СПОСОБ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ УГЛЕПЛАСТИКА Российский патент 2019 года по МПК C08J5/00 C08J3/28 C08L101/00 

Описание патента на изобретение RU2678022C1

Заявляемое изобретение относится к области органических высокомолекулярных соединений, а более конкретно к обработке композиций высокомолекулярных веществ, в частности, к обработке волновой энергией.

Элементы конструкции транспортных средств из полимерных материалов, в том числе композиционных с полимерной матрицей, в частности углепластика, все шире применяются в наземном и воздушном транспорте. В процессе эксплуатации изделия могут подвергаться значительным нагрузкам, с том числе динамическим, что делает актуальной задачу повышения их способности противостоять как повышенной статической нагрузке, так и ударным воздействиям.

Известен способ изготовления изделий из композиционных материалов на основе полимеров (см. патент RU 2266925 С2, 27.12.2005 г. Бюл. №36). Способ заключается в смешивании компонентов, холодном прессовании заготовок и последующем их спекании. Операцию спекания заготовок проводят при 280-350°С в закрытой форме, обеспечивающей натяг в результате теплового расширения заготовки, с последующим охлаждением в форме. Перед спеканием возможна обработка раствором фторсодержащего олигомера марки "Фолеокс" или "Эпилам". Заготовку можно подвергать предварительному механическому натягу. Спекание в закрытой форме с натягом можно осуществлять по двухступенчатому циклу с последующим отжигом. Изобретение обеспечивает получение изделий из композиционных материалов на основе высоковязких полимеров с высокими прочностными и триботехническими характеристиками.

Основными недостатками способа является сложный, многоэтапный характер, использование нагрева и неприменимость к готовым изделиям.

Наиболее близким по технической сущности к заявляемому изобретению является способ термообработки изделий из конструкционных сталей (см. патент RU 2561611 С2, 27.08.2015 г. Бюл. №16) принятый в качестве ближайшего аналога.

Для повышения значений показателей ударной вязкости и пластичности без снижения показателей прочности изделие подвергают закалке и высокому отпуску, а затем осуществляют последующую обработку изделия путем воздействия на него в течение 35 мин пульсирующим газовым потоком со скоростью от 25 до 30 м/с, частотой колебаний от 600 до 1000 Гц и переменным звуковым давлением от 80 до 90 дБ.

Основным недостатком данного известного способа является значительная продолжительность обработки и отсутствие эффекта повышения статической прочности.

Перед заявляемым изобретением поставлена задача расширить область использования прототипа, применив его к изделиям из таких полимерных композиционных материалов, как углепластик, обеспечив при этом рост как динамической, так и статической прочности, при меньшей, в сравнении с прототипом, продолжительности обработки.

Решение поставленной задачи достигается тем, что изделие из углепластика обрабатывают без нагрева пульсирующим газовым потоком, обладающим скоростью от 20 до 30 м/с, частотой колебаний от 500 до 1130 Гц и переменным звуковым давлением от 40 до 130 дБ от 2,5 до 10 минут при расположении изделия поперек потока.

Таким образом, изобретение позволило получить технический результат, а именно повысить статическую и динамическую прочность изделий из углепластика.

Заявляемое изобретение реализуется следующим образом:

Изделие из углепластика без предварительного нагрева размещают на пути следования пульсирующего газового потока, который обладает скоростью от 20 до 30 м/с, частотой колебаний от 500 до 1130 Гц и переменным звуковым давлением от 40 до 130 дБ. В результате происходит комбинированная обработка изделия газовыми импульсами и звуковыми колебаниями, продолжительность которой составляет от 2,5 до 10 минут. Изделие при этом располагают поперек газового потока.

Так, в частности, при обдуве образцов из углепластика КМУ-4Л в течение 10 минут создаваемым газоструйным генератором типа свистка Гавро с цилиндрическим осесимметричным резонатором пульсирующим воздушным потоком с частотой пульсаций порядка 1000 Гц, звуковом давлении порядка 115 дБ, скоростью потока 20 м/с и поперечном расположении образцов относительно пульсирующего воздушного потока перпендикулярно слоям, при направлении удара, совпадающем или противоположном направлению обдува, наблюдается рост ударной вязкости в сравнении с образцами, не подвергавшимися обработке пульсирующим воздушным потоком с 103 кДж/м2 до 113 кДж/м2 или на 9,7% и рост предела прочности с 160 МПа до 214 МПа или на 34%.

Схожие результаты получены при обработке углепластика КМУ-4Л в интервалах скоростей потока от 20 до 30 м/с, частот пульсаций от 500 до 1330 Гц и переменном звуковом давлении от 40 до 130 дБ, продолжительность которой составляет от 2,5 до 10 минут.

Так, при снижении продолжительности обдува до 2,5 мин. в интервалах скоростей потока от 20 до 30 м/с, частот пульсаций от 500 до 1330 Гц и звукового давления от 40 до 130 дБ происходит рост ударной вязкости в сравнении с образцами, не подвергавшимися обработке пульсирующим воздушным потоком с 103 кДж/м2 до 130 кДж/м2 или на 26,2%.

Обдув в течение 15 минут углепластика КМУ-4Л при тех же параметрах потока привел к снижению ударной вязкости до 109 кДж/м2 и предела прочности до 120 МПа при том же расположении образцов.

Полученные данные свидетельствуют о положительном влиянии обработки пульсирующим газовым потоком на статическую и динамическую прочность углепластика КМУ-4Л при условии ее продолжительности, не превышающей определенное время, зависящее от размера обрабатываемого изделия и амплитудно-частотных характеристик газового потока (отношение частоты колебаний газового потока к частоте собственных колебаний изделия) и составляющей не более 10 минут.

Полимерные материалы, в том числе углепластик, в большей степени поглощают энергию механических колебаний по сравнению с металлическими.

Внешнее воздействие может оказывать влияние на структуру полимеров, так, для полимера с линейной макромолекулярной структурой в условиях действия внешнего напряжения происходит перемещение макромолекул относительно друг друга. Прочность торцового контакта макромолекул более чем на порядок превышает прочность бокового контакта и макромолекулы могут ориентироваться параллельно направлению приложения нагрузки.

При этом механические свойства полимера в направлении ориентации увеличиваются по сравнению с исходным значением. Анизотропия прочности объясняется изменением соотношения торцового и бокового контактов макромолекул полимера.

В термореактивных смолах, являющихся матрицей полимерных композиционных материалов, в частности, углепластика, под действием механических колебаний могут протекать процессы устранения воздушных пузырьков, изменения плотности поперечных связей в макромолекулах, модификации физико-механических свойств.

Таким образом изобретение позволило получить технический результат, а именно повысить статическую и динамическую прочность изделий из углепластиков.

Похожие патенты RU2678022C1

название год авторы номер документа
СПОСОБ ОБРАБОТКИ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ, ПОЛУЧЕННЫХ ХОЛОДНЫМ ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ 2016
  • Иванов Денис Анатольевич
  • Засухин Отто Николаевич
RU2658563C2
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ КОНСТРУКЦИОННЫХ СТАЛЕЙ 2009
  • Иванов Денис Анатольевич
  • Засухин Отто Николаевич
RU2422540C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КОНСТРУКЦИОННЫХ СТАЛЕЙ НА ВЫСОКОПРОЧНОЕ СОСТОЯНИЕ 2014
  • Иванов Денис Анатольевич
  • Засухин Отто Николаевич
RU2570716C2
СПОСОБ ТЕРМООБРАБОТКИ ИЗДЕЛИЙ ИЗ КОНСТРУКЦИОННЫХ СТАЛЕЙ 2013
  • Иванов Денис Анатольевич
  • Засухин Отто Николаевич
RU2561611C2
СПОСОБ ОБРАБОТКИ МЕТАЛЛИЧЕСКИХ ЭЛЕМЕНТОВ КОНСТРУКЦИИ ВОЗДУШНЫХ СУДОВ 2017
  • Иванов Денис Анатольевич
RU2702885C2
СПОСОБ СНЯТИЯ РАСТЯГИВАЮЩИХ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ НА ПОВЕРХНОСТИ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ 2011
  • Иванов Денис Анатольевич
  • Засухин Отто Николаевич
RU2458155C1
Способ управления механическими свойствами среднеуглеродистых легированных конструкционных сталей 2015
  • Иголкин Алексей Федорович
  • Иванов Денис Анатольевич
  • Засухин Отто Николаевич
  • Вологжанина Светлана Антониновна
  • Ильина Екатерина Евгеньевна
RU2608116C2
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КОНСТРУКЦИОННЫХ СТАЛЕЙ НА ВЫСОКОПРОЧНОЕ СОСТОЯНИЕ 2012
  • Иванов Денис Анатольевич
  • Засухин Отто Николаевич
RU2506320C1
СПОСОБ УПРОЧНЯЮЩЕЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ УГЛЕРОДИСТЫХ ИНСТРУМЕНТАЛЬНЫХ СТАЛЕЙ 2013
  • Иванов Денис Анатольевич
  • Засухин Отто Николаевич
RU2557841C2
СПОСОБ ПОВЫШЕНИЯ СТОЙКОСТИ МЕТАЛЛОРЕЖУЩЕГО ИНСТРУМЕНТА ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ 2013
  • Иванов Денис Анатольевич
  • Засухин Отто Николаевич
RU2580767C2

Реферат патента 2019 года СПОСОБ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ УГЛЕПЛАСТИКА

Изобретение относится к области органических высокомолекулярных соединений, в частности к обработке изделий из углепластика. Способ обработки изделий из углепластика содержит обработку без нагрева пульсирующим газовым потоком. Газовый поток обладает скоростью от 20 до 30 м/с, частотой колебаний от 500 до 1130 Гц и переменным звуковым давлением от 40 до 130 дБ. Продолжительность обработки составляет от 2,5 до 10 мин при расположении изделия поперек потока. Изобретение позволяет повысить статическую прочность - предел прочности и динамическую прочность - ударную вязкость изделий из углепластика.

Формула изобретения RU 2 678 022 C1

Способ обработки изделий из углепластика без нагрева пульсирующим газовым потоком со скоростью от 20 до 30 м/с, частотой колебаний от 500 до 1130 Гц и переменным звуковым давлением от 40 до 130 дБ с продолжительностью обработки от 2,5 до 10 мин, при этом изделие располагают поперек потока.

Документы, цитированные в отчете о поиске Патент 2019 года RU2678022C1

СПОСОБ ТЕРМООБРАБОТКИ ИЗДЕЛИЙ ИЗ КОНСТРУКЦИОННЫХ СТАЛЕЙ 2013
  • Иванов Денис Анатольевич
  • Засухин Отто Николаевич
RU2561611C2
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ПОЛИТЕТРАФТОРЭТИЛЕНА 2015
  • Машков Юрий Константинович
  • Макиенко Владимир Алексеевич
  • Малий Ольга Владимировна
RU2603673C1
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМИНЕРАЛЬНЫХ КОМПОЗИЦИЙ 2005
  • Ляшенко Александр Викторович
  • Бакшутов Вячеслав Степанович
  • Судаков Вячеслав Радионович
  • Панфилов Юрий Евгеньевич
  • Кручинина Наталья Евгеньевна
  • Румянцева Ирина Анатольевна
RU2284335C1
Способ изготовления изделий из композиционного полимерного материала 1987
  • Штурман Александр Абрамович
  • Черкашина Анна Николаевна
  • Лещина Елена Игоревна
SU1439111A1
KR 1020160080664 A,08.07.2016.

RU 2 678 022 C1

Авторы

Иванов Денис Анатольевич

Засухин Отто Николаевич

Даты

2019-01-22Публикация

2017-12-29Подача