СПОСОБ И УСТАНОВКА ДЛЯ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ Российский патент 2018 года по МПК G21F9/06 

Описание патента на изобретение RU2676335C2

Область техники, к которой относится изобретение

Изобретение относится к средствам переработки жидких радиоактивных отходов, в частности к средствам ионоселективной очистки низко и средне активных кубовых осадков, хранящихся на атомных электростанциях (АЭС).

Уровень техники

Известен способ переработки жидких радиоактивных отходов, состоящий в разрушении органических комплексов 60Co озонированием (патент RU 2268513 C1, опубликован 20.02.2006). В данном способе используется ионоселективная очистка. Недостатком данного способа является высокий расход реагента (10 кг озона на 1 м3 кубового остатка) и электроэнергии.

Наиболее близким к заявленному техническому решению является способ переработки жидких радиоактивных отходов, в котором используется озонирование и селективная сорбция (патент RU 2122753 C1, опубликован 27.11.1998). Сущность данного известного способа переработки жидких отходов заключается в их окислительной обработке путем озонирования в присутствии катализатора процесса окисления и/или коллектора извлечения радионуклидов. Данный известный способ позволяет эффективно очистить жидкие отходы от радионуклидов, получить радиоактивный шлам и отработанные сорбенты в пригодном для утилизации виде и жидкие нерадиоактивные отходы, которые после отверждения имеют нормально допустимое для открытого хранения содержание радионуклидов. Недостаток способа состоит в том, что оборудование для реализации способа конструктивно не группируется в отдельные технологические блоки, а размещается в капитальном здании согласно действующим нормативным документам в этой области (например, НП-019-2000). Другим недостатком данного известного средства является то, что при его реализации в новых условиях требуется проводить полный комплекс проектно-изыскательских и опытно-конструкторских работ, т.е. отсутствует гибкость в обеспечении необходимых эксплуатационных свойств проектирования и эксплуатации технологии. Еще одним недостатком является то, что установку для реализации данного известного способа необходимо создавать непосредственно на месте хранения ЖРО и ее нельзя переместить в другое место.

Раскрытие изобретения

Задача, на решение которой направлено заявляемое изобретение, заключается в создании средства переработки жидких радиоактивных отходов (ЖРО), обладающего универсальностью и высокими эксплуатационными свойствами.

В ходе решения данной задачи обеспечивается достижение совокупности следующих технических результатов: повышение гибкости технологии, выражаемое в упрощении ее проектирования, осуществления и эксплуатации в условиях различных ЖРО; упрощении изготовления установки для переработки ЖРО за счет компоновки технологического оборудования внутри отдельных технологических блоков-модулей, каждый из которых предназначен для выполнения тех или иных однородных функций; уменьшение затрат и упрощение изготовления и монтажа установки за счет создания технологических модулей высокой заводской готовности; унификация проектных работ за счет того, что расчет и комплектность установки определяется не отдельными единицами технологического оборудования (насосы, арматура…), а целыми агрегатами - технологическими модулями; возможность быстрого транспортирования частей установки и ее перебазирования в случае необходимости; уменьшение длины трубопроводов и количества вспомогательного оборудования (насосов, средств перекачки, емкостей, аккумуляторов, арматуры…); повышение надежности и улучшение качества очистки за счет упрощения испытаний оборудования.

Указанные технические результаты достигаются тем, что создают транспортируемые технологические модули для поэтапной переработки ЖРО и соединяют упомянутые модули в технологическую цепочку, подготовленные для переработки ЖРО подают в модуль озонирования для окисления, при достижении установленной величины количества не разрушенной органической составляющей ЖРО из модуля озонирования направляют в, по меньшей мере, один модуль фильтрации, прошедшие фильтрацию ЖРО направляют в модуль ионоселективной сорбции цезия, прошедшие сорбцию ЖРО упаривают до сухих солей, а твердую фракцию направляют в модуль цементирования.

Указанные технические результаты достигаются также тем, что перед подачей в модуль озонирования ЖРО проходят стадию подготовки, состоящую в том, что их подвергают предварительному фильтрованию, обеспечивают значение pH от 11 до 12 и обеспечивают температуру от 30°C до 55°C, а величину количества не разрушенной органической составляющей устанавливают 50 мгO2/дм3.

Указанные технические результаты достигаются также тем, что осуществляют фильтрацию частиц размером свыше 0,2 мкм, а температуру обеспечивают 50°C..

Указанные технические результаты достигаются также тем, что после выхода из модуля озонирования ЖРО подвергают коррекции pH до значений от 9 до 10 и добавляют осадители.

Указанные технические результаты достигаются также тем, что прошедшие ионоселективную сорбцию ЖРО направляют в модуль электродиализа для получения щелочи и кислоты.

Указанные технические результаты достигаются также тем, что контроль активности ЖРО и качества очистки осуществляют посредством модуля контроля в режиме реального времени.

Указанные технические результаты достигаются также тем, что прошедшие ионоселективную сорбцию ЖРО подвергают повторной обработке озоном с концентрацией более 0,2 грамм на литр.

Указанные технические результаты достигаются также тем, что осуществляют регенерацию фильтров после переработки объема ЖРО от 15 м3 до 20 м3.

Указанные технические результаты достигаются также тем, что установка для переработки жидких радиоактивных отходов (ЖРО) содержит технологические модули, соединенные в технологическую цепочку для реализации способа переработки ЖРО, упомянутые технологические модули включают модуль озонирования, по меньшей мере, один модуль фильтрации, модуль цементирования твердой радиоактивной фракции, модуль ионоселективной сорбции цезия, модуль контроля качества очистки, при этом каждый из упомянутых технологических модулей содержит средства подвода ЖРО и выполнен транспортируемым.

Указанные технические результаты достигаются также тем, что установка содержит модуль электродиализа, подключенный к выходу модуля ионоселективной сорбции цезия.

Указанные технические результаты достигаются также тем, что установка содержит отдельный модуль генерации озона, который соединен с модулем озонирования.

Указанные технические результаты достигаются также тем, что модуль озонирования включает генератор озона.

Указанные технические результаты достигаются также тем, что модуль контроля качества очистки обеспечивает измерение параметров качества очистки и передачу этих данных оператору в режиме реального времени.

Указанные технические результаты достигаются также тем, что установка содержит модуль управления работой установки, при этом модуль управления включает рабочее место, по крайней мере, одного оператора.

Указанные технические результаты достигаются также тем, что модуль управления обеспечивает дистанционное управление работой установки.

Отличительная особенность данного изобретения состоит в том, что десятки отдельных узлов, устройств, компонентов соединяются механически и конструктивно объединяются в несколько агрегаторов - транспортируемых технологических модулей, посредством которых и осуществляется как способ, так и устройство. Каждый из технологических модулей является транспортируемым и может изготавливаться и испытываться на заводе и перевозиться к месту переработки ЖРО в виде одной грузовой единицы.

Краткое описание чертежей

На Фиг. 1 схематически показана конструкция установки для переработки ЖРО.

Осуществление изобретения

Способ переработки ЖРО в соответствии с настоящим изобретением имеет широкую сферу применения. Одним из основных направлений применения является очистка кубовых остатков, образующихся на АЭС. Как известно, кубовые остатки представляют собой высокосолевые растворы, загрязненные продуктами деления, радионуклидами различного происхождения и прочими веществами, используемыми для дезактивации. Традиционные методы переработки, такие как битумирование или цементирование, не отвечают современным требованиям, поскольку не позволяют значительно сократить объем конечного радиоактивного продукта. Технологии селективной сорбции обладают в этом отношении неоспоримым преимуществом.

Принцип очистки ЖРО состоит в том, что радионуклиды, содержащиеся в ЖРО, переводят в форму пригодную для фильтрации на мембранных фильтрах путем озонирования и направляют поток ЖРО на селективную очистку от радионуклидов цезия. В результате технологических операций образуется радиоактивная твердая фракция, объем которой в сотни раз меньше исходного объема ЖРО, и полностью очищенная жидкая фракция.

Состав и концентрация радиоактивных веществ в ЖРО, образуемых в результате работы АЭС, весьма различны. В этой связи необходимы средства переработки ЖРО, обладающие широкими функциональными возможностями и гибкостью с точки зрения конструирования, изготовления и эксплуатации. Существующие средства очистки ЖРО на основе ионоселективной сорбции представляют собой громоздкие капитальные строения, в помещениях которых устанавливаются отдельные компоненты, которые соединяются трубопроводами. Каждое такое капитальное сооружение предназначено для переработки ЖРО конкретного вида и только с заданными эксплуатационными показателями (производительность, качество очистки…). Такую стационарную установку невозможно переместить, а также ее переналадка на ЖРО иного вида практически невозможна.

Способ переработки жидких радиоактивных отходов (ЖРО) в соответствии с настоящим изобретением состоит в том, что создают транспортируемые технологические модули для поэтапной переработки ЖРО и соединяют упомянутые модули в технологическую цепочку. В технологических модулях группируются компоненты, необходимые для выполнения той или иной функции, например, фильтрование, озонирование, цементирование и т.д. Необходимая линейка технологических модулей, например, различной производительности, изготавливается целиком на профильных заводах в виде отдельных грузовых единиц. В качестве несущей основы для технологического модуля может использоваться стандартный грузовой контейнер необходимого объема.

Согласно способу, подготовленные, например, в соответствующем модуле 1, для переработки ЖРО подают в модуль 2 озонирования для окисления органической составляющей с выделением металлов переходной группы на комплексоны. Озонирование разрушает органические соединения в ЖРО и снижает степень токсичности. При достижении количества не разрушенной органической составляющей 50 мгO2/дм3 и менее, ЖРО из модуля 2 озонирования направляют в, по меньшей мере, один модуль 3 фильтрации.

В качестве фильтров в модуле могут использоваться механические или мембранные фильтры, задерживающие частицы вплоть до 0,2 мкм. Прошедшие фильтрацию ЖРО направляют в модуль 4 ионоселективной сорбции цезия, например, на ферроцианидных сорбентах. Конечными продуктами обработки в модуле 4 сорбции являются: очищенный от радионуклидов солевой раствор; твердая фракция, которую образуют отработавший сорбент и шлам с фильтров.

Прошедшие сорбцию ЖРО упаривают до сухих солей, а твердую фракцию, образующуюся в процессе озонирования, направляют в модуль 5 цементирования. Коэффициент сокращения объемов конечных радиоактивных продуктов по сравнению с изначальным объемом ЖРО составляет 70-100.

Перед подачей в модуль 2 озонирования ЖРО могут проходить стадию подготовки, состоящую в том, что их подвергают предварительному фильтрованию, обеспечивают значение pH от 11 до 12 и обеспечивают температуру от 30°C до 55°C. Наиболее оптимальным является обеспечение фильтрации частиц размером свыше 0,2 мкм, а значение температуры 50°. Данные параметры экспериментально установлены исходя из оптимального сочетания растворимости гидроксидов, глубины разрушения органических соединений, разложения окисляющего агента и разрушения сорбента.

Учитывая падение pH фактора после озонирования после выхода из модуля 2 озонирования ЖРО, целесообразно скорректировать pH до значений от 9 до 10 и добавить осадители. Такая коррекция позволит избежать снижения растворимости боратов, а также исключит возможность разрушения сорбентов. В качестве осадителей можно использовать труднорастворимые сульфиды кобальта и других переходных металлов.

В качестве одного из частных вариантов осуществления изобретения прошедшие ионоселективную сорбцию ЖРО направляют в модуль 6 электродиализа для получения щелочи (едкого натра) и кислоты (азотной). Полученную таким образом щелочь и кислоту можно использовать для необходимой коррекции водородного показателя pH ЖРО. Таким образом, технология сможет реализовать замкнутый цикл по реагентам.

Контроль активности ЖРО и качества очистки осуществляют посредством модуля 7 контроля в режиме реального времени. Данный модуль содержит датчики и средства контроля всех необходимых показателей качестве очистки и работы установки.

В качестве одного из частных вариантов осуществления изобретения прошедшие ионоселективную сорбцию ЖРО можно подвергнуть повторной обработке озоном с концентрацией более 0,2 грамм на литр.

Целесообразно регулярно проводить регенерацию используемых фильтров, например, после переработки каждого объема ЖРО от 15 м3 до 20 м3.

Установка для переработки жидких радиоактивных отходов (ЖРО) содержит технологические модули, соединенные в технологическую цепочку для реализации способа переработки ЖРО. Упомянутые технологические модули включают модуль 2 озонирования, по меньшей мере, один модуль 3 фильтрации, модуль 5 цементирования твердой радиоактивной фракции, модуль 4 ионоселективной сорбции цезия, модуль 7 контроля качества очистки. Каждый из упомянутых технологических модулей содержит средства подвода ЖРО и выполнен транспортируемым в виде одной грузовой единицы.

Установка может содержать модуль 6 электродиализа, подключенный к выходу модуля 4 ионоселективной сорбции цезия.

Установка содержит отдельный модуль 8 генерации озона, который соединен с модулем 2 озонирования. Как вариант, модуль 2 озонирования может включать генератор озона.

Модуль 7 контроля качества очистки обеспечивает измерение параметров качества очистки и передачу этих данных оператору в режиме реального времени.

Установка может содержать модуль 9 управления работой установки, при этом модуль управления включает рабочее место, по крайней мере, одного оператора. Данный модуль может обеспечивать дистанционное управление работой установки.

Установка работает следующим образом.

Подготовленные в модуле 1 ЖРО подают в модуль 2 озонирования, где происходит окисление органической составляющей в соответствии с заявленным способом переработки. После того, как количество не разрушенной озоном органической составляющей уменьшится до 50 мгO2/дм3, ЖРО направляют в модуль 3 фильтрации и затем в модуль 4 ионоселективной сорбции цезия. Далее очищенные ЖРО упаривают и направляют твердую фракцию с модуль 5 цементирования. Прошедшие ионоселективную сорбцию ЖРО могут быть направлены в модель 6 электродиализа, где происходит разложение ЖРО на щелочь и кислоту, которые впоследствии могут использоваться для корректирования pH. В качестве варианта осуществления, озон может подаваться в модуль 2 озонирования от внешнего источника озона - модуля 8 генерации озона. Работа установки контролируется средствами измерения, контроля и управления, находящимися в модулях 7 и 9.

Использование в способе и установке отдельных транспортируемых технологических модулей позволяет достичь заявленных технических результатов.

Похожие патенты RU2676335C2

название год авторы номер документа
Способ переработки жидких радиоактивных отходов 2017
  • Селиверстов Александр Федорович
  • Тихомиров Анатолий Михайлович
  • Матвеенко Александр Валентинович
  • Аржаткин Владимир Геннадьевич
  • Чечельницкий Геннадий Моисеевич
RU2654195C1
Способ очистки жидких радиоактивных отходов и устройство для его осуществления 2016
  • Архипов Владимир Павлович
  • Камруков Александр Семенович
  • Малков Кирилл Ильич
  • Новиков Дмитрий Олегович
  • Яловик Михаил Степанович
RU2641656C1
СПОСОБ ОЧИСТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2013
  • Аржаткин Владимир Геннадьевич
  • Архипов Владимир Павлович
  • Басиев Александр Гаврилович
  • Ершов Борис Григорьевич
  • Новиков Дмитрий Олегович
  • Калашников Валерий Георгиевич
  • Камруков Александр Семенович
  • Константинов Виталий Евгеньевич
  • Козлов Николай Павлович
  • Лагунова Юлия Олеговна
  • Матвеенко Александр Валентинович
  • Малков Кирилл Ильич
  • Селиверстов Александр Федорович
  • Трофимова Мария Олеговна
  • Чечельницкий Геннадий Моисеевич
  • Шашковский Сергей Геннадьевич
  • Яловик Михаил Степанович
RU2560837C2
СПОСОБ ОЧИСТКИ КУБОВЫХ ОСТАТКОВ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ ОТ РАДИОАКТИВНОГО КОБАЛЬТА И ЦЕЗИЯ 2011
  • Шмаков Леонид Васильевич
  • Перегуда Владимир Иванович
  • Черемискин Владимир Иванович
  • Тишков Виктор Михайлович
  • Черемискин Сергей Владимирович
  • Чалиян Александр Григорьевич
  • Новолодский Виктор Алексеевич
RU2467419C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2017
  • Ремез Виктор Павлович
RU2675787C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2007
  • Дмитриев Сергей Александрович
  • Федоров Денис Анатольевич
  • Савкин Александр Евгеньевич
  • Карлин Юрий Викторович
RU2342720C1
СПОСОБ ПЕРЕРАБОТКИ КУБОВОГО ОСТАТКА ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2006
  • Авраменко Валентин Александрович
  • Добржанский Виталий Георгиевич
  • Сергиенко Валентин Иванович
  • Шматко Сергей Иванович
RU2297055C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2017
  • Ремез Виктор Павлович
RU2675251C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ ОТХОДОВ, СОДЕРЖАЩИХ РАДИОНУКЛИДЫ 1997
  • Дмитриев С.А.
  • Лифанов Ф.А.
  • Нечаев А.Ф.
  • Савкин А.Е.
  • Чечельницкий Г.М.
  • Чугунов А.С.
  • Шибков С.Н.
RU2122753C1
Способ переработки жидких радиоактивных отходов 2018
  • Слюнчев Олег Михайлович
  • Бобров Павел Александрович
  • Стариков Евгений Николаевич
  • Кичик Валерий Анастасьевич
RU2686074C1

Иллюстрации к изобретению RU 2 676 335 C2

Реферат патента 2018 года СПОСОБ И УСТАНОВКА ДЛЯ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ

Группа изобретений относится к средствам переработки жидких радиоактивных отходов. Способ переработки жидких радиоактивных отходов (ЖРО) состоит в том, что создают транспортируемые технологические модули для поэтапной переработки ЖРО и соединяют упомянутые модули в технологическую цепочку, подготовленные для переработки ЖРО подают в модуль озонирования для окисления органической составляющей. После выхода из модуля озонирования ЖРО подвергают коррекции pH до значений от 9 до 10 и добавляют осадители. При достижении установленной величины количества не разрушенной органической составляющей ЖРО из модуля озонирования направляют в модуль фильтрации, прошедшие фильтрацию ЖРО направляют в модуль ионоселективной сорбции цезия, упаривают до сухих солей. Твердую фракцию направляют в модуль цементирования. Имеется также установка для переработки ЖРО. Группа изобретений позволяет улучшить эксплуатационные характеристики. 2 н. и 11 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 676 335 C2

1. Способ переработки жидких радиоактивных отходов (ЖРО), состоящий в том, что создают транспортируемые технологические модули для поэтапной переработки ЖРО и соединяют упомянутые модули в технологическую цепочку, подготовленные для переработки ЖРО подают в модуль озонирования для окисления органической составляющей, после выхода из модуля озонирования ЖРО подвергают коррекции pH до значений от 9 до 10 и добавляют осадители, при достижении установленной величины количества не разрушенной органической составляющей ЖРО из модуля озонирования направляют в по меньшей мере один модуль фильтрации, прошедшие фильтрацию ЖРО направляют в модуль ионоселективной сорбции цезия, прошедшие сорбцию ЖРО упаривают до сухих солей, а твердую фракцию направляют в модуль цементирования.

2. Способ по п. 1, отличающийся тем, что перед подачей в модуль озонирования ЖРО проходят стадию подготовки, состоящую в том, что их подвергают предварительному фильтрованию, обеспечивают значение рН от 11 до 12 и обеспечивают температуру от 30°C до 55°C, а величину количества не разрушенной органической составляющей устанавливают 50 мг О2/дм3.

3. Способ по п. 2, отличающийся тем, что осуществляют фильтрацию частиц размером свыше 0,2 мкм, а температуру обеспечивают 50°C.

4. Способ по п. 1, отличающийся тем, что прошедшие ионоселективную сорбцию ЖРО направляют в модуль электродиализа для получения щелочи и кислоты.

5. Способ по п. 1, отличающийся тем, что контроль активности ЖРО и качества очистки осуществляют посредством модуля контроля в режиме реального времени.

6. Способ по п. 1, отличающийся тем, что прошедшие ионоселективную сорбцию ЖРО подвергают повторной обработке озоном с концентрацией более 0,2 г на литр.

7. Способ по п. 1, отличающийся тем, что осуществляют регенерацию фильтров после переработки объема ЖРО от 15 м3 до 20 м3.

8. Установка для переработки жидких радиоактивных отходов (ЖРО), содержащая технологические модули, соединенные в технологическую цепочку для реализации способа переработки ЖРО, упомянутые технологические модули включают модуль озонирования, по меньшей мере один модуль фильтрации, модуль цементирования твердой радиоактивной фракции, модуль ионоселективной сорбции цезия, модуль контроля качества очистки, при этом каждый из упомянутых технологических модулей содержит средства подвода ЖРО и выполнен транспортируемым, а модуль контроля качества очистки обеспечивает измерение параметров качества очистки и передачу этих данных оператору в режиме реального времени.

9. Установка по п. 8, отличающаяся тем, что содержит модуль электродиализа, подключенный к выходу модуля ионоселективной сорбции цезия.

10. Установка по п. 8, отличающаяся тем, что содержит отдельный модуль генерации озона, который соединен с модулем озонирования.

11. Установка по п. 8, отличающаяся тем, что модуль озонирования включает генератор озона.

12. Установка по п. 8, отличающаяся тем, что содержит модуль управления работой установки, при этом модуль управления включает рабочее место по крайней мере одного оператора.

13. Установка по п. 12, отличающаяся тем, что модуль управления обеспечивает дистанционное управление работой установки.

Документы, цитированные в отчете о поиске Патент 2018 года RU2676335C2

КАРЛИН Ю.В., Применение модульных установок для очистки ЖРО, Безопасность окружающей среды, номер 2, 2009, с.89-92
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2010
  • Басиев Александр Александрович
  • Басиев Александр Гаврилович
  • Селиверстов Александр Фёдорович
RU2465666C2
Устройство для регистрации проходящих через контролируемый пункт пути трамвайных поездов 1935
  • Когонзон Г.М.
SU46603A1
JP 7027898 A, 31.01.1995
US 5055237 A1, 08.10.1991.

RU 2 676 335 C2

Авторы

Конев Юрий Николаевич

Олейник Сергей Владимирович

Даты

2018-12-28Публикация

2017-06-15Подача