подавали через перфорированную распределительную пластину, обеспечивая кипение содержимого слоя, а образец полимера выгружали в верхней части реактора. В данном случае сомономер в иллюстративных процессах полимеризации представлял собой 1-гексен. Параметры полимеризации представлены ниже в таблице 1 и нанесены на графики на фиг. 2 и 3.

Реагирующий слой растущих частиц полимера поддерживали в псевдоожиженном состоянии посредством непрерывного пропускания подпитки и рециркулирующего газа через реакционную зону при поверхностной скорости газового потока 1 -2 фута в секунду (0,3-0,6 м/с). Реактор эксплуатировали при температуре 175°F (79°С) и суммарном давлении 300 фунт/кв. дюйм (избыточное давление 2274 кПа), включая 35 мол. % этилена.

На фиг. 2 представлена диаграмма 200 серии полимеров, полученных для испытания относительной способности серии металлоценовых катализаторов обеспечивать получение смолы, имеющей индекс расплава (MI) примерно 1 и плотность (D) примерно 0,92. Полимеризацию проводили в непрерывном газофазном реакторе диаметром шесть дюймов (LGPR), описанном в настоящем документе. Левая ось 202 представляет собой газофазные соотношения водорода к этиленовому мономеру (Н22), использованные для достижения требуемых свойств, в единицах частей на миллион (моль) Н2 на мол. % С2 (ppm/мол. %). Правая ось 204 представляет собой соотношение сомономера к этилену (С62), использованное для достижения требуемых свойств, в единицах моль на моль.

Сравнение значений С62, использованных для достижения требуемых свойств, указывает на относительную способность катализаторов обеспечивать внедрение сомономера. Например, сравнение значения 206 C6C2 для (1-EtInd)2ZrCl2 (В) со значением 208 С62 для (PrCp)2HfF2 (I) дает соотношение примерно 36/9 или около четырех. Это означает, что для данного соотношения газов С62 полимер, полученный с (PrCp)2HfF2, будет иметь примерно в четыре раза больше коротких боковых цепей (SCB), чем полимер, полученный с применением (1-EtInd)2ZrCl2. Полученные данные подходят для регулирования распределения состава полимеров, полученных в виде in-situ смесей с применением каталитических смесей, например, в виде катализаторов на общей подложке. Полученные данные подходят также для определения катализаторов, которые должны быть смешаны для получения распределения состава, содержащего компоненты с высоким содержанием сомономера (низкой плотности) и компоненты с низким содержанием сомономера (высокой плотности).

Влияние равновесных соотношений газов Н22 202 (ppm/моль) показано столбиками. Высота указанных столбиков приблизительно показывает относительную способность катализаторов обеспечивать получение полимеров с определенной молекулярной массой. Например, для (CH2)3Si(CpMe4)CpZrCl2 (J) необходимо соотношение 210 Н22, составляющее примерно 23,4 ppm/моль, для достижения требуемого индекса расплава, равного примерно единице, а для (CpMe5)(1-MeInd)ZrCl2 (А) необходимо соотношение 212 Н22, составляющее примерно 0,4 ppm/моль, для достижения такого же требуемого индекса расплава. Полученные результаты демонстрируют, что (CH2)3Si(CpMe4)CpZrCl2 (J) обеспечивает получение полимера с более высокой Mw, чем (CpMe5)(1-MeInd)ZrCl2 (А) при таком же соотношении Н22. В представленном примере данные являются приблизительными, поскольку изменение Mw в зависимости от Н22 не измеряли.

На фиг. 3 представлена диаграмма 300 серии полимеров, представленных на фиг. 2, демонстрирующая отношение индекса расплава (MIR) серии полимеров, полученных с применением различных металлоценовых (MCN) катализаторов. В данном контексте термины «отношение индекса расплава» (MIR), «индекс текучести расплава» (MFR) и «I21/I2» взаимозаменяемо относятся к отношению индекса текучести («FI» или «I21») к индексу расплава («MI» или «I2»). MI, I2 может быть измерен в соответствии с ASTM D1238 (при 190°С, масса 2,16 кг). FI (I21) может быть измерен в соответствии с ASTM D1238 (при 190°С, масса 21,6 кг). Одинаково пронумерованные элементы являются такими же, как описано в отношении фиг. 2. На представленном графике 300 левая ось 302 представляет собой MIR. MIR (который также может быть назван индексом текучести расплава или MFR) представляет собой соотношение индексов расплава I21 и I2 и может указывать на наличие длинных боковых цепей. Для линейных смол без LCB указанное соотношение составляет примерно 25 или менее. Более высокие значения MIR могут указывать на наличие LCB, которые могут отрицательно влиять на свойства пленки, как упомянуто выше. Наивысшее соотношение 304 MIR наблюдали для (CH2)3Si(CpMe4)CpZrCl2 (J), что указывает на то, что полимер, полученный на данном катализаторе, имеет наибольшее количество LCB. Напротив, смешивание смол, полученных на двух различных катализаторах, приводит к получению конечного продукта, который имеет более высокий MIR.

Используя результаты, представленные на фиг. 2 и 3, выбрали пять катализаторов для определения зависимости средневесовой молекулярной массы (Mw) от соотношения Н2. Указанные катализаторы включали три катализатора, которые приводят к получению полиэтилена с более низкой Mw, (CpMe5)(1-MeInd)ZrCl2 (А) 306, (1-EtInd)2ZrCl2 (В) 308 и (Me4Cp)(1,3-Me2Ind)ZrCl2 (Е) 310. Указанные катализаторы включали также катализатор, который приводит к получению полиэтилена со средней Mw, (PrCp)2HfF2 (I) 312. В таблице 2 представлены данные о зависимости Mw от уровня Н22.

Полученные результаты использовали для построения серии графиков, которые могут быть использованы для определения чувствительности Mw к соотношениям Н22. В таблице 3 показаны тангенсы угла наклона и отсекаемые отрезки графиков обратной зависимости. Катализаторы, обеспечивающие более низкую Mw, имели больший тангенс угла наклона, указывая на более высокую зависимость Mw от соотношений Н22. Второй катализатор, (1-EtInd)2ZrMe2, имел самую сильную зависимость Mw от соотношения Н22. Тангенсы угла наклона могут быть использованы для выбора катализаторов, имеющих значительно расходящиеся реакции на содержание водорода.

Данные, представленные на фиг. 2 и 3 и в таблицах 2 и 3, демонстрируют, что комбинация (1-EtInd)2ZrCl2 (В) и (PrCp)2HfF2 (I) приведет к получению полимера с широким MWD и SCBD без LCB. Как показано на графике 300 на фиг. 3, смолы, полученные с применением указанных двух катализаторов, имеют MIR около 20 и, следовательно, по существу не содержат LCB. Информация, представленная в таблицах 2 и 3, указывает на то, что (1-EtInd)2ZrCl2 обеспечивает примерно одну треть от Mw для (PrCp)2HfF2 при Н22 примерно 4,2 ppm/моль. Информация на графике 200, представленном на фиг. 2, указывает на то, что (1-EtInd)2ZrCl2 обеспечивает примерно одну четверть от SCB для (PrCp)2HfF2 при сравнимых условиях.

Уравнения из таблицы 3 могут быть использованы для предсказания количества (1-EtInd)2ZrCl2, которое необходимо использовать в комбинации с катализатором (PrCp)2HfF2, для получения итоговой смолы с Mw 100 кг/моль при четырех различных значениях Н2. Указанные значения могут быть использованы для определения исходных контрольных точек, например, при использовании (PrCp)2HfF2 в качестве каталитического компонента на положке и (1-EtInd)2ZrCl2 в качестве каталитического компонента в растворе, подлежащего добавлению в качестве балансировочного катализатора. В представленном варианте реализации количество добавляемого катализатора (1-EtInd)2ZrCl2 можно регулировать для достижения требуемой Mw и других характеристик. Результаты для различных комбинаций представлены в таблице 4.

Испытания на опытном производстве с применением балансировочного питания

Применение балансировочной подачи катализатора для регулирования молекулярной массы и молекулярно-массового распределения испытывали на опытном производстве, и результаты представлены в таблице 5. В таблице 5 тип катализатора соответствует нумерованным структурам катализаторов, представленным в разделе «Подробное описание». Пять испытаний катализаторов (А-Е) представляли собой контрольные испытания, проведенные без применения балансировочного катализатора.

Регулирование молекулярно-массового распределения и распределения состава с применением катализаторов на общей подложке в комбинации с (CpPr)2HfF2.

Испытания проводили с применением первичного катализатора, содержащего (CpPr)2HfMe2 (HfP, структура III). HfP может обеспечивать полимеризацию этилена и смесей этилена с сомономерами в присутствии активатора и подложки, сокатализатора или обоих компонентов. Активатор и подложка могут быть одинаковыми или различными. Одновременно могут быть использованы несколько активаторов, подложек и/или сокатализаторов. Сокатализаторы могут быть добавлены для модификации любого из компонентов. Термины катализатор, HfP, активатор, подложки и/или сокатализаторы относятся к реальным соединениям, а также к растворам таких соединений в углеводородных растворителях.

Для применения в качестве сокатализаторов, особенно в балансировочных системах, катализаторы должны быть растворимы в алкановых растворителях, таких как гексан, парафиновые растворители и минеральное масло. Растворимость может составлять более 0,0001 масс. %, более 0,01 масс. %, более 1 масс. % или более 2%. В качестве растворителя также может быть использован толуол, поскольку катализатор может быть более растворим в ароматическом растворителе.

Как описано в настоящем документе, комбинацию HfP, активатора (МАО) и подложки (диоксид кремния) подвергали реакции с балансировочными катализаторами в углеводородных растворителях с получением катализатора полимеризации с другими характеристиками полимеризации, чем ожидали от простого комбинирования отдельных компонентов. Более конкретно, молекулярно-массовое распределение полимера, полученного с применением сокатализаторов на общей подложке, было шире, чем можно было бы получить для смесей полимеров, полученных на отдельных составляющих катализаторах. Такое изменение характеристик полимеризации представлено на примере изменений MWD, CD или MWD и CD полимеров, полученных при использовании смеси HfP и некоторых сокатализаторов. Таким образом, комбинирование катализаторов HfP, активатора и необязательной подложки, дополнительных катализаторов или обоих компонентов в углеводородных растворителях в in-line смесителе непосредственно перед реактором полимеризации приводит к получению нового катализатора полимеризации.

Может быть использована любая последовательность комбинирования катализаторов HfP, активатора и необязательной подложки, дополнительных сокатализаторов или обоих компонентов в углеводородных растворителях. Например, катализаторы могут быть добавлены к смеси, которая содержит HfP, активатор и необязательную подложку, дополнительные сокатализаторы или оба компонента. Кроме того, катализаторы и сокатализаторы могут быть добавлены к смеси {HfP, активатора и необязательной подложки}. Кроме того, катализаторы и HfP могут быть добавлены к смеси, которая содержит {активатор и необязательную подложку и сокатализаторы}.

Желательно смешивать катализаторы, HfP, активатор и необязательную подложку, дополнительные сокатализаторы или оба компонента в углеводородных растворителях, с последующим получением сухого катализатора из указанной смеси. Такая сухая смесь может быть подана в реактор полимеризации напрямую или в виде суспензии.

Изменение MWD и CD при использовании катализаторов и HfP можно контролировать посредством изменения соотношения катализаторов к HfP. Без использования катализаторов MWD и CD являются такими, как для HfP. При использовании одного катализатора MWD и CD являются такими, как в случае применения катализаторов по отдельности. Изменение соотношения катализаторов приводит к изменению MWD и CD относительно исходных катализаторов. Указанное соотношение может быть изменено для достижения конкретных требуемых MWD и CD.

Катализаторы могут быть выбраны для изменения MWD или CD получаемого полимера. Применение катализаторов, которые приводят к получению полимеров с более низкой или высокой молекулярной массой, чем HfP, обеспечивает расширение молекулярно-массового распределения. Зависимость Mw полимеров, полученных из одиночных компонентов, от Н2/С2 может быть использована в качестве ориентира для выбора. Например, катализатор, менее чувствительный к водороду, чем HfP, будет обеспечивать полимер с более высокой Mw, чем полимер, полученный на самом HfP, как показано на фиг. 2. Кроме того, катализатор, более чувствительный к водороду, чем HfP, в комбинации с HfP будет обеспечивать более низкую Mw, чем сам HfP.

Помимо выбора катализаторов для расширения MWD, катализаторы могут быть выбраны для изменения распределения состава. Например, применение катализаторов, которые обеспечивают внедрение меньшего или большего количества сомономера, чем HfP, будет приводить к расширению распределения состава. Ориентировочным руководством для достижения указанного эффекта, как дополнительно описано ниже, являются относительные соотношения газов С6/С2, необходимые для получения смолы плотностью 0,92 на различных катализаторах. Те катализаторы, которые обеспечивают более высокую разность соотношений газов С6/С2 относительно HfP, приводят к увеличению расширения CD. Молекулярно-массовые распределения также могут быть изменены с помощью катализатора, который обеспечивает другое MWD, но такую же среднюю молекулярную массу, как HfP.

Комбинация катализаторов с HfP может обеспечивать получение MWD, которое больше, чем ожидается от теоретической комбинации отдельных катализаторов. Требуемые материалы на катализаторах на основе HfP получают в том случае, если Mw способность и способность катализаторов к внедрению сомономеров выше, чем у HfP. Таким же образом, требуемые материалы получают также, если Mw способность и способность катализаторов к внедрению сомономеров ниже, чем у HfP. Кроме того, требуемые материалы получают в том случае, если Mw способность катализаторов является такой же, а способность к внедрению сомономеров ниже, чем у HfP.

Получение катализатора полимеризации на общей подложке

На фиг. 4 представлена технологическая схема 400 способа получения катализатора полимеризации на общей подложке. Способ 400 начинается с блока 402, с построения графика зависимости соотношения водорода/этилена от обратной величины молекулярной массы полимера, получаемого на каждом из ряда катализаторов. Как описано в настоящем документе, тангенс угла наклона каждого графика указывает на восприимчивость соответствующего катализатора к содержанию водорода.

В блоке 404 определяют значение соотношения сомопомера/этилена для каждого из катализаторов, которое может быть использовано для достижения одной требуемой плотности, такой как 0,92. Указанное значение соотношения, используемое для достижения требуемой плотности, указывает на способность катализатора к внедрению сомономера. В блоке 406 выбирают первый катализатор для катализатора полимеризации на общей подложке. Например, первый катализатор может представлять собой широко используемый промышленный катализатор или может быть выбран так, чтобы иметь низкую или высокую способность к внедрению сомономера и высокую или низкую чувствительность к водороду.

В блоке 408 выбирают второй катализатор для катализатора полимеризации на общей подложке. Второй катализатор может быть выбран так, чтобы иметь тангенс угла наклона на графике зависимости соотношения водорода/этилена от обратной величины молекулярной массы, который по меньшей мере примерно в 1,5 раза больше тангенса угла наклона на графике для первого катализатора. Кроме того, второй катализатор может быть выбран так, чтобы иметь значение соотношения сомономера/этилена, которое по меньшей мере примерно в 0,5 раз больше соотношения сомономера/этилена для первого катализатора. В блоке 410 первый катализатор и второй катализатор могут быть нанесены на общую подложку с получением катализатора полимеризации на общей подложке, например, с применением балансировочной технологии, описанной в настоящем документе, среди прочих.

Выбор каталитической смеси для конкретного типа изделия

Технологии, описанные в настоящем документе, могут быть использованы для выбора смеси по меньшей мере двух катализаторов для получения полимера, сохраняющего постоянный комбинированный коэффициент полидисперсности (bPDI) при изменении индекса расплава для соответствия конкретному процессу переработки, такому как получение выдувной пленки, ротационное формование и литьевое формование, среди прочих. Например, полимер, имеющий индекс расплава от примерно 0,5 до примерно 1,0, может хорошо подходить для выдувной пленки, а полимер для ротационного формования может быть подходящим при индексе расплава от примерно 2 до примерно 7. Таким же образом, полимер с индексом расплава от примерно 20 до примерно 100 может хорошо подходить для литьевого формования. Кроме того, предложенные технологии могут обеспечивать возможность выбора катализаторов и условий для регулирования bPDI при сохранении постоянного течения расплава.

Указанные способы обеспечивают возможность предсказания bPDI полимера, полученного на смеси катализаторов на основании чувствительности к водороду составляющих катализаторов, и идентификации каталиазторов для продуктов на основании анализов гипотетических пар катализаторов. Кроме того, может быть построена полная карта bPDI для облегчения разработки продукта в диапазоне применений для данной пары катализаторов.

Для технологии выбора могут быть учтены многие допущения и условия. Например, в теоретически идеальной смеси катализаторов отдельные каталитические компоненты могут независимо проявлять себя в смеси. Кроме того, для каждого компонента PDI и производительность могут оставаться неизменными во всем диапазоне Н2/С2 (в настоящем документе указано как чувствительность к водороду). Наконец, в описанных технологиях могут быть учтены другие факторы, которые могут влиять на свойства катализатора, такие как чувствительность к сомономеру, среди прочих, которые существенно не влияют на чувствительность к водороду.

Чувствительность к водороду конкретного катализатора может быть определена измерением средневесовой молекулярной массы (Mw) полимера, полученного на катализаторе при нескольких соотношениях Н22, например, гельпроникающей хроматографией, светорассеянием или другими родственными технологиями. Затем результаты могут быть использованы для расчета линейного приближения к формуле в уравнении 1.

Для предсказания смесей соотношение Н2/С2 выражают в тех же единицах, например, ppm/мол. %, которые используют в процессе полимеризации. Затем уравнение 1 может быть использовано для предсказания Mw для данного катализатора при выбранном соотношении Н22, как правило, до тех пор, пока данные, полученные для линейного приближения, входят в требуемое соотношение Н22. Тот же процесс может быть повторен для второго катализатора, используемого в смеси. Несмотря на то, что настоящее описание ориентировано на два катализатора, в качестве примера предложенного способа, следует понимать, что указанная технология может быть распространена на любое количество катализаторов в смеси.

При моделировании чувствительности к водороду может быть измерен коэффициент полидисперсности каждого полимера, используемого в смеси, в тех же точках, которые были использованы для уравнения 1. Если единственный катализатор, оцененный для применения в каталитической смеси, обеспечивает получение полимера с мультимодальным молекулярно-массовым распределением, то указанное распределение может быт применено к нескольким группам и использовано в качестве отдельных компонентов для получения конечной смеси. Уравнение 2 представляет собой теоретическое правило комбинирования Mw смеси на основании ее компонентов.

В уравнении 2 bmw представляет собой молекулярную массу смеси, например, эффективную унимодальную молекулярную массу полимера, полученного на катализаторе или каталитической смеси. Fhmw представляет собой массовую долю высокомолекулярного компонента, и hmw представляет собой молекулярную массу высокомолекулярного компонента. Аналогично, Flmw представляет собой массовую долю низкомолекулярного компонента, и lmw представляет собой молекулярную массу низкомолекулярного компонента. Несмотря на то, что расчет эффективной молекулярной массы проведен для бимодального катализатора, такие же расчеты могут быть проведены для мультимодального распределения или широкого молекулярно-массового распределения для катализатора. Кроме того, уравнение 2 может быть использовано для определения эффективной молекулярной массы смеси (bmw) для полимера, полученного на конечной смеси двух или более катализаторов.

После определения чувствительности к водороду основных каталитических компонентов может быть рассчитана кривая зависимости bPDI от Mw с помощью зависимости, указанной в уравнении 3.

Как и в уравнении 2, в уравнении 3 Flmw представляет собой массовую долю низкомолекулярного компонента полимера, a Fhmw представляет собой массовую долю высокомолекулярного компонента полимера. Однако в этом случае каждый из компонентов может представлять собой эффективную молекулярную массу полимера, например, полученного на эквивалентном унимодальном катализаторе.

Flmw и Fhmw рассчитывают по количеству полимера, полученного на первом катализаторе при каждом соотношении водорода к этилену, и по количеству полимера, полученного на втором катализаторе при каждом соотношении водорода к этилену. В одном из вариантов реализации производительность катализаторов не учитывают, и количества катализаторов используют в качестве приближенных значений для количества полимера для определения соотношения.

Термин lmw представляет собой средневесовую молекулярную массу низкомолекулярного полимерного компонента, например, полученного на одном из катализаторов, a hmw представляет собой средневесовую молекулярную массу высокомолекулярного полимерного компонента, например, полученного на другом катализаторе, lmw и hmw могут быть рассчитаны по зависимости молекулярной массы от соотношения водорода к этилену, например, по чувствительности к водороду каждого катализатора, смоделированного в уравнении 1. Несмотря на то, что значения полидисперсности не учтены в уравнении 2, они могут влиять на конечные свойства полимера и учтены в уравнении 3. Термин 1PDI представляет собой полидисперсность низкомолекулярного полимерного компонента, a hPDI представляет собой полидисперсность высокомолекулярного полимерного компонента. 1PDI и hPDI могут быть измерены для каждого полимера и, в одном из вариантов реализации, их считают постоянными.

Применение технологий, описанных выше, может быть продемонстрировано с использованием полимеров, полученных на двух гипотетических катализаторах, описанных в настоящем документе, Нуро-Н и Hypo-L. Катализатор Нуро-Н обеспечивает получение более высокомолекулярного полимерного компонента, a Hypo-L обеспечивает получение более низкомолекулярного полимерного компонента. Чувствительность к водороду двух катализаторов использована в уравнении 1 по способу, описанному в настоящем документе, с получением результатов, представленных в таблице 6. Как описано в последующих разделах, соотношение отсекаемых отрезков и соотношение тангенсов угла наклона между двумя каталитическими компонентами также играет важнейшую роль для выбора пары катализаторов. Указанные два соотношения определены в уравнениях 4 и 5.

В первом примере выбрано соотношение катализаторов 50/50 и сделано предположение, что соотношение катализаторов предсказывает массовую долю каждого полимера, полученного на каждом катализаторе в смеси. Затем может быть отрегулировано соотношение водорода к этилену для достижения определенного индекса расплава, требуемого для различных применений, при сохранении такого же значения bPDI, как показано в таблице 7. Применения представляют собой выдувные пленки (BF), ротационное формование (RM) и литьевое формование (IM). Несмотря на то, что указанные применения использованы в качестве примеров, с использованием предложенной технологии могут быть выбраны каталитические смеси для любого количества других применений, таких как выдувное формование или формование листов, среди прочих.

В качестве дополнительного примера, в таблице 8 представлены результаты, которые могут быть получены построением кривых bPDI при одном индексе расплава, например, для одного применения, такого как получение выдувных пленок (BF). В данном случае регулируют соотношение катализаторов, тогда как соотношение водорода к этилену устанавливают так, чтобы индекс расплава был равен 1.

Предложенные технологии могут быть использованы для создания карты характеристик катализатора как для реальных каталитических систем, так и для гипотетических каталитических систем, например, для определения характеристик каталитических систем, необходимых для идеального полимера. На фиг. 5, 6 и 7 представлены графики трех гипотетических примеров, А, В и С.Как показано в таблице 9, высокомолекулярные катализаторы во всех трех примерах (т.е. A1, В1 и С1) являются одинаковыми, имеющими отсекаемый отрезок 1,0Е-06 и тангенс угла наклона 1.0Е-06, определенные по линейному приближению из уравнения 1. Низкомолекулярные катализаторы (т.е. А2, В2 и С2), с другой стороны, разработаны так, что: соотношение отсекаемых отрезков и соотношение тангенсов угла наклона в каждой паре варьируется от 10:1, 1:10 и 10:10 для примеров А, В и С, соответственно. Во всех трех случаях 1PDI и hPDI присваивали значение 3,0 для расчета bPDI по уравнению 3.

На фиг. 5А, 5В и 5С представлены логарифмические графики зависимости обратного значения молекулярной массы от соотношения Н22 для каждой из гипотетических комбинаций. На каждом графике пунктирная линия представляет собой более низкомолекулярный полимер, полученный на катализаторе (2), а сплошная линия представляет собой более высокомолекулярный полимер, полученный на другом катализаторе (1). Результаты указанных изменений представлены на фиг. 6А, 6В и 6С.

На фиг. 6А, 6В и 6С представлены графики чувствительности к водороду каждого из катализаторов. Промежуток между сплошной линией, представляющей собой более высокомолекулярные соединения, и пунктирной линией, представляющей собой более низкомолекулярные соединения, представляет собой область, в которой молекулярная масса может быть отрегулирована посредством подбора соотношения катализаторов и соотношения Н2/С2 при эксплуатации реактора. Следует отметить, что сплошная и пунктирная линии не параллельны на фиг. 6А и 6В. Это означает, что их регулируемый промежуток существенно сужается в области высокого соотношения Н2/С2 для примера А или в области низкого соотношения Н2/С2 для примера В. Вследствие такого ограничения утрачены некоторые возможности разработки продуктов. Например, указанная комбинация не может обеспечивать достижение более высоких требуемых bPDI для применений с высоким MI на фиг. А и достижение более высоких требуемых bPDI для применений с низким MI на фиг. 7В.

С другой стороны, пример С имеет пару параллельных линий зависимости от Н, как показано на фиг. 6С. Следовательно, его регулируемое пространство шире, чем у двух других примеров, представленных на фиг. 6Ф и 6В. Его bPDI способность, представленная на фиг. 7С, остается одинаковой для всех применений (т.е. одинаковые возможности разработки продуктов). Ключом к обеспечению хорошей возможности разработки продукта на основе пары катализаторов является значение b-соотношения, представленного в таблице 9, максимально близкого к значению m-соотношения. В качестве общего руководства необходима пара катализаторов со значением b-соотношение/m-соотношение ≤ 2 или, более предпочтительно, со значением b-соотношение/m-соотношение ≤ 1. Иными словами, пример С является наиболее благоприятным случаем для максимальных возможностей проектирования, где b-соотношение = m-соотношение; пример В является менее благоприятным, но все еще имеет достаточную возможность проектирования, где b-соотношение < m-соотношение; и пример А является наименее предпочтительным случаем с небольшими возможностями проектирования, где b-соотношение > m-соотношение.

До этого момента обсуждение было ориентировано на «относительную» форму и способность кривой зависимости от Н и карты bPDI среди трех основных типов пар катализаторов. Однако «абсолютные» значения Mw = f(H2/C2) и «абсолютное» значение bPDI могут быть дополнительно отрегулированы с помощью значений отсекаемого отрезка и тангенса угла наклона в уравнении 1. Далее представлено последовательное описание, в котором подразумевается, что абсолютные значения могут быть отрегулированы с помощью значений отсекаемого отрезка и тангенса угла наклона в уравнении 1. На фиг. 7А показано, что bPDI падает при увеличении соотношения Н22, что приводит к получению полимера с полидисперсностью, незначительно отличающейся от базовых полимеров. Такая комбинация катализаторов не обеспечивает возможность значительного регулирования продукта и, в целом, означает комбинацию, которой следует избегать. Ситуация, представленная на фиг. 7В, является более благоприятной. Однако одинаковый отсекаемый отрезок означает, что bPDI будет ниже для применений, в которых необходима более высокая молекулярная масса (таких как получение выдувных пленок), и выше для применений, в которых необходима более низкая молекулярная масса (например, литьевое формование). Это противоположно общепринятой в промышленности практике (например, более низкий PDI предпочтителен для литьевого формования, а более высокий PDI предпочтителен для выдувных пленок). На фиг. 7С представлена выгодная комбинация катализаторов. В указанной комбинации обеспечен существенный контроль более высокомолекулярного и более низкомолекулярного полимеров, что продемонстрировано высокими постоянными значениями bPDI во всем диапазоне соотношений Н22.

На фиг. 8 представлена технологическая блок-схема способа 800 применения карты bPDI для облегчения получения полимера. Способ начинается с блока 802, с выбора каталитической смеси по карте bPDI. Как указано в отношении фиг. 6 и 7, правильный выбор катализатора будет обеспечивать по существу параллельную чувствительность к водороду между катализаторами, например, на фиг. 6С, и высокое постоянное значение hmw/lmw, как показано в таблицах 7 и 8, для максимальной возможности проектирования bPDI. После выбора пары катализаторов, в блоке 802 может быть получен полимер с применением каталитической смеси. Получение может включать любое количество других действий, описанных в настоящем документе, таких как применение балансировочной системы и добавление водорода для регулирования свойств готового полимера.

На фиг. 9 представлена технологическая блок-схема способа 900 для выбора каталитической смеси, например, в блоке 802, представленном на фиг. 8. Способ начинается с блока 902 с получения множества полимеров для по меньшей мере двух катализаторов. Каждый полимер получают с разными соотношениями водорода к этилену. По меньшей мере один из катализаторов обеспечивает получение более высокомолекулярного полимера, а другой катализатор обеспечивает получение более низкомолекулярного полимера. В блоке 904 измеряют молекулярную массу каждого полимера. В блоке 906 определяют зависимость между молекулярной массой полимеров, полученных на каждом из катализаторов, и соотношением водорода к этилену. Это может быть осуществлено, например, способами, описанными в отношении уравнения 1, и построением графиков, представленных на фиг. 5 и 6. В блоке 906 строят группу кривых bPDI для полимеров, которые будут получены с применением множества соотношений смеси катализаторов для каждого из множества соотношений водорода к этилену. Это может быть выполнено с помощью способов, описанных в отношении уравнения 3 и в отношении графиков, представленных на фиг. 7. В блоке 908 может быть выбрано соотношение для смеси по меньшей мере двух катализаторов, которое обеспечивает получение полимера, имеющего bPDI, который соответствует процессу переработки полимера. Действие смеси может быть подтверждено получением полимера при каждом из множества соотношений Н22 и сравнением значений bPDI и MI с предсказанными значениями.

Общие способы получения каталитических компонентов

Катализаторы

Экспериментальная часть

Все работы проводили в перчаточном боксе, продуваемом N2, или с применением стандартных технологий Шленка. Все безводные растворители были приобретены у компании Sigma-Aldrich и перед использованием были дегазированы и высушены над кальцинированными гранулами Al2O3 или молекулярными ситами. Толуол для получения катализаторов перед использованием предварительно высушивали с помощью гранул Al2O3, а затем высушивали над SMAO 757. Дейтерированные растворители были приобретены у компании Cambridge Isotope Laboratories и перед использованием были дегазированы и высушены над гранулами оксида алюминия или молекулярными ситами. Использованные реагенты были приобретены у компании Sigma-Aldrich, за исключением ZrCl4 99+%, который приобрели у компании Strem Chemicals, и диметил-бис(н-пропилциклопентадиенил)гафния (HfPMe2), который приобрели у компании Boulder Scientific, №партии BSC3220-8-0002. Измерения 1Н ЯМР проводили на спектрометрах Bruker 250Mz и Bruker 500Mz.

Синтез рац-мезо-димстил-бис(1-этилинденил)циркония (1-EtInd)2ZrMe2 (IV-A/IV-B)

Индениллитий. Свежедистиллированный инден (50,43 г, 434,1 ммоль) растворили в 1 л пентана. Добавили Et2O (25 мл), затем на протяжении 5 минут в прозрачный перемешиваемый раствор добавляли 1,6 М н-бутиллитий в гексанах (268,5 мл, 429,6 ммоль). В осадок выпало белое твердое вещество, а надосадочный раствор приобрел светло-желтый цвет. После перемешивания в течение ночи суспензию отфильтровали, затем высушили in vacuo с получением белого твердого вещества (46,51 г, 381,0 ммоль, 88,7%). 1Н ЯМР (ТГФ-d8): δ 5,91 (д, 2Н), 6,44 (м, 2Н), 6,51 (т, 1Н), 7,31 (м, 2Н).

1-Этилинден. 46,51 г (380,95 ммоль) индениллития растворили в 250 мл Et2O и отдельно получили раствор из 95,94 г (615,12 ммоль) этилйодида в 400 мл Et2O. Раствор этилйодида охладили до -30°С, а раствор индениллития охладили до 0-10°С на бане из сухого льда/ацетона. Индениллитий добавляли к прозрачному перемешиваемому раствору этилйодида через канюлю. При добавлении раствора индениллития раствор приобрел цвет от светло-желтого до желтого. Реакционную смесь оставили перемешиваться в течение ночи и медленно нагревали до комнатной температуры. После перемешивания в течение ночи колбу перенесли в бокс и упарили Et2O in vacuo. Как только начал выпадать осадок LiI, добавили 300 мл пеитана и отфильтровали белую суспензию с получением светло-оранжевого раствора. При дальнейшем выпадении в осадок LiI выпаривали пентан с получением светло-оранжевой маслянистой жидкости. Неочищенный продукт дистиллировали при пониженном давлении, используя ротационный вакуумный насос, до светло-желтой прозрачной жидкости. Данные 1Н ЯМР показали ~90% 1-этилиндена и ~10% 3-этилиндена. Возможная изомеризация могла произойти вследствие наличия небольшого количества кислоты при дистилляции, поскольку в спектре 1Н ЯМР неочищенного соединения такого не наблюдали. Выделили 44,27 г (306,96 ммоль) продукта с выходом 80,6%. 1Н ЯМР (CD2Cl2): δ 0,96 (3Н, т), 1,59 (1H, к), 1,99 (1H, к), 3,41 (1Н, м), 6,58 (1Н, д), 6,59 (1Н, д), 7,24 (2Н, м), 7,41 (2Н, дд).

1-Этилиндениллитий. 44,27 г (306,98 ммоль) 1-этилиндена, содержащего ~10% 3-этилиндена, растворили в 500 мл пентана и примерно 3 мл Et2O. К прозрачному перемешиваемому раствору добавили 188,28 мл (301,25 ммоль) 1,6 М н-бутиллития в гексанах за 10 минут. Сразу образовался хлопьевидный белый осадок, что вызвало остановку перемешивания. Смесь перемешивали вручную для обеспечения надлежащего внедрения реагентов и оставили суспензию отстаиваться в течение ночи. Суспензию отфильтровали, а твердое белое вещество высушили in vacuo. Получили 43,27 г (288,18 ммоль) продукта с выходом 95,7%. 1Н ЯМР (ТГФ-d8): δ 1,26 (3Н, триплет), 2,86 (2Н, квартет), 5,72 (дублет, 1Н), 6,38 (дд, 1H), 6,43 (2Н, м), 7,26 (1H, т), 7,30 (1Н, м).

Рац-мезо-диметил-бис(1-этилинденил)цирконий (1-EtInd)2ZrMe2 (IV-А/В)

7,00 г (46,65 ммоль) 1-этилиндениллития растворили в 74 мл 1,2-диметоксиэтана (DME) и получили отдельный раствор из 5,43 г (23,30 ммоль) ZrCl4 в 75 мл DME. К прозрачному раствору ZrCl4 через пипетку добавляли ярко-желтый раствор 1-этилиндениллития в течение пятнадцати минут. После первоначального добавления раствор приобрел желтый цвет, а через 5 минут добавления образовался осадок, а цвет стал оранжево-желтым. Через десять минут добавления надосадочный раствор стал оранжевым, с желтым осадком, а после добавления всего раствора 1-этилиндениллития смесь снова стала желтой. Реакционную смесь оставили перемешиваться на ночь. Спектр 1Н ЯМР неочищенной суспензии показал соотношение рац/мезо ~1,1:1; однако это может быть обманчивым, поскольку рац-изомер более растворим в DME, чем мезо-изомер. Независимо от соотношения изомеров, частями по 1 мл добавляли 15,61 мл (46,83 ммоль) 3,0 М раствора CH3MgBr в Et2O в течение десяти минут. После десятого добавления желтая смесь приобрела оранжеватый цвет. После последнего добавления реагента Гриньяра смесь стала коричневой, и реакционную смесь оставили перемешиваться в течение ночи. Спектр 1Н ЯМР неочищенной смеси показал соотношение мезо/рац 1,1:1. DME выпарили и экстрагировали коричневое твердое вещество с помощью 3×20 мл толуола плюс еще 10 мл. Светло-коричневое твердое вещество, полученное после удаления растворителя, промыли 10 мл пентана и высушили in vacuo. Получили 8,26 г (20,26 ммоль) грязновато-белого твердого вещества с выходом 87%.

Спектральные данные дихлорида: 1Н ЯМР (CD2Cl2): δ 1,16 (6,34Н, т, рац), 1,24 (6Н, т, мезо), 2,73-2,97 (8Н, перекрывающийся к), 5,69 (1,82Н, дд, мезо), 5,94 (1,92Н, дд, рац), 6,06 (1,99Н, д, рац), 6,35 (1,84Н, d, мезо), 7,22-7,65 (16Н, м).

Спектральные данные диметила: 1Н ЯМР (C6D6): δ -1,40 (3,33Н, с, мезо), -0,895 (6Н, с, рац), -0,323 (3,34Н, с, мезо), 1,07 (13Н, перекрывающийся т), 2,47 (4Н, перекрывающийся к), 2,72 (4Н, к), 5,45 - 5,52 (8Н, м), 6,91 (8Н, м), 7,06-7,13 (4Н, м), 7,30 (4Н, м).

Синтез рац-мезо-диметил-бис(1-этилинденил)цирконин (1-EtInd)2ZrMe2 (IV-А/В)

К раствору ZrCl4 (20,8 г; 89,3 ммоль) в 1,2-диметоксиэтане (DME) (примерно 100 мл) частями примерно по 5 мл добавляли раствор 1-этилиндениллития (26,8 г; 178 ммоль), растворенного в 1,2-диметоксиэтане (DME) (примерно 200 мл) в течение 15 минут. При необходимости добавляли дополнительное количество DME, чтобы смесь не становилась слишком густой для перемешивания. По окончании добавления общий объем составил примерно 425 мл. Непосредственно перед добавлением раствора 1-этилиндениллития и примерно в середине добавления к реакционной смеси добавили пентан (примерно 10 мл) и удалили под вакуумом для снижения температуры. После перемешивания в течение примерно 4 часов при комнатной температуре взяли аликвоту суспензии и высушили. Провели анализ 1Н ЯМР полученного твердого вещества в CD2Cl2, который показал соотношение рац/мезо 0,7:1.

Примерно 100 мл растворителя выпарили из реакционной смеси и частями (примерно по 20 мл) добавляли раствор метиллития (1,6 М в эфире; 111 мл; 178 ммоль) в течение примерно одного часа. После перемешивания в течение ночи соотношение рац/мезо составило 0,7:1,0. Добавили дополнительное количество раствора MeLi (1,6 М в эфире; 7,0 мл; 11,2 ммоль) и перемешивали реакционную смесь при комнатной температуре в течение 3 дней. По результатам 1Н ЯМР, соотношение рац/мезо составило 0,9:1. Растворитель удалили под вакуумом, а остаток экстрагировали теплыми гексанами (примерно 300 мл; 60°С), отфильтровали и концентрировали до общего объема примерно 100 мл, затем охлаждали до -20°С в течение ночи. Твердое вещество выделили фильтрованием, промыли холодным пентаном (2×50 мл) и высушили под вакуумом с получением 29,2 г твердого вещества с соотношением рац/мезо 0,94:1. Выделенное твердое вещество экстрагировали теплым гексаном (примерно 150 мл), отфильтровали от небольшого количества розового твердого вещества. Объем уменьшили до примерно 125 ил и обработали раствор триметилсилилхлоридом (2,0 мл). Раствор отфильтровали, концентрировали примерно до 100 мл, нагрели и повторно растворили осажденный продукт, и оставили медленно остывать. После перемешивания в течение ночи колбу охладили до -20°С, в результате чего в осадок выпало некоторое количество розового осадка. Колбу нагрели до 55°С и добавили дополнительное количество гексанов (примерно 75 мл) вместе с триметилсилилхлоридом (5,0 мл). Смесь поддерживали при 55°С в течение двух часов, реакционную смесь отфильтровали с получением желтого раствора. Раствор отфильтровали, концентрировали примерно до 100 мл, нагрели и повторно растворили осажденный продукт, и оставили медленно остывать. Выпавшее в осадок твердое вещество выделили фильтрованием, промыли холодным пентаном (2×30 мл), высушили под вакуумом при 55°С. Выход составил 21,1 г с соотношением рац/мезо 1,19/1.

Синтез мезо-(1-EtInd)2ZrCl2

1-Этилиндениллитий (1,0 г; 6,7 ммоль) растворили в диметоксиэтане (DME) (7,7 мл) и охладили до -20°С. Частями добавляли твердый ZrCl4 (0,781 г; 3,35 ммоль) в течение 5 минут и продолжали реакцию в течение ночи. После удаления летучих веществ полученное твердое вещество экстрагировали с помощью CH2Cl2 до исчезновения желтого цвета. CH2Cl2 удалили под вакуумом с получением твердого желтого вещества. Выход = 1,14 г с соотношением мезо/рац 19:1.

Превращение мезо-(1-EtInd)2ZrCl2 в мезо-(1-EtInd)2ZrMe2

Мезо-(1-EtInd)2ZrCl2 (соотношение рац/мезо 1:19; 307 мг; 0,68 ммоль) суспендировали в Et2O (примерно 10 мл) и добавили MeMgBr (3,0 М в Et2O; 0,47 мл; 1,41 ммоль). Реакционную смесь высушили и экстрагировали теплыми гексанами (примерно 18 мл при 60°С), отфильтровали и высушили до светло-желтого твердого вещества (240 мг). Данные 1Н ЯМР в C6D6 показали сохранение соотношения рац/мезо 1:19.

Превращение 1:1 рац/мезо-(1-EtInd)2ZrCl2 в 1:1 рац/мезо-(1-EtInd)2ZrMe2

(1-EtInd)2ZrCl2 (рац/мезо 1:1; 12,2 г; 27,2 ммоль) суспендировали в Et2O (примерно 80 мл) и добавили MeMgBr (2,6 М в Et2O; 23,2 мл; 60,3 ммоль). Реакционную смесь перемешивали в течение ночи, высушили и экстрагировали теплыми гексанами (примерно 300 мл), отфильтровали и высушили примерно 1 мл раствора, и анализ 1Н ЯМР в C6D6 показал очень чистое соотношение мезо/рац-(1-EtInd)2ZrMe2 1:1.

Превращение (1-EtInd)2ZrCl2 с высоким содержанием мезо-изомера в рац/мезо-(1-EtInd)2ZrMe2 с соотношением примерно 1:1

Мезо-(1-EtInd)2ZrCl2 (соотношение рац/мезо 1:5; 244 мг; 0,54 ммоль) суспендировали в Et2O (примерно 5 мл) и добавили MeLi (1,6 М в Et2O; 0,69 мл; 1,10 ммоль). Реакционную смесь перемешивали в течение ночи, отфильтровали и высушили аликвоту отфильтрованной реакционной смеси. Анализ 1Н ЯМР в С6О6 показал соотношение рац/мезо 1:1,24.

Синтез диметил-(1-метилинденил)(пентаметилциклопентадиенил)циркония (IV) (IV-C)

(1-Метилинденил)(пентаметилциклопснтадненил)цирконин (IV) дихлорид

В сухом боксе взвесили 1-метил-1Н-инденовое масло (1,85 г, 14,2 ммоль) в круглодонную колбу объемом 250 мл и растворили в 25 мл сухого диэтилового эфира. По каплям добавляли н-бутиллитий (1,6 М в гексанах, 12,0 мл, 19,2 ммоль) из 20 мл шприца с иглой с получением желтого раствора. Перемешивали при комнатной температуре в течение 60 минут.

К желто-оранжевому раствору (1-метил)индениллития быстро, одной порцией добавили Cp*ZrCl3 (4,51 г, 13,5 ммоль, использовали в закупочном виде, Aldrich-475181) в виде желтого кристаллического вещества. Перемешивали желто-оранжевую суспензию в течение ночи при комнатной температуре.

Смесь оставили оседать на 30 минут. Темно-коричневый раствор декантировали с бледно-желтого твердого вещества, промыли твердое вещество на стеклянном фильтре с помощью 100 мл сухого эфира. Экстрагировали твердое вещество на фильтре с помощью 100 мл дихлорметана с получением желтой суспензии. Отфильтровали через слой целита на фильтре и выпарили летучие вещества с получением желтого твердого вещества. Перекристаллизовали из эфира/пентана с получением 2,70 г (47%). Дополнительное количество материала получили из маточного раствора: 1,19 г (20%).

1Н ЯМР (C6D6, 500 МГц, 35°С): δ 1,70 (15Н, с, Ср*), 2.30 (3Н, с, CH3 инденила), 5,56 (2Н, АВк, CH, CH инденила), 7,05 (1Н, дд, CH инденила), 7,10 (1Н, дд, CH инденила), 7,24 (1Н, дт, CH инденила), 7,56 (1Н, дк, CH инденила).

Диметил-(1-метилиндснил)(пентаметилциклопентадиенил)цирконий (IV) (IV-С)

(1-Метилинденил)(пентаметилциклопентадиенил)циркония дихлорид (4,92 г, 11,5 ммоль) суспендировали в 50 мл диэтилового эфира и охладили до -50°С. Медленно, через шприц добавили раствор MeLi (14,8 мл 1,71 М раствора в диэтиловом эфире, 25,4 ммоль). Смесь оставили перемешиваться и медленно нагреваться до комнатной температуры с получением розовой суспензии. Через 16 часов растворитель удалили под вакуумом, а остаток экстрагировали толуолом. Нерастворимые вещества удалили фильтрованием через стеклянный фильтр, выстеленный целитом, и удалили растворитель с получением оранжевого маслянистого твердого вещества. Твердое вещество промыли пентаном и высушили под вакуумом (3,89 г, выход 88%). 1Н ЯМР δ (C6D6): 7,53 (д, 1Н, 8-IndH), 7,13-6,99 (м, 3Н, 5,6,7-IndH), 5,21 (д, 1Н, 2-IndH), 5,11 (д, 1Н, 3-IndH), 2,20 (с, 3Н, 1-MeInd), 1,69 (с, 15Н, СрМе5), -0,51 (с, 3Н, ZrMe), -1,45 (с, 3Н, ZrMe).

Синтез диметил-(1,3-диметилинденил)(тетраметил-циклопентадиенил)циркония[(1,3-Me2Ind)(CpMe4)]ZrMe2 (IV-D)

2,3,4,5-тетраметил-1-триметилсилилциклопента-2,4-диен:

В колбе Эрленмейера объемом 2 л растворили желтое маслянистое вещество, тетраметилциклопентадиен (50 г, 409 ммоль, приобретенный у компании Boulder Scientific) в 1 л безводного ТГФ. Перемешивали при комнатной температуре, добавляя н-бутиллитий (175 мл, 437 ммоль) через пластиковый шприц объемом 60 мл с иглой 20 размера, регулируя поток по каплям. Наблюдали образование бледно-желтого осадка. После завершения добавления литиевого реагента реакционная смесь представляла собой желтую суспензию. Перемешивали в течение 1 часа при комнатной температуре, затем при энергичном перемешивании добавили хлортриметилсилан (60 мл, 470 ммоль) и оставили реакционную смесь перемешиваться в течение ночи при комнатной температуре. После перемешивания при комнатной температуре в течение 15 часов смесь представляла собой желтый раствор. Удалили растворитель ТГФ под потоком N2 с получением маслянистого остатка, который затем экстрагировали с помощью 1 л сухого пентана и отфильтровали через слой целита на грубом стеклянном фильтре. Удалили летучие вещества под вакуумом с получением продукта в виде желтого маслянистого вещества: 62,9 г, 79%. 1Н ЯМР (C6D6, 250 МГц): δ -0.04 (с, Si(CH3)3), δ 1,81, (с, СН3), δ 1,90 (с, СН3), δ 2,67 (с, СН)

Синтез (тетраметилциклопентадиенил)циркония трихлорида

В сухом боксе загрузили твердый ZrCl4 (30,0 г, 129 ммоль) емкость для работы под давлением из химического стекла объемом 450 мл с магнитной мешалкой, суспендировали в 100 мл сухого толуола. Добавили 2,3,4,5-тетраметил-1-триметилсилилциклопента-2,4-диен в виде желтого маслянистого вещества (27,5 г, 142 ммоль) и дополнительно промыли 100 мл сухого толуола. Закрыли емкость для работы под давлением винтовой крышкой с витоновым уплотнительным кольцом и нагревали на подходящем алюминиевом колбонагревателе до 110°С в течение 90 минут. Со временем раствор стал темнее, и во время реакции присутствовали нерастворимые вещества. Содержимое емкости оставили перемешиваться в течение ночи и охладили до комнатной температуры. Емкость открыли и упарили растворитель под потоком N2 с получением густой красной взвеси. Экстрагировали с помощью 2×50 мл сухого пентана, затем 100 мл сухого эфира. Красный раствор удалили и выделили продукт в виде бледно-красного твердого вещества: 35,4 г, 85%. 1Н ЯМР (C6D6, 250 МГц): δ 1,89 (ш с, СН3), δ 2,05 (ш с, СН3), δ 5,78 (ш с, СН)

Синтез 1,3-диметилиндена

1-Метилиндениллитий: Свежедистиллированный 3-метилинден (33,75 г, 259,24 ммоль) растворили в пентане (1 л). К прозрачному перемешиваемому раствору добавили Et2O (10 мл), затем 1,6 М н-бутиллитий в гексанах (107 мл, 171,2 ммоль) и 2,5 М н-бутиллитий в гексанах (34,2 мл, 85,5 ммоль). Сразу образовался хлопьевидный белый осадок. После перемешивания в течение ночи суспензию отфильтровали и высушили белое твердое вещество in vacuo (33,88 г, 248,90 ммоль, 97%). 1Н ЯМР (ТГФ-d8): δ 2,41 (с, 3Н), 5,68 (д, 1H), 6,31 (д, 1H), 6,41 (м, 2Н), 7,22 (м, 2Н).

В сухом боксе растворили йодметан (2,0 мл, 32,1 ммоль) в 80 мл сухого диэтилового эфира в круглодопной колбе объемом 250 мл с магнитной мешалкой. Колбу поместили на баню, охлажденную изогексаном (-25°С), в сосуде Дьюара с широким горлышком. В отдельной колбе Эрленмейера объемом 100 мл получили раствор 1-метилиндениллития (3,50 г, 25,7 ммоль) комнатной температуры в 50 мл сухого диэтилового эфира с получением желтого раствора. Медленно, по каплям добавляли раствор индениллития к холодному, перемешиваемому раствору йодметана в течение 15 минут. Продолжали перемешивание при низкой температуре в течение 30 минут, затем убрали холодную баню и оставили реакционную смесь нагреваться до комнатной температуры в течение ночи. После перемешивания в течение 15 часов при комнатной температуре раствор был мутно-белым. Объем раствора уменьшили под потоком азота, затем выпарили летучие вещества под высоким вакуумом. Экстрагировали твердые вещества с помощью 2×80 мл изогексана и отфильтровали через слой целита на грубом стеклянном фильтре. Фильтраты выпарили под высоким вакуумом с получением коричневого маслянистого вещества. Растворили в 5 мл дихлорметана и загрузили через пипетку на силикагелевую колонку (Biotage SNAP, 100 г), элюируя дихлорметаном:изогексаном (градиент, 2-20%). Фракции объединили и выпарили с получением прозрачного маслянистого вещества. Собрали 2,54 г, 68%.

1Н ЯМР (C6D6, 500 МГц): δ 1,11 (д, J=7,5 Гц, -СНСН3), δ 1,96 (с, СН=ССН3), δ 3,22 (м, СНСН3), δ 5,91 (м, СН=ССН3), δ 7,15-7,27 (ароматический СН). Смесь содержала побочный изомер 3,3-диметилинден в соотношении с требуемым продуктом 1:10. δ 1,17 (с, СН3), δ 6,14 (д, J=5,5 Гц, СНН), δ 6,51 (д, J=5,5 Гц, СНН).

Синтез 1,3-диметилиндениллития

Растворили 2,54 г (17,6 ммоль) прозрачного маслянистого вещества, смеси 10:1 1,3-диметилиндена и 3,3-диметилиндена, в 35 мл сухого пентана. Перемешивали при комнатной температуре, добавляя медленно, по каплям 6,2 мл 2,5 М раствора н-бутиллития в гексане (15,5 ммоль). Сразу образовался белый осадок. Перемешивали при комнатной температуре в течение 45 минут, затем отфильтровали надосадочный раствор через канюлю. Суспендировали остаток в 30 мл сухого пентана и охлаждали в морозильной камере сухого бокса (-27°С) в течение 60 минут. Отфильтровали надосадочный раствор и высушили in vacuo с получением белого порошка, 2,34 г (88%), который напрямую использовали на следующей стадии реакции без получения характеристик.

Синтез [(1,3-диметилинденил)(тетраметилциклопентадиенил)]циркония дихлорида:

Взвесили 3,50 г (10,98 ммоль) светло-коричневого порошка (тетраметилциклопентадиенил)циркония трихлорида в плоскодонную стеклянную колбу объемом 100 мл с магнитной мешалкой. Суспендировали в 80 мл сухого диэтилового эфира. Перемешивали, добавляя порошкообразный 1,3-диметилиндениллитий (1,65 г, 10,99 ммоль) в течение нескольких минут. Промыли, используя дополнительно 20 мл эфира. Закрыли колбу и перемешивали в течение ночи при комнатной температуре. После перемешивания в течение 15 часов при комнатной температуре смесь представляла собой желтую суспензию. Выпарили летучие вещества под высоким вакуумом, затем экстрагировали остаток, используя 2×80 мл дихлорметана. Отфильтровали через слой целита на грубом стеклянном фильтре. Концентрировали in vacuo и снова отфильтровали через свежий целит на грубом стеклянном фильтре. Высушили in vacuo с получением сыпучего желтого порошка, 3,6 г (77%). 1Н ЯМР (CD2Cl2, 500 МГц): δ 1,89 (с, CH3 СрМе4), δ 1,90 (с, CH3 СрМе4), δ 2,40 (с, CH3 фрагмента С9), δ 5,67 (с, CH CpMe4), δ 6,33 (с, CH фрагмента С9), δ 7,24 (АА'BB', ароматический CH фрагмента С9), δ 7,52 (АА'ВВ', ароматический CH фрагмента С9). Содержит примерно 15% диэтилового эфира.

Синтез диметил-[(1,3-диметилинденил)(тетраметилциклопентадиенил)]циркония (IV-D):

В сухом боксе суспендировали ярко-желтый порошок (1,3-Me2Ind)(CpMe4)ZrCl2 (3,6 г, 8,4 ммоль) в 75 мл сухого диэтилового эфира в плоскодонной колбе из желтого стекла объемом 100 мл с магнитной мешалкой. Охладили колбу до -10°С на изогексановой бане, перемешивали, добавляя по частям раствор метиллития (1,6 М в эфире) через шприц (4×3 мл, 19,2 ммоль). Закрыли колбу крышкой с диафрагмой и перемешивали содержимое в течение ночи, оставив холодную баню медленно нагреваться до комнатной температуры. Выпарили суспензию досуха под высоким вакуумом. Экстрагировали, используя 3×50 мл дихлорметана, и отфильтровали через целит на грубом стеклянном фильтре. Концентрировали под потоком азота, затем добавили пентан. Перемешивали в течение 15 минут, затем выпарили летучие вещества. Промыли твердое вещество холодным пентаном, высушили in vacuo. Собрали в виде светло-коричневого порошка, 1,67 г; вторую партию выделили из фильтрата, 0,52 г. Общий выход составил 2,19 г, 67%. 1Н ЯМР (CD2Cl2, 500 МГц): δ -1,22 (с, ZrCH3), 1,78 (с, CH3 фрагмента СрМе4), 1,87 (с, СН3 фрагмента СрМе4), 2,25 (с, СН3 фрагмента С9), 4,92 (с, СН фрагмента СрМе4), 5,60 (с, СН фрагмента С9), 7,14 (АА'ВВ', ароматический СН фрагмента С9), 7,44 (АА'ВВ', ароматический СН фрагмента С9). 13С{1Н} ЯМР (CD2Cl2, 125 МГц): δ 11,64 (CH3 фрагмента СрМе4), 12,91 (CH3 фрагмента С9), 13,25 (CH3 фрагмента СрМе4), 37,23 (ZrCH3), 106,34 (CH фрагмента СрМе4), 115,55 (CH фрагмента С9); резонансы четвертичного 13С 107,36, 117,51, 122,69, 125,06.

Синтез мезо-диметил-O(1-SiMe2-инденил)2циркония (V-A)

К суспензии мезо-О-(SiМе2инденил)2ZrCl2 (приобретенного у компании ; Catalytica; 40,0 г; 83,2 ммоль) в примерно 300 мл эфира добавили 54,0 мл MeMgBr (3,0 М в эфире; 162 ммоль) при комнатной температуре. После перемешивания суспензии в течение 1,5 часов удалили летучие вещества; к полученному твердому веществу добавили гептан (примерно 300 мл) и нагревали до 80°С в течение 30 минут. Суспензию отфильтровали, а надосадочный раствор охладили до -30°С, что привело к образованию кристаллического вещества, которое выделили фильтрованием, промыли пентаном и высушили под вакуумом. Выход составил 26,0 г. 1Н ЯМР δ (C6D6): 7,57 (м, 2Н), 7,42 (м, 2Н), 7,02 (м, 2Н), 6,94 (м, 2Н), 6,31 (д, 2Н), 5,82 (д, 2Н), 0,44 (с, 6Н), 0,34 (с, 6Н), 0,00 (с, 3Н), -2,07 (с, 3Н).

Получение катализаторов

Дегидратация диоксида кремния при 610°С

Диоксид кремния Ineos ES757 (3969 г) загрузили в сушилку (длина 6 футов, диаметр 6,25 дюймов), оснащенную 3-зонным нагревателем, затем псевдоожижали с помощью сухого газообразного N2 со скоростью потока 0,12 фут3/с. Затем температуру повышали до 200°С в течение 2 часов. После выдерживания при 200°С в течение 2 часов температуру повышали до 610°С в течение 6 часов. После выдерживания при 610°С в течение 4 часов температуру оставили снижаться до комнатной температуры в течение 12 часов. Диоксид кремния перенесли под N2 в АРС, и затем его можно хранить под давлением N2 (20 psig).

Получение метилалюминоксана на подложке из диоксида кремния (SMAO)

В обычном способе диоксид кремния Ineos ES757 (741 г), обезвоженный при 610°С, добавили к перемешанной (коническая механическая мешалка с верхним приводом) смеси толуола (2 л) и 30 масс. % раствора метилалюминоксана в толуоле (874 г, 4,52 моль). Диоксид кремния пропитали толуолом (200 мл), затем смесь нагревали до 90°С в течение 3 часов. Затем удалили летучие вещества под вакуумом при слабом нагревании (40°С) в течение ночи, затем оставили твердое вещество остывать до комнатной температуры.

Типичное мелкомасштабное получение катализатора для лабораторного реактора с солевым слоем

В продуваемом N2 сухом боксе 3,00 грамм SMAO (4,5 ммоль МАО/г SMAO) перенесли в смеситель Cel-Stir объемом 125 мл. Добавили пентан (50 мл) с получением суспензии. Суспензию перемешивали при комнатной температуре. Металлоцен (0,11 ммоль) растворили в минимальном количестве толуола (~2 мл). Затем добавили полученный раствор к перемешиваемой суспензии. Смесь оставили перемешиваться на один час. После отведенного времени смесь отфильтровали через стеклянный фильтр и промыли свежим пентаном (2 х 10 мл), затем высушивали в течение по меньшей мере одного часа.

Описание лабораторного реактора с солевым слоем

В атмосфере N2 в автоклав объемом 2 л загрузили сухую соль (200 г) и SMAO (3 г). Под давлением 2 psig N2 в реактор через шприц добавили сухой, дегазированный 1-гексен (см. таблицы 10 и 11). Реактор закрыли, нагрели до 80°С, перемешивая указанный слой, затем закачали N2 до давления 20 psig. Затем в реактор закачали твердый катализатор с этиленом при давлении 220 psig; поток этилена оставили на все время эксперимента. Температуру повысили до 85°С. В реактор подавали гексен с определенным соотношением к потоку этилена (0,08 г/г). Водород подавали в реактор с определенным соотношением к потоку этилена, в соответствии с описанием, представленным в таблице 10. Соотношения водорода и этилена измеряли с помощью on-line ГХ анализа. Полимеризацию остановили через 1 час посредством сброса давления реактора, охлаждения до комнатной температуры с последующим выдерживанием на воздухе. Соль удаляли перемешиванием неочищенного продукта в воде. Полимер получили фильтрованием с последующим высушиванием в вакуумной печи.

Крупномасштабное получение катализатора для испытаний на опытной газофазной установке диаметром 24 дюйма

В 3-горлую колбу Мортона объемом 5 л загрузили пситан (4 л), затем перемешивали (140 об/мин) с помощью механической мешалки, загружая SMAO (375 г). Через капельную воронку в течение одного часа добавляли раствор, содержащий (1-EtInd)2ZrMe2 (IV-А/В), HfPMe2 (III) и толуол. Суспензия приобрела зеленый цвет, и ее оставили перемешиваться еще на один час. Затем смесь отфильтровали и высушивали in vacuo в течение 8 часов. Результаты представлены в Таблице 12.

Получение катализатора 75% HfPMe2/25% (1-EtInd)2ZrMe2, 2 партия. Для второй партии катализатора 75/25 использовали такой же способ, как описан выше. Использовали смесь SMAO, содержащую 204,15 г из UT-331-142, 176,17 г из UT-331-101, 209,49 г из UT-331-124 и 160,19 г из UT-331-143. Для второй партии сначала добавили в колбу Мортона 4 л пентана сначала, затем SMAO во избежание образования комков. Получили два отдельных раствора из 2,87 г (7,09 ммоль) (1-EtInd)2ZrMe2 и 8,94 г (20,95 ммоль) HfPMe2 в 20 мл толуола.

Получение катализатора 50% HfPMe2/50% (1-EtInd)2ZrMe2, партии 1 и 2

Для обеих партий катализатора 50/50 использовали такой же способ, как использовали для второй партии катализатора 75/25. Для партии 1 использовали SMAO из UT-331-143, 5,75 г (14,10 ммоль) (1-EtInd)2ZrMe2 и 5,97 г (14,11 ммоль) HfPMe2. Для партии 2 использовали SMAO из UT-331-144, 5,75 г (14,09 ммоль) (1-EtInd)2ZrMe2 и 5,97 г (14,11 ммоль) HfPMe2.

Смешивание катализаторов

Две партии 75/25 объединили в бутылке Налген и смешивали вручную, вращая и встряхивая бутылку. Таким же образом смешали две партии 50/50.

Получение катализатора, высушенного распылением

Высушенный распылением катализатор с низким содержанием HfP (SD-(III)). Исходную суспензию получили, добавив сначала 10 масс. % МАО (24,7 фунта), толуол (35,8 фунта) и Cabosil TS-610 (3,4 фунта) в питательный бак объемом 10 галлонов. Смесь перемешивали в течение ночи при комнатной температуре. Добавили HfP (III) (28,75 г, 0,06798 моль), затем перемешивали полученную суспензию в течение еще одного часа при ~ 38-40°С, затем провели распыление. Катализатор высушивали распылением со скоростью подачи суспензии 93 фунт/час, со скоростью распылителя 90% и при температуре на входе 80°С. Выход составил 2289 г (85%). Аналитические данные представлены в таблице 13.

Описание газофазного реактора диаметром 24 дюйма

Полимеризацию проводили в непрерывном газофазном реакторе с псевдоожиженным слоем, имеющем прямую секцию диаметром 24 дюйма (61 см) и длиной примерно 11,75 фута (3,6 м) и расширяющуюся секцию длиной 10,2 фута (3,1 м) и диаметром 4,2 фута (1,3 м) в самом широком месте. Псевдоожиженный слой состоял из гранул полимера. Газообразные сырьевые потоки этилена и водорода вместе с жидким 1-гексеном смешивали друг с другом в Т-образном сочленении и подавали под слоем реактора в линию рециркуляции газа. Скорости индивидуальных потоков этилена, водорода и 1-гексена регулировали для поддержания постоянного требуемого состава. Концентрацию этилена регулировали для поддержания постоянного парциального давления этилена. Концентрацию водорода регулировали для поддержания постоянного молярного соотношения водорода к этилену. Концентрации всех газов измеряли с помощью поточного газового хроматографа для обеспечения относительно постоянного состава в потоке рециркулирующего газа.

Твердый катализатор впрыскивали непосредственно в псевдоожиженный слой, используя очищенный азот в качестве носителя. Скорость впрыска регулировали для поддержания постоянной скорости получения полимера. Реагирующий слой растущих частиц полимера поддерживали в псевдоожижеином состоянии посредством непрерывного пропускания подпитки и рециркулирующего газа через реакционную зону при поверхностной скорости газового потока 1-3 фута в секунду (0,3-0,9 м/с). Реактор эксплуатировали при общем давлении 300 psig (избыточное давление 2068 кПа). Для поддержания постоянной температуры реактора температуру рециркулирующего газа непрерывно повышали или понижали для устранения любых изменений скорости теплообразования вследствие полимеризации.

В реактор подавали раствор антистатических агентов в гексане (1:1 стеарат алюминия: N-нонилдиэтаноламина, 20 масс. %), используя смесь изопентана и азота, с такой скоростью, чтобы поддерживать концентрацию антистатических агентов в псевдоожижеином слое примерно 30 ppm.

Высоту псевдоожиженного слоя поддерживали на постоянном уровне, выводя часть слоя со скоростью, равной скорости образования продукта в виде частиц. Продукт выгружали полунепрерывным способом через группу клапанов в камеру неизменного объема, которую одновременно стравливали обратно в реактор для обеспечения высокой эффективности удаления продукта, в то же время возвращая большую часть непрореагировавших газов обратно в реактор. Продукт продували для удаления захваченных углеводородов и очищали небольшим потоком увлажненного азота для дезактивации следовых количеств остаточного катализатора и сокатализатора.

Результаты эксперимента

Примеры технологических условий полимеризации представлены в таблице 14.

Описание газофазного реактора диаметром 13,25 дюйма

Для полимеризации использовали газофазный реактор с псевдоожиженным слоем с внутренним диаметром 0,35 м и высотой слоя 2,3 м, и результаты представлены в таблице 15. Псевдоожиженный слой состоял из гранул полимера, а газообразные входящие потоки этилена и водорода вместе с жидким сомономером 1-гексеном вводили под слоем реактора в линию рециркуляции газа. Скорости индивидуальных потоков этилена, водорода и 1-гексена регулировали для поддержания постоянного требуемого состава. Концентрацию этилена регулировали для поддержания постоянного парциального давления этилена. Концентрацию водорода регулировали для поддержания постоянного молярного соотношения водорода к этилену. Концентрации всех газов измеряли с помощью поточного газового хроматографа для обеспечения относительно постоянного состава в потоке рециркулирующего газа. Реагирующий слой растущих частиц полимера поддерживали в псевдоожиженном состоянии посредством непрерывного пропускания подпитки и рециркулирующего газа через реакционную зону. Для этого использовали поверхностную скорость газа 0,6-0,9 м/с. Высоту псевдоожиженного слоя поддерживали на постоянном уровне, выводя часть слоя со скоростью, равной скорости образования продукта в виде частиц. Скорость получения полимера составляла 15-25 кг/час. Продукт выгружали полунепрерывным способом через группу клапанов в камеру неизменного объема. Продукт продували для удаления захваченных углеводородов и очищали небольшим потоком увлажненного азота для дезактивации следовых количеств остаточного катализатора.

Твердый катализатор диспергировали в дегазированном и высушенном минеральном масле в виде суспензии с номинальной концентрацией 18 масс. % и приводили в контакт с раствором балансировочного катализатора в течение от нескольких секунд до нескольких минут, затем напрямую впрыскивали в псевдоожиженный слой, используя очищенный азот и изопентан в качестве носителей, так чтобы азот вскипал в жидкости и обеспечивал ее разбрызгивание для облегчения диспергирования катализатора. Балансировочный катализатор изначально обеспечивали в виде раствора и в значительной степени разбавляли изопентаном до концентрации примерно 0,015 масс. % до непрерывного смешивания in-line с суспензией каталитического компонента перед впрыскиванием в реактор. Относительные скорости потоков катализатора в суспензии и балансировочного катализатора регулировали для достижения требуемого соотношения подачи их активных металлов полимеризации, и регулировали входящие потоки в соответствии с общей скоростью получения полимера и относительными количествами полимера, получаемого на каждом катализаторе, в некоторой степени ориентируясь на индекс текучести полимера MFR и его плотность, в то же время регулируя температуру реакции и газовый состав в реакторе. Реагирующий слой растущих частиц полимера поддерживали в псевдоожиженном состоянии посредством непрерывного пропускания подпитки и рециркулирующего газа через реакционную зону при поверхностной скорости газового потока примерно 2,0-2,2 фута в секунду (0,61-0,67 м/с). Реактор эксплуатировали при общем давлении примерно 350 psig (избыточное давление 2413 кПа). Для поддержания постоянной температуры псевдоожиженного слоя в реакторе температуру рециркулирующего газа непрерывно повышали или понижали, пропуская рециркулирующий газ через трубы кожухотрубчатого теплообменника с охлаждающей водой во внетрубной зоне, для устранения любых изменений скорости теплообразования вследствие полимеризации.

В реактор подавали суспензионную смесь антистатических агентов в дезагированном и высушенном минеральном масле (1:1, стеарат алюминия: N-нонилдиэтиноламин в концентрации 20 масс. %), используя смесь изопентана и азота, с такой скоростью, чтобы обеспечивать концентрацию антистатических агентов в псевдоожижеином слое 38-123 ppm по массе. (ряд 128). Необязательно использовали изопентан и/или азот для облегчения переноса и диспергирования суспензионной смеси антистатика в псевдоожиженном слое реактора, подавая его через инжекционную трубку для отбора проб с внешним диаметром 1/8-3/16 дюйма, на несколько дюймов входящую в слой катализатора от боковой стенки реактора.

Высоту псевдоожиженного слоя поддерживали на постоянном уровне, выводя часть слоя со скоростью, равной скорости образования продукта в виде частиц. Продукт выгружали полунепрерывным способом через группу клапанов в разгрузочную камеру неизменного объема. Продукт продували для удаления захваченных углеводородов и очищали небольшим потоком увлажненного азота непосредственно при выгрузке в приемный барабан Fiberpak для дезактивации следовых количеств остаточного катализатора и сокатализатора.

Все числовые значения являются «примерными» или «приблизительными» указанными значениями и учитывают экспериментальную погрешность и отклонения, которые ожидаются специалистами в данной области техники. Кроме того, различные термины были определены выше. Если термин, использованный в формуле изобретения, не имеет представленного выше определения, его следует понимать в самом широком смысле, который дан указанному термину по меньшей мере в одной печатной публикации или выданном патенте. Все патенты, экспериментальные процедуры и другие документы, цитированные в настоящей заявке, включены в настоящее описание посредством ссылки до той степени, до которой такое описание не противоречит настоящей заявке, а также для всех юрисдикции, в которых допустимо такое включение.

Несмотря на то, что изложенное выше описание относится к вариантам реализации настоящего изобретения, могут быть разработаны другие и дополнительные варианты реализации настоящего изобретения без отклонения от его базового объема, и объем настоящего изобретения определен следующей формулой изобретения.

Похожие патенты RU2674254C1

название год авторы номер документа
ПОЛУЧЕНИЕ ПОЛИОЛЕФИНОВЫХ ПРОДУКТОВ 2015
  • Рикс, Франсис С.
  • Лью, Чин-Тай
  • Боллер, Тимоти, М.
  • Гиесбрехт Гарт, Р.
  • Харлан, С., Джефф
RU2734065C2
ПОЛУЧЕНИЕ ПОЛИОЛЕФИНОВЫХ ПРОДУКТОВ 2015
  • Рикс Франсис К.
  • Лью Чин-Тай
  • Харлан С. Джефф
  • Маккалаф Лафлин Дж.
RU2691994C2
ПОЛУЧЕНИЕ ПОЛИОЛЕФИНОВЫХ ПРОДУКТОВ 2015
  • Рикс, Франсис, К.
  • Тодд, Александр, Д.
  • Харлан, Джефф, К.
RU2725653C1
ПОЛУЧЕНИЕ ПОЛИОЛЕФИНОВЫХ ПРОДУКТОВ 2015
  • Рикс Франсис К.
  • Тодд Александр Д.
  • Харлан Джефф К.
RU2697832C1
ПОЛУЧЕНИЕ ПОЛИОЛЕФИНОВЫХ ПРОДУКТОВ 2020
  • Рикс, Франсис, К.
  • Тодд, Александр, Д.
  • Харлан, Джефф, К.
RU2759444C1
ПОЛУЧЕНИЕ ПОЛИОЛЕФИНОВЫХ ПРОДУКТОВ 2015
  • Као, Сунь-Чуэ
  • Рикс, Франсис, К.
  • Лью, Чин-Тай
  • Гуди, Марк, Дж.
  • Ли, Дунмин
RU2767902C1
ПОЛУЧЕНИЕ ПОЛИОЛЕФИНОВЫХ ПРОДУКТОВ 2015
  • Као Сунь-Чуэ
  • Рикс Франсис К.
  • Лью Чин-Тай
  • Гуди Марк Дж.
  • Ли Дунмин
RU2727930C1
ПРОИЗВОДСТВО ПОЛИЭТИЛЕНОВЫХ ИЗДЕЛИЙ С УЛУЧШЕННЫМИ ЖЕСТКОСТЬЮ, УДАРНОЙ ВЯЗКОСТЬЮ И ПЕРЕРАБАТЫВАЕМОСТЬЮ 2015
  • Люе Чин-Тай
  • Рикс Франсис С.
  • Боллер Тимоти, М.
  • Джисбрект Гарт Р.
  • Гуд Марк Г.
  • Као Сунь-Чуэнь
  • Ли Дунмин
  • Пекуено Р., Эрик
  • Зилкер Мл., Дэниел П.
RU2693828C2
ПРОИЗВОДСТВО ПОЛИЭТИЛЕНОВЫХ ИЗДЕЛИЙ С УЛУЧШЕННЫМИ ЖЕСТКОСТЬЮ, УДАРНОЙ ВЯЗКОСТЬЮ И ПЕРЕРАБАТЫВАЕМОСТЬЮ 2015
  • Люе Чин-Тай
  • Рикс Франсис С.
  • Боллер Тимоти М.
  • Джисбрект Гарт Р.
  • Гуд Марк Г.
  • Фарли Джеймс М.
  • Као Сунь-Чуэнь
  • Ли Дунмин
  • Пекуено Р., Эрик
  • Зилкер Дэниел П., Мл.
RU2670755C9
ПОЛУЧЕНИЕ ПОЛИОЛЕФИНОВЫХ ПРОДУКТОВ 2015
  • Вандерленд Дэниел Д.
  • Харлан Джефф К.
  • Пэн Хайцин
  • О Майкл Д.
  • Кухлман Роджер Л.
  • Лью Чин-Тай
  • Линн Тимоти Р.
  • Мариотт Уэсли Р.
  • Зилкер Дэниел П, Младший
RU2670986C2

Иллюстрации к изобретению RU 2 674 254 C1

Реферат патента 2018 года ПОЛУЧЕНИЕ ПОЛИОЛЕФИНОВЫХ ПРОДУКТОВ

Описаны каталитические системы и способы их получения. Способ включает выбор каталитической смеси с помощью карты комбинированного коэффициента полидисперсности (bPDI). Карту полидисперсности строят посредством получения множества полимеров для по меньшей мере двух катализаторов. Каждый полимер получают с разными соотношениями водорода к этилену. По меньшей мере один катализатор обеспечивает получение более высокомолекулярного полимера, а другой катализатор обеспечивает получение более низкомолекулярного полимера. Измеряют молекулярную массу каждого полимера. Определяют зависимость между молекулярной массой полимеров, полученных на каждом из катализаторов, и соотношением водорода к этилену. Строят группу кривых bPDI для полимеров, которые будут получены с применением множества соотношений смеси по меньшей мере двух катализаторов для каждого из множества соотношений водорода к этилену. Выбирают соотношение для каталитической смеси катализаторов, которое обеспечивает получение полимера с bPDI, соответствующим процессу переработки полимера, и получают специфический для изделия полиолефин с применением указанной каталитической смеси. Технический результат – улучшение физических свойств смол с ортогональным распределением состава. 6 з.п. ф-лы, 15 ил., 15 табл.

Формула изобретения RU 2 674 254 C1

1. Способ выбора катализаторов для получения специфического для изделия полиолефина с применением карты комбинированного коэффициента полидисперсности (bPDI), включающий:

получение множества полимеров для по меньшей мере двух катализаторов, где каждый полимер получают при различном соотношении водорода к этилену, при этом один из по меньшей мере двух катализаторов обеспечивает получение высокомолекулярного (hmw) полимера, а другой из по меньшей мере двух катализаторов обеспечивает получение низкомолекулярного (lmw) полимера;

измерение средневесовой молекулярной массы и PDI для каждого полимера;

определение зависимости между молекулярной массой полимеров, полученных на каждом из по меньшей мере двух катализаторов, и соотношением водорода к этилену; и

построение группы кривых bPDI для полимеров, которые будут получены с применением множества соотношений смеси по меньшей мере двух катализаторов для каждого из множества соотношений водорода к этилену;

выбор соотношения для смеси по меньшей мере двух катализаторов, которое обеспечивает получение полимера с bPDI, соответствующим процессу переработки полимера; и

подтверждение соотношения катализаторов по меньшей мере двух катализаторов посредством получения полимера с каждым из множества соотношений водорода к этилену.

2. Способ по п. 1, отличающийся тем, что взаимосвязь между молекулярной массой и соотношением водорода к этилену для катализатора определяют по линейному приближению формулы

1/Mw = Отсекаемый отрезок + тангенс угла наклона * (Н22).

3. Способ по п. 2, включающий:

расчет b-соотношения как соотношения отсекаемого отрезка первого катализатора к отсекаемому отрезку второго катализатора;

расчет m-соотношения как соотношения тангенса угла наклона первого катализатора к тангенсу угла наклона второго катализатора;

где

b-соотношение/m-соотношение для каталитической смеси составляет менее примерно 2;

b-соотношение для каталитической смеси составляет более примерно 5;

m-соотношение для каталитической смеси составляет более примерно 5;

полидисперсность низкомолекулярного полимера (lPDI) больше примерно 3,0; и

полидисперсность высокомолекулярного полимера (hPDI) больше примерно 3,0.

4. Способ по п. 1, включающий построение кривой bPDI с помощью зависимости bPDI=[Flmw+Fhmw*(hmw/lmw)]*[Flmw*lPDI+Fhmw*hPDI*(lmw/hmw)], где

Flmw представляет собой массовую долю низкомолекулярного полимерного компонента;

Fhmw представляет собой массовую долю высокомолекулярного полимерного компонента;

Flmw и Fhmw рассчитывают по количеству полимера, полученного на первом катализаторе при каждом соотношении водорода к этилену, и по количеству полимера, полученного на втором катализаторе при каждом соотношении водорода к этилену;

lmw представляет собой молекулярную массу низкомолекулярного полимерного компонента;

hmw представляет собой молекулярную массу высокомолекулярного полимерного компонента;

lmw и hmw рассчитывают по зависимости молекулярной массы от соотношения водорода к этилену;

lPDI представляет собой полидисперсность низкомолекулярного полимерного компонента;

hPDI представляет собой полидисперсность высокомолекулярного полимерного компонента; и

lPDI и hPDI измеряют для каждого полимера.

5. Способ по п. 1, отличающийся тем, что процесс переработки полимера включает выдувное формование, литьевое формование, получение выдувной пленки или ротационное формование.

6. Способ по п. 1, отличающийся тем, что значение соотношения внедрения сомономера/этилена для одного из по меньшей мере двух катализаторов менее чем примерно в 0,8 раз больше соотношения внедрения сомономера/этилена для другого из по меньшей мере двух катализаторов.

7. Способ по п. 1, отличающийся тем, что значение соотношения внедрения сомономера/этилена для одного из по меньшей мере двух катализаторов менее чем примерно в 0,25 раз больше соотношения внедрения сомономера/этилена для другого из по меньшей мере двух катализаторов.

Документы, цитированные в отчете о поиске Патент 2018 года RU2674254C1

Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
Jung Dae Kim и др
Synthesis of tailor-made polyethylene through the control of polymerization conditions using selectively combined metallocene catalysts in a supported system: Journal of Polymer Science Part A: Polymer Chemistry, 1999, т.37, no.3, с.331 - 339
СПОСОБЫ ВВОДА КАТАЛИЗАТОРОВ В ДЕЙСТВИЕ В СЛУЧАЯХ СИСТЕМ С НЕСКОЛЬКИМИ КАТАЛИЗАТОРАМИ 2000
  • Чуль Джон Ф.
  • Эриксон Анне Керстен
  • Мосон Саймон
  • Даньел Пол Т.
  • Гуд Марк Г.
  • Макки Маттью Г.
RU2249601C2
US 6610799 В1, 26.08.2003.

RU 2 674 254 C1

Авторы

Рикс Франсис С.

Лью Чин-Тай

Боллер Тимоти М.

Гиесбрехт Гарт Р.

Харлан С. Джефф

Даты

2018-12-06Публикация

2015-02-10Подача