СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ИЗ КОНСТРУКЦИОННОЙ СТАЛИ Российский патент 2019 года по МПК C21D8/02 C22C38/00 B21B1/26 

Описание патента на изобретение RU2677426C1

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения рулонного проката для изготовления нефтепроводных труб группы Кс по ГОСТ 52203-04 без дополнительной термообработки у изготовителя труб.

Определяющими качествами проката, предназначенного для нефтепроводных труб группы Кс являются высокий предел прочности исходного проката и готовой трубы, обеспечивающий требуемую прочность трубы, достаточно низкий предел текучести и отсутствие структур закалочного типа (бейнит, мартенсит и т.п.), обеспечивающих хорошую формуемость проката в готовую трубу, обеспечение хорошей свариваемости и отсутствия дефектов УЗК в сварном шве и окошовной зоне.

В таблице 1 приведены требования к механическим свойствам проката для изготовления насосно-компрессорных труб группы Кс.

Известен способ производства рулонов горячекатаного проката с содержанием углерода 0,22-0,28%, с микролегированием титаном. В соответствии с изобретением температуру окончания чистовой прокатки поддерживают в диапазоне 820-890°С, температуру смотки 580-650°С в зависимости от толщины проката [патент RU №2341565, C21D, С22С от 20.12.2008].

Недостаток известного способа состоит в том, что он не позволяет обеспечить прочностные характеристики, требуемые для группы Кс (не менее 595МПа).

Наиболее близким по технической сущности к предлагаемому изобретению является способ производства штрипсов из низколегированной стали.

Известен способ производства штрипсов из низколегированной стали, описывающий нагрев слябов, горячую прокатку с регламентированной температурой конца черновой и чистовой прокатки и смотки. При этом температуру завершения пластической деформации поддерживают в диапазоне 820-880 С, а температуру смотки устанавливают в зависимости от содержания углерода в стали по соотношению:

Тсм=[С]⋅103+(390±30),

где Тем - температура смотки, °С;

[С] - содержание углерода в стали, мас. %.

Кроме того, сталь должна имеет следующий химический состав, мас. %: 0,15-0,24 С; 0,10-0,40 Si; 0,2-0,7 Mn; мах 0,40 Cr; 0,01-0,07 Al; 0,01-0,08 Nb; max 0,4 Ni; max 0,4 Cu [патент РФ №2264475, C21D, С22С от 20.11.2005 г.].

Недостаток известного способа состоит в том, что он не позволяет обеспечить прочностные характеристики, требуемые для группы Кс

Техническим результатом предлагаемого изобретения является получение горячекатаного проката с феррито-перлитной структурой, в которой доля структур закалочного типа составляет не более 10%, предназначенного для изготовления насосно-компрессорных труб для категории Кс с гарантируемым пределом текучести не более 510 МПа.

Технический результат достигается тем, в способе производства горячекатаного проката повышенной прочности, включающий выплавку спокойной стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, согласно изобретению, выплавляют сталь, содержащую, мас. %: углерод 0,19-0,22; марганец 1,20-1,35; кремний 0,15-0,30; хрома, никель, медь - не более 0,1 каждого, молибден - не более 0,01; ванадий - не более 0,01, титан 0,015-0,030, ниобий - 0,025-0,040; алюминий 0,02-0,05 железо и неизбежные примеси -остальное, при этом толщина подката для чистовой прокатки составляет не менее 35 мм, а температурные параметры прокатки находятся в пределах:

температура конца чистовой прокатки - 855÷8850С,

температура смотки металла в рулон - 520÷5600С,

скорость охлаждения металла после окончания чистовой прокатки в течение первых 15-25 секунд составляет 15-18°С/с, в течение следующих 10-20 секунд составляет 8-100°С/с, такая технология обеспечивает получение стали с феррито-перлитной структурой, в которой присутствуют элементы структуры закалочного типа в количестве не более 10%.

Углерод в конструкционной стали предложенного состава определяет как непосредственно прочность готового проката, так и возможность получения достаточно низких значений предела текучести, Снижение содержания углерода менее 0,19% приводит к падению прочности ниже допустимого уровня. Увеличение содержания углерода более 0,22% ухудшает пластические свойства стали и ее свариваемость.

При содержании кремния менее 0,15% ухудшается раскисленность стали, снижаются прочностные свойства проката. Увеличение содержания кремния более 0,30% приводит к возрастанию количества силикатных включений, охрупчивает сталь.

Снижение содержания марганца менее 1,20% увеличивает окисленность стали, прочность стали ниже допустимой. Повышение содержания марганца более 1,35% ухудшает свариваемость стали и повышает предел текучести выше требуемых величин.

По хрому, никелю, меди, молибдену, ванадию ограничены остаточные значения, обусловленные обязательными примесями для того, чтобы сохранить хорошую свариваемость стали. Кроме того, при указанных предельных концентрациях эти элементы в стали предложенного состава не оказывают заметного негативного воздействия на комплекс механических свойств проката, тогда как их удаление из расплава стали существенно повысит затраты на производство и усложнит технологический процесс, что экономически нецелесообразно.

Ниобий введен в сталь для повышения прочностных свойств и уменьшения размера зерна готового проката. При содержании ниобия менее 0,025% прочность стали ниже допустимой, коэффициент эластичности выше допустимого. Повышение содержания ниобия более 0,040% приводит к повышению предела текучести выше допустимых значений и усложнению получения готовой трубы.

Титан введен в сталь для стабилизации структуры при нагреве металла под прокатку и уменьшении размера зерна при черновой прокатке, а также повышает коррозионную стойкость стали.

Алюминий 0,02-0,05% введен в сталь для раскисления. При значения менее 0,02% сталь будет недораскислена, при значениях более 0,05% - сталь будет иметь повышенный уровень неметаллических включений.

Все остальные элементы, содержание которых ограничено по верхнему пределу, являются примесными.

Толщина подката для чистовой прокатки не менее 35 мм обусловлена необходимостью качественной проработки структуры для получения комплекса механических свойств и структуры готового проката.

Заданное сочетание температуры окончания чистовой прокатки 855÷885°С, скорость охлаждения металла после окончания чистовой прокатки в течение первых 15-25 секунд составляет 15-18°С/с, в течение следующих 10-20 секунд составляет 8-10С/с и температуры смотки 520÷560°С обеспечивает получение равномерной феррито-перлитной структуры. Снижение температуры конца прокатки, повышение температуры смотки приведет к снижению скорости охлаждения, увеличению размера зерна феррита и снижению прочностных характеристик ниже требуемых. Повышение температуры конца прокатки, снижение температуры смотки приводит к увеличению скорости охлаждения, что увеличивает риск получения структур закалочного типа, а также приводит к избыточному измельчению зерна и увеличению прочностных характеристик проката, что в свою очередь увеличивает трудоемкость формовки готовой трубы. Форсированное двухступенчатое охлаждение позволяет сформировать равномерную по толщине структуру проката (с минимальным количеством структур закалочного типа), необходимую для качественной формовки труб из данного металлопроката.

Пример реализации способа.

В кислородном конвертере выплавляли низколегированные стали, химический состав которых приведен в таблице 2.

Непрерывнолитые слябы из стали с химическим составом таблицы 2 загружают в методическую печь с и нагревают до температуры аустенитизации Та=1260°С, после чего прокатывают на непрерывном стане. После выравнивания температуры слябов по сечению, очередной сляб подают к непрерывному широкополосному стану 2000 и подвергают черновой прокатке за 5 проходов в раскат с промежуточной толщиной Нр=35-38 мм. Далее металл прокатывают за 7 проходов в непрерывной чистовой группе клетей (чистовая прокатка).

Температуру конца прокатки и смотки выбирают в диапазонах 855-885°С и 520-560°С соответственно. При этом скорость охлаждения на отводящем рольганге должна быть 15-25 секунд составляет 15-18°С/с (первый участок ламинарного охлаждения), в течение следующих 10-20 секунд составляет 8-10°С/с (второй участок ламинарного охлаждения).

В таблице 3 представлены показатели механических и эксплуатационных свойств металла, произведенного по приведенной выше технологии.

Из данных, приведенных в таблице 3 следует, что при реализации предложенного способа достигается требуемое сочетание высокого предела прочности, требуемого предела текучести и удовлетворительной свариваемости металла. В результате полученный металл полностью соответствует требованиям, предъявляемым к сталям для производства насосно-компрессорных труб. Представленная технология позволяет сформировать феррито- перлитную структуру с минимальным (не более 10%) количеством структур закалочного типа, что гарантирует равномерное распределение свойств как по площади проката, так и по его толщине. Углеродный эквивалент 0,46% гарантирует хорошую свариваемость.

Похожие патенты RU2677426C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2018
  • Барабошкин Кирилл Алексеевич
  • Митрофанов Артем Викторович
  • Вархалева Татьяна Сергеевна
RU2689348C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО РУЛОННОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2021
  • Быков Алексей Владимирович
  • Ваурин Виталий Васильевич
  • Глухов Павел Александрович
  • Смирнов Александр Алексеевич
RU2773478C1
РУЛОННЫЙ ПРОКАТ ДЛЯ ОБСАДНЫХ И НАСОСНО-КОМПРЕССОРНЫХ ТРУБ И СПОСОБ ЕГО ПРОИЗВОДСТВА 2020
  • Барабошкин Кирилл Алексеевич
  • Митрофанов Артем Викторович
  • Вархалева Татьяна Сергеевна
  • Рыбаков Сергей Александрович
  • Федотов Евгений Сергеевич
  • Матросов Максим Юрьевич
  • Шульга Екатерина Викторовна
RU2728981C1
ГОРЯЧЕКАТАНАЯ ПОЛОСА ВЫСОКОЙ КОРРОЗИОННОЙ СТОЙКОСТИ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2019
  • Дудинов Михаил Валериевич
  • Барабошкин Кирилл Алексеевич
  • Митрофанов Артем Викторович
  • Вархалева Татьяна Сергеевна
RU2720284C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2014
  • Мишнев Петр Александрович
  • Палигин Роман Борисович
  • Огольцов Алексей Андреевич
  • Новоселов Сергей Иванович
  • Митрофанов Артем Викторович
  • Купчик Галина Александровна
  • Голованов Александр Васильевич
  • Балашов Сергей Александрович
  • Сушков Александр Михайлович
  • Жвакин Николай Андреевич
  • Павлов Александр Александрович
  • Ломаев Владимир Иванович
  • Хафизов Ленар Расихович
RU2547087C1
Способ производства низколегированного рулонного проката 2022
  • Вархалева Татьяна Сергеевна
  • Измайлов Александр Михайлович
  • Бурштинский Максим Владимирович
  • Дубровский Сергей Владимирович
RU2793012C1
СПОСОБ ПРОИЗВОДСТВА РУЛОННОГО ПРОКАТА ИЗ ВЫСОКОПРОЧНОЙ ХЛАДОСТОЙКОЙ СТАЛИ 2013
  • Филатов Николай Владимирович
  • Палигин Роман Борисович
  • Мишнев Петр Александрович
  • Кухтин Сергей Анатольевич
RU2549807C1
СПОСОБ ПРОИЗВОДСТВА НИЗКОЛЕГИРОВАННЫХ РУЛОННЫХ ПОЛОС С ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТЬЮ 2017
  • Митрофанов Артем Викторович
  • Барабошкин Кирилл Алексеевич
  • Киселев Даниил Александрович
  • Кузнецов Денис Валерьевич
  • Тихонов Сергей Михайлович
  • Серов Геннадий Владимирович
  • Сидорова Елена Павловна
  • Комиссаров Александр Александрович
  • Родионова Ирина Гавриловна
  • Матросов Максим Юрьевич
  • Зайцев Александр Иванович
RU2675307C1
Способ получения полос из низколегированной стали 2023
  • Филатов Николай Владимирович
  • Правосудов Алексей Александрович
RU2809057C1
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2012
  • Казаков Игорь Владимирович
  • Молостов Михаил Александрович
  • Денисов Сергей Владимирович
  • Васильев Иван Сергеевич
  • Настич Сергей Юрьевич
  • Морозов Юрий Дмитриевич
  • Зинько Бронислав Филиппович
RU2519720C2

Реферат патента 2019 года СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ИЗ КОНСТРУКЦИОННОЙ СТАЛИ

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения рулонного проката для изготовления нефтепроводных труб группы Кс по ГОСТ 52203-04 без дополнительной термообработки. Для получения проката с феррито-перлитной структурой, в которой присутствуют элементы структуры закалочного типа в количестве не более 10%, осуществляют выплавку спокойной стали, содержащую, мас. %: углерод 0,19-0,22; марганец 1,20-1,35; кремний 0,15-0,30; хром, никель, медь - не более 0,1 каждого, молибден - не более 0,01; ванадий -не более 0,01, титан 0,015-0,030, ниобий - 0,025-0,040; алюминий 0,02-0,05 железо и неизбежные примеси – остальное, её разливку, черновую прокатку с получением подката толщиной не менее 35 мм, чистовую прокатку при температуре конца 855÷885°С, охлаждение водой, смотку полос в рулоны, при этом скорость охлаждения проката после окончания чистовой прокатки в течение первых 15-25 секунд составляет 15-18°С/с, в течение следующих 10-20 секунд составляет 8-10°С/с, а температура смотки в рулон - 520÷560°С. 3 табл.

Формула изобретения RU 2 677 426 C1

Способ производства горячекатаного проката повышенной прочности, включающий выплавку спокойной стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, отличающийся тем, что выплавляют сталь, содержащую, мас.%: углерод 0,19-0,22, марганец 1,20-1,35, кремний 0,15-0,30, хром, никель, медь - не более 0,1 каждого, молибден - не более 0,01, ванадий - не более 0,01, титан 0,015-0,030, ниобий - 0,025-0,040, алюминий 0,02-0,05, железо и неизбежные примеси - остальное, при этом толщина подката для чистовой прокатки составляет не менее 35 мм, а температурные параметры прокатки находятся в пределах:

температура конца чистовой прокатки - 855÷885°С,

температура смотки полос в рулон - 520÷560°С,

скорость охлаждения полосы после окончания чистовой прокатки в течение первых 15-25 секунд составляет 15-18°С/с, в течение следующих 10-20 секунд составляет 8-10°С/с, и обеспечивают получение полосы с феррито-перлитной структурой, в которой присутствуют элементы структуры закалочного типа в количестве не более 10%.

Документы, цитированные в отчете о поиске Патент 2019 года RU2677426C1

СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2015
  • Огольцов Алексей Андреевич
  • Новоселов Сергей Иванович
  • Пешеходов Владимир Александрович
RU2613262C2
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ПРОКАТА 2016
  • Мальцев Андрей Борисович
  • Голованов Александр Васильевич
  • Смирнов Евгений Владимирович
RU2623945C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ПРОКАТА 2014
  • Зубов Сергей Петрович
  • Востриков Виталий Георгиевич
  • Пемов Игорь Феликсович
  • Кормишин Андрей Михайлович
  • Придеин Андрей Александрович
  • Куликов Валерий Викторович
  • Бедринов Александр Игоревич
RU2572270C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО РУЛОННОГО ПРОКАТА НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2011
  • Васильев Иван Сергеевич
  • Голубчик Эдуард Михайлович
  • Курбан Виктор Васильевич
  • Кузнецов Алексей Владимирович
  • Семенов Павел Павлович
RU2450061C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА 2010
  • Мишнев Петр Александрович
  • Долгих Ольга Вениаминовна
  • Сушкова Светлана Андреевна
  • Озеров Алексей Владимирович
  • Огольцов Алексей Андреевич
  • Струнина Людмила Михайловна
RU2445177C1
US 20090010793 A1, 15.03.2017
US 20170275720 A1, 28.09.2017.

RU 2 677 426 C1

Авторы

Огольцов Алексей Андреевич

Новоселов Сергей Иванович

Кухтин Сергей Анатольевич

Филатов Николай Владимирович

Даты

2019-01-16Публикация

2018-01-16Подача