СПОСОБ РЕЗКИ СТЕКЛА Российский патент 2019 года по МПК C03B33/09 B23K26/38 B23K26/64 

Описание патента на изобретение RU2677519C1

Изобретение относится к области прецизионной микрообработки материалов, в частности, к способу резки стекол при помощи гребенки лазерных импульсов фемтосекундной длительности и может быть использовано для прецизионной резки стекла на предприятия и в научно-исследовательских центра.

Наиболее распространенным в производстве способом резки стекла является резка алмазом. В данном методе алмазом на поверхности стекла создается царапина заданной геометрии. Далее за счет приложения изгибающего напряжения к стеклу, трещина, располагающаяся под царапиной, распространяется вглубь образца, и происходит разлом стекла. При этом края скола обладают низким качеством, наличием микротрещин, большой шириной пропила. Этим методом практически невозможна резка тонких образцов.

Распространенным методом резки лазерным излучением является метод термораскалывания. В данном методе сначала происходит разогрев поверхности и приповерхностного стекла сфокусированным лазерным пучком. При этом стекло расширяется и возникают напряжения растяжения, которые усиливаются дальнейшим воздействием расфокусированного пучка. В результате происходит образование трещины во всю толщину стекла.

Другим активно развивающимся методом является резка с помощью лазерной абляции. В основе данного метода лежит испарение обрабатываемого материала за счет линейного поглощения лазерной энергии и последующего нагрева поверхности. Применяются, как правило, эксимерные лазеры, работающие в УФ диапазоне, и СО2-лазеры, работающие в ИК диапазоне. Данный способ также обладает рядом недостатков: низкая скорость обработки, образование трещин, оплавление соседних с областью резки участков стекла, меньшая по сравнению с алмазом, но все равно достаточно большая ширина пропила, необходимость линейного поглощения материала на длине волны лазера. Для уменьшения ширины пропила в случае лазерной обработки применяют комбинированные методы, включающие в себя лазерное нагревание и параллельное охлаждение струей воды [US 5609284, US 6787732].

Улучшение параметров резки получают за счет использования импульсных лазеров. За счет высокой пиковой интенсивности в области фокусировки происходят процессы нелинейного поглощения. Такой механизм снимает ограничения на длину волны используемого лазера, что позволяет фокусировать излучение в пятно микронного и субмикронного масштаба, отсюда повышенная прецизионность резки. В то же время в результате использования данного метода по-прежнему формируются микротрещины и происходит засорение поверхности аблировавшим материалом поверхности.

Наиболее близким по технической сущности и достигаемому результату является способ обработки материала лазерным пучком, представленный в [K. Mishik, Ultrashort pulse laser cutting of glass by controlled fracture propagation, 2016], состоящий в модифицировании стекла гребенками лазерных импульсов фемтосекундной длительности с частотой следования импульсов внутри гребенки 25 нc.

Указанный прототип обладает рядом достоинств: при модифицировании стекла в таком режиме реализуется механизм аккумуляции тепла, при котором тепло, возникшее в фокальной точке при воздействии лазером на стекло, не успевает рассеяться до следующего импульса в гребенке. Таким образом, в ходе облучения происходит непрерывный рост температуры. Это позволяет избавиться от напряжений, неизбежно сопутствующих модифицированию структуры стекла.

Обратной стороной эффекта аккумуляции тепла является оплавление границ модификации, что приводит к заплавлению микротрещин, лежащих в основе хрупкости стекла, таким образом, препятствуя последующему разлому образца стекла. В указанном прототипе процесс резки состоит из трех стадий: сначала со скорость 1 мм/сек «выжигается» линия на поверхности стекла, затем с той же скоростью создается линия в объеме стекла. Далее к образцу прикладывается изгибающее напряжение и происходит разлом стекла. Такая многостадийность существенно замедляет процесс. Оптимальная скорость резки, выявленная авторами, составляет 2 мм/сек.

Использование гребенок фемтосекундных импульсов с межимпульсным интервалом порядка пс позволяет существенно повысить эффективность процесса резки стекол. Известно, что при взаимодействии лазерного импульса со стеклом возникает ударная волна [A. Mermillod-Blondin, Dynamics of femtosecond laser induced void-like structures in fused silica], создающая разряжение в модифицируемой области, которое растет в субнаносекундном масштабе. При этом, если лазерный импульс взаимодействует с модифицированной областью в момент возникновения разряжения, происходит увеличение количества стабильных дефектов структуры, приводящих к образованию необходимых для успешной резки микротрещин.

Задачей настоящего изобретения является ускорение процесса резки стекла за счет уменьшения количества стадий.

Поставленная задача решается способом резки стекла, включающим формирование гребенки фемтосекундных лазерных импульсов, характеризующейся межимпульсным интервалом, создание данными гребенками линии из дефектов структуры стекла в объеме стекла и разлом стекла, при этом гребенку фемтосекундных лазерных импульсов формируют с помощью интерферометра, а межимпульсный интервал, определяемый толщиной интерферометра, составляет 10-70 пс.

Для резки стекла применялась установка (Фиг. 1) на основе фемтосекундного лазера (1) с рабочей длиной волны 1030 нм. Лазерные импульсы длительностью 180 фс и энергией 4 мкДж пропускались через интерферометр (2), представляющий собой пластину стекла с отражающими покрытиями на обеих поверхностях (коэффициент отражения 0,75), для создания гребенки импульсов. В зависимости от толщины использованного интерферометра (1 мм, 2 мм, 4 мм, 7 мм) изменялось расстояние между импульсами внутри гребенки (10 пс, 20 пс, 40 пс, 70 пс). Далее излучение фокусировалось в объем стекла (образец) (4) объективом (3) с числовой апертурой 0,15 на глубину 10 мкм. Запись линий, формируемых в результате воздействия гребенок импульсов на стекло, осуществлялась с помощью перемещения образца, установленного на трехкоординатный стол (5), относительно неподвижного лазерного пучка со скоростью от 1 до 2 мм/сек.

Достижение заявленного технического результата подтверждается следующими примерами. За оптимальную скорость записи линии принималась такая скорость, при которой разлом образца проходил строго по записанной линии.

Пример 1

С помощью интерферометра толщиной 1 мм была сформирована гребенка фемтосекундных лазерных импульсов с межимпульсным интервалом 10 пс, длительность фемтосекундного импульса составила 180 фс, энергия гребенки импульсов составила 1 мкДж. Далее с помощью объектива с числовой апертурой 0,15 гребенка импульсов была сфокусирована в объем образца стекла, установленного на трехкоординатном столе. С помощью перемещения образца относительно неподвижного лазерного пучка в объеме стекла была сформирована линия со скоростью 1,7 мм/сек. После этого был проведен разлом стекла.

Пример 2

С помощью интерферометра толщиной 2 мм была сформирована гребенка фемтосекундных лазерных импульсов с межимпульсным интервалом 20 пс, длительность фемтосекундного импульса составила 180 фс, энергия гребенки импульсов составила 1 мкДж. Далее с помощью объектива с числовой апертурой 0,15 гребенка импульсов была сфокусирована в объем образца стекла, установленного на трехкоординатном столе. С помощью перемещения образца относительно неподвижного лазерного пучка в объеме стекла была сформирована линия со скоростью 1,5 мм/сек. После этого был проведен разлом стекла.

Пример 3

С помощью интерферометра толщиной 4 мм была сформирована гребенка фемтосекундных лазерных импульсов с межимпульсным интервалом 40 пс, длительность фемтосекундного импульса составила 180 фс, энергия гребенки импульсов составила 1 мкДж. Далее с помощью объектива с числовой апертурой 0,15 гребенка импульсов была сфокусирована в объем образца стекла, установленного на трехкоординатном столе. С помощью перемещения образца относительно неподвижного лазерного пучка в объеме стекла была сформирована линия со скоростью 1,5 мм/сек. После этого был проведен разлом стекла.

Пример 4

С помощью интерферометра толщиной 7 мм была сформирована гребенка фемтосекундных лазерных импульсов с межимпульсным интервалом 70 пс, длительность фемтосекундного импульса составила 180 фс, энергия гребенки импульсов составила 1 мкДж. Далее с помощью объектива с числовой апертурой 0,15 гребенка импульсов была сфокусирована в объем образца стекла, установленного на трехкоординатном столе. С помощью перемещения образца относительно неподвижного лазерного пучка в объеме стекла была сформирована линия со скоростью 1 мм/сек. После этого был проведен разлом стекла.

Выводы

Как видно из приведенных выше примеров, использование гребенок фемтосекундных импульсов с межимпульсным расстояние от 10 до 70 пс позволяет уменьшить количество стадий резки стекла до двух: 1) нанесение линии разлома на поверхности образца в один проход, 2) разлом образца. Применение гребенок импульсов в резке стекла позволило увеличить скорость процесса на 15-50%.

Похожие патенты RU2677519C1

название год авторы номер документа
СПОСОБ ПРЕЦИЗИОННОГО БЕСКЛЕЕВОГО СОЕДИНЕНИЯ ПРОЗРАЧНЫХ ДИЭЛЕКТРИКОВ С МЕТАЛЛАМИ 2021
  • Липатьева Татьяна Олеговна
  • Липатьев Алексей Сергеевич
  • Федотов Сергей Сергеевич
  • Лотарев Сергей Викторович
  • Сигаев Владимир Николаевич
RU2779112C1
СПОСОБ ЛОКАЛЬНОЙ НАНОКРИСТАЛЛИЗАЦИИ БАРИЕВОТИТАНОСИЛИКАТНЫХ СТЕКОЛ 2016
  • Липатьев Алексей Сергеевич
  • Липатьева Татьяна Олеговна
  • Лотарев Сергей Викторович
  • Моисеев Иван Алексеевич
  • Федотов Сергей Сергеевич
  • Сигаев Владимир Николаевич
RU2640606C1
СПОСОБ ПОЛУЧЕНИЯ ОДНОМОДОВОГО ВОЛНОВОДА 2016
  • Смаев Михаил Петрович
  • Охримчук Андрей Гордеевич
  • Дорофеев Виталий Витальевич
RU2647207C1
СПОСОБ ЛАЗЕРНОЙ ЗАПИСИ ИНТЕГРАЛЬНЫХ ВОЛНОВОДОВ 2021
  • Наумов Андрей Сергеевич
  • Лотарев Сергей Викторович
  • Липатьев Алексей Сергеевич
  • Федотов Сергей Сергеевич
  • Савинков Виталий Иванович
  • Сигаев Владимир Николаевич
RU2781465C1
СПОСОБ ПОЛУЧЕНИЯ КОНВЕРТЕРА ПОЛЯРИЗАЦИИ 2016
  • Сигаев Владимир Николаевич
  • Лотарев Сергей Викторович
  • Липатьев Алексей Сергеевич
  • Федотов Сергей Сергеевич
RU2640603C1
СПОСОБ ЛОКАЛЬНОЙ ЛАЗЕРНО-ИНДУЦИРОВАННОЙ МЕТАЛЛИЗАЦИИ ПОВЕРХНОСТИ ДИЭЛЕКТРИКА 2022
  • Липатьева Татьяна Олеговна
  • Липатьев Алексей Сергеевич
  • Лотарев Сергей Викторович
  • Федотов Сергей Сергеевич
  • Стопкин Семен Иванович
  • Сигаев Владимир Николаевич
RU2790573C1
СПОСОБ ЛОКАЛЬНОЙ КРИСТАЛЛИЗАЦИИ СТЕКОЛ 2015
  • Липатьева Татьяна Олеговна
  • Липатьев Алексей Сергеевич
  • Ларькин Алексей Станиславович
  • Лотарев Сергей Викторович
  • Охримчук Андрей Гордеевич
  • Сигаев Владимир Николаевич
RU2616958C1
СПОСОБ ЛОКАЛЬНОЙ КРИСТАЛЛИЗАЦИИ ЛАНТАНОБОРОГЕРМАНАТНОГО СТЕКЛА 2014
  • Лотарев Сергей Викторович
  • Липатьева Татьяна Олеговна
  • Липатьев Алексей Сергеевич
  • Сигаев Владимир Николаевич
  • Шааб Мария Олеговна
RU2579080C1
СПОСОБ ЛОКАЛЬНОЙ КРИСТАЛЛИЗАЦИИ СТЕКОЛ 2015
  • Лотарев Сергей Викторович
  • Липатьева Татьяна Олеговна
  • Липатьев Алексей Сергеевич
  • Сигаев Владимир Николаевич
RU2640604C2
СПОСОБ ЛАЗЕРНОГО МОДИФИЦИРОВАНИЯ СТЕКЛА 2018
  • Ветчинников Максим Павлович
  • Шахгильдян Георгий Юрьевич
  • Липатьев Алексей Сергеевич
  • Сигаев Владимир Николаевич
RU2707626C1

Иллюстрации к изобретению RU 2 677 519 C1

Реферат патента 2019 года СПОСОБ РЕЗКИ СТЕКЛА

Изобретение относится к области прецизионной микрообработки материалов, в частности к способу резки стекол при помощи гребенки лазерных импульсов фемтосекундной длительности, и может быть использовано для прецизионной резки стекла на предприятиях и в научно-исследовательских центра. Способ резки стекла включает формирование гребенки фемтосекундных лазерных импульсов, характеризующейся межимпульсным интервалом, создание данными гребенками линии из дефектов структуры стекла в объеме стекла и разлом стекла. Гребенку фемтосекундных лазерных импульсов формируют с помощью интерферометра, а межимпульсный интервал, определяемый толщиной интерферометра, составляет 10-70 пс. Изобретение позволяет ускорить процесс резки стекла за счет уменьшения количества стадий. 4 пр., 1 ил.

Формула изобретения RU 2 677 519 C1

Способ резки стекла, включающий формирование гребенки фемтосекундных лазерных импульсов, характеризующейся межимпульсным интервалом, создание данными гребенками линии из дефектов структуры стекла в объеме стекла и разлом стекла, отличающийся тем, что гребенку фемтосекундных лазерных импульсов формируют с помощью интерферометра, а межимпульсный интервал, определяемый толщиной интерферометра, составляет 10-70 пс.

Документы, цитированные в отчете о поиске Патент 2019 года RU2677519C1

MISHCHIK K
et al "Ultrashort Pulse Laser Cutting of Glass by Controlled Fracture Propagation", Journal of Lasers Micro/Nano Engeneering, 2016, 11(1), p.66-70
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛОЙ ТРЕХМЕРНОЙ СТРУКТУРЫ В ОБЪЕМЕ ПЛАСТИНЫ ФОТОЧУВСТВИТЕЛЬНОГО СТЕКЛА 2015
  • Сергеев Максим Михайлович
  • Вейко Вадим Павлович
  • Костюк Галина Кирилловна
RU2598011C1
СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОФУНКЦИОНАЛЬНЫХ ПРЕЦИЗИОННЫХ ОПТИЧЕСКИХ ПРИЦЕЛЬНЫХ СЕТОК МЕТОДОМ ЛАЗЕРНОЙ АБЛЯЦИИ С ЗАПУСКОМ 2015
  • Дьякова Ирина Ивановна
  • Бабин Сергей Алексеевич
  • Бессмельцев Виктор Павлович
  • Достовалов Александр Владимирович
RU2591034C1
WO 2015095089 A2, 25.06.2015
Токарный резец 1924
  • Г. Клопшток
SU2016A1
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1

RU 2 677 519 C1

Авторы

Сигаев Владимир Николаевич

Охримчук Андрей Гордеевич

Лотарев Сергей Викторович

Липатьев Алексей Сергеевич

Федотов Сергей Сергеевич

Даты

2019-01-17Публикация

2017-12-18Подача