Система мониторинга верхнего строения безбалластного и бесстыкового пути на мосту высокоскоростной магистрали Российский патент 2019 года по МПК B61K9/08 

Описание патента на изобретение RU2681766C1

Изобретение относится к системам контроля состояния железнодорожного пути и может быть использовано для дистанционного обнаружения опасных изменений состояния верхнего строения безбалластного и бесстыкового пути на мосту высокоскоростной магистрали.

Известно устройство дистанционного контроля состояния безбалластного железнодорожного пути, содержащее расположенные под каждым рельсом в два слоя сенсорно-оптический кабель фиксации перемещения и сенсорно-оптический кабель фиксации температуры, выполненные с возможностью их подключения посредством кросс-муфты к измерительной аппаратуре, причем первый слой сенсорно-оптического кабеля фиксации перемещения и сенсорно-оптического кабеля фиксации температуры расположен под укрепленным слоем земляного полотна, второй слой - в нижней части щебеночно-песчано-гравийной смеси, а каждый слой сенсорно-оптического кабеля фиксации перемещения механически связан с грунтом посредством фиксаторов (RU 2613126, B61L 23/04, 15.03.2017).

Известное техническое решение обеспечивает требуемую надежность контроля состояния безбалластного железнодорожного пути - точность вертикальных перемещений слоев основания составляет ±2 мм, точность определения места этих перемещений по длине кабеля составляет ±1 м.

Однако проводимый контроль по известному техническому решению недостаточен для обеспечения безопасности бесстыкового пути на мосту, поскольку необходимо проведение комплексной оценки прочности, наличие геометрических неровностей рельсовой колеи. Согласно принципам взаимодействия железнодорожного моста и бесстыкового безбалластного пути, эксплуатационная работа определяется температурой окружающей среды, температурой рельса в реальном времени, продольным перемещением рельса, продольными напряжениями в рельсе, температурой пролета моста, смещениями опор на концах моста и т.д.

Бесстыковой путь конструкции БВСП на сплошном подрельсовом основании типа III RUS на мосту состоит из непрерывной рельсовой плети, продольной несвободной системы (скрепления, рельсовой плиты и т.д.) и конструкций моста. Рельсовая плеть является непрерывным элементом, который воспринимает нагрузку от высокоскоростного состава. Рельсовая плеть испытывает напряжения от температуры, динамической нагрузки, поэтому она должна сохранять достаточную прочность, устойчивость и обладать высоким модулем упругости. Несущая железобетонная плита безбалластного пути с помощью арматуры соединяется с мостовым настилом, как правило, между ними не возникает скольжение, поэтому фундамент считается частью пролетного строения. Вокруг ограничительного выспута в плите в продольном направлении установлен подкладочной слой из каучукового эластомера. Этот слой имеет показатели эластичности, как у балласта при езде по мосту на балласте. Конструкция моста включает в себя пролетное строение, промежуточную опору, бык (опорную часть) и устой. Под воздействием температуры или нагрузки от подвижного состава, бык, устой и опора легко деформируются, воздействуя на рельсовую плеть, закрепленную с помощью креплений к рельсовой плите. От бесстыковой плети возникает дополнительная сила и продольное смещение, и в то же время продольные силы в плети действуют на конструкцию моста.

Технический результат изобретения заключается в повышении достоверности оценки и надежности определения технического состояния верхнего строения безбалластного и бесстыкового пути на мосту высокоскоростной магистрали.

Технический результат достигается тем, что система мониторинга верхнего строения безбалластного и бесстыкового пути на мосту высокоскоростной магистрали, содержащая датчики температуры и датчики смещения, согласно изобретению снабжена волоконно-оптическими тензодатчиками, которые установлены на шейке рельса и закреплены посредством клея на измерительных точках нейтральной оси шейки рельса, при этом параллельно волоконно-оптическому тензодатчику установлен датчик температуры рельсовой плети и прикреплен к рельсу посредством теплопроводного геля кремниевой кислоты, датчики температуры рельсовой плиты, опорной плиты и моста установлены в отверстиях, выполненных в этих элементах конструкции, причем отверстия для установки датчиков температуры рельсовой плиты выполнены на верхней и торцевой ее сторонах, датчики смещения рельса относительно рельсовой плиты, относительного смещения рельсовой плиты и основания и продольного относительного смещения концов моста установлены в измерительных точках этих элементов конструкции, при этом датчики температуры, датчики смещения и волоконно-оптические тензодатчики выполнены на основе волоконных решеток Брэгга, а их выходы через соответствующие демодуляторы по линии связи соединены с сервером сбора данных, который каналом связи соединен с сервером обработки данных.

Все элементы бесстыкового пути на мосту являются единой гармонической продольной взаимодействующей системой. В основном, в такой системе эффективность работы определяют жесткость, температурные условия, тормозная сила (сила тяги), сила излома рельса и другие дополнительные силы. Происходящее продольное смещение рельсовой плети создает концентрацию напряжения частичного растяжения и сжатия, а также вызывает негативное влияние на прочность, устойчивость, геометрию рельсовой плети и положение деталей конструкции пути, и как результат, влияет на качество и безопасность движения состава.

Для обеспечения безопасной эксплуатации большепролетного моста (например, из неразрезных пролетных строений) и бесстыкового безбалластного пути предусмотрен контроль в реальном времени за смещениями и напряжениями в конструкции моста и бесстыковой рельсовой плети путем долговременного комплексного мониторинга. Такая система мониторинга позволяет обеспечить:

- мониторинг основных частей бесстыкового пути на сплошном подрельсовом основании типа III RUS на большепролетном мосту, и как следствие безопасность эксплуатации конструкции большепролетного моста бесстыкового безбалластного пути;

- уточнение нормативных напряжений и деформаций конструкции безбаластного бесстыкового пути на большепролетном мосту для уточнения нормативов по текущему содержанию и обслуживанию пути;

- проведение в реальном времени мониторинга положения, напряжений и деформаций основных частей бесстыкового пути и безбалластной конструкции, создание безопасного механизма раннего предупреждения и своевременного реагирования.

В связи с этим предлагаемая система определяет:

напряжение рельсовой плети и ее температуру;

температура воздуха окружающей среды;

температура рельса;

температура рельсовой плиты;

температура фундаментной плиты;

температура моста

относительное смещение рельса и рельсовой плиты;

относительное смещение рельсовой плиты и основания;

продольное относительное смещение концов моста.

В предлагаемой системе использованы датчики на основе волоконных решеток Брэгга. Это позволяет работать в широком диапазоне температур при высокой стабильности, надежности и универсальности.

Волоконная решетка Брэгга применяется в качестве оптоволоконного пассивного устройства. Датчик на основе волоконных решеток Брэгга (fiber Bragg grating, сокращенное название FBG) обладает следующими преимуществами: не подвержен электромагнитным помехам и коррозии, обладает температурной стойкостью, малым объемом и т.д. Сигнал датчика модулирован длиной волны, на измерительный сигнал не влияет изгиб оптического волокна, потеря соединения, перемена источника излучения и старение детектора. На одном оптическом волокне проводится последовательное соединение нескольких датчиков (FBG). Одновременно можно получить информацию нескольких измерительных объектов, и можно осуществлять распределенное измерение.

При мониторинге температуры рельсовой плети датчик температуры, на основе волоконных решеток Брэгга, приклеен теплопроводным гелем кремниевой кислоты к рельсу. В месте присоединения датчика рельс необходимо отшлифовать. Затем датчик подключается к демодулятору оптическим волокном. Теплопроводный гель кремниевой кислоты обеспечивает одинаковую температуру датчика и рельса.

Для проверки температуры рельсовой плиты на ее поверхности бурится отверстие (глубина: 4 см, диаметр отверстия: 15 мм), закладывается датчик для измерения температуры верхнего слоя плиты, в торце подрельсовой плиты также бурится отверстие и закладывается датчик для измерения температуры средней части.

Для измерения температуры предусмотрен закладной температурный датчик на наружной части фундамента, с последующим подключением к демодулятору.

Для измерения температуры рельсовой плиты, опорной плиты, моста требуется закладка температурного датчика в железобетонную структуру. Для этого применяется закладной температурный датчик или волоконно-оптический температурный растровый датчик. Закладка температурного датчика осуществляется высверливанием. Например, необходимо измерить температуру в трех точках на различных глубинах от поверхности опорной плиты. Для этого сначала сверлится отверстие в опорной плите, затем три температурных датчика крепят на арматуре на заданных расстояниях друг от друга. Арматуру с датчиками закладывают в скважину, с последующим заполнением цементом марки соответствующей материалу опорной плиты, коррозии. Перед закладкой температурные датчики для предотвращения коррозии должны быть покрыты теплопроводящем силикагелем.

Для измерения смещения концы датчика закрепляют на проверяемом сооружении с помощью средств крепления. После чего датчик подключают к демодулятору.

Сигналы с датчиков после демодуляции передаются по многожильному бронированному кабелю на сервер сбора данных, в память которого они записываются. Из сервера сбора данных информация по беспроводной сети передачи данных, предназначенной для высокоскоростной железной дороги, передается в сервер обработки данных. Обработанные данные представляются пользователю в виде графика, кривых, или таблиц, а также топологическое изображение, дающее представление о положение датчика на месте.

Похожие патенты RU2681766C1

название год авторы номер документа
Система контроля и диагностики искусственных сооружений 2019
  • Дзюба Юрий Владимирович
  • Охотников Андрей Леонидович
  • Павловский Андрей Александрович
RU2717693C1
МЕТАЛЛИЧЕСКОЕ ПРОЛЕТНОЕ СТРОЕНИЕ МОСТА С БЕССТЫКОВЫМ ПУТЕМ 1997
  • Смирнов В.Н.
RU2120513C1
Способ фрикционной компенсации перемещений бесстыкового рельсового пути и устройство для его осуществления 2020
  • Загорский Валерий Куприянович
RU2746165C1
Безбалластный железнодорожный путь для грузопассажирского высокоскоростного движения и способ его сооружения 2020
  • Дорот Евгений Вячеславович
  • Романчева Татьяна Геннадьевна
  • Никитин Сергей Владимирович
  • Дорошкевич Антон Андреевич
RU2755804C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В РЕЛЬСОВОЙ ПЛЕТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Аккерман Геннадий Львович
  • Аккерман Сергей Геннадьевич
  • Сергеев Борис Сергеевич
  • Смирнов Юрий Александрович
RU2478153C2
Система для мониторинга искусственных сооружений высокоскоростной магистрали 2018
  • Белый Андрей Анатольевич
  • Русаков Алексей Борисович
RU2698419C1
Безбалластный путь на искусственном сооружении 2017
  • Захаров Алексей Геннадьевич
RU2669195C1
ЖЕЛЕЗОБЕТОННОЕ БАЛОЧНОЕ ПРОЛЕТНОЕ СТРОЕНИЕ ЖЕЛЕЗНОДОРОЖНОГО МОСТА 1997
  • Смирнов В.Н.
  • Тананайко О.Д.
RU2119564C1
Способ фрикционной компенсации температурных перемещений бесстыкового рельсового пути 2018
  • Загорский Валерий Куприянович
RU2686597C1
Способ автоматического мониторинга состояния рельсовых плетей железнодорожного пути 2023
  • Марков Анатолий Аркадиевич
  • Антипов Андрей Геннадьевич
RU2800214C1

Реферат патента 2019 года Система мониторинга верхнего строения безбалластного и бесстыкового пути на мосту высокоскоростной магистрали

Изобретение относится к средствам мониторинга верхнего строения пути. Система содержит датчики температуры и датчики смещения, волоконно-оптические тензодатчики, которые установлены на шейке рельса и закреплены посредством клея на измерительных точках нейтральной оси шейки рельса, при этом параллельно волоконно-оптическому тензодатчику установлен датчик температуры рельсовой плети и прикреплен к рельсу посредством теплопроводного геля кремниевой кислоты, датчики температуры рельсовой плиты, опорной плиты и моста установлены в отверстиях, выполненных в этих элементах конструкции. Причем отверстия для установки датчиков температуры рельсовой плиты выполнены на верхней и торцевой ее сторонах, датчики смещения рельса относительно рельсовой плиты, относительного смещения рельсовой плиты и основания и продольного относительного смещения концов моста установлены в измерительных точках этих элементов конструкции, при этом датчики температуры, датчики смещения и волоконно-оптические тензодатчики выполнены на основе волоконных решеток Брэгга, а их выходы через демодуляторы соединены с сервером сбора данных, который соединен с сервером обработки данных. Достигается повышение надежности контроля технического состояния пути.

Формула изобретения RU 2 681 766 C1

Система мониторинга верхнего строения безбалластного и бесстыкового пути на мосту высокоскоростной магистрали, содержащая датчики температуры и датчики смещения, отличающаяся тем, что она снабжена волоконно-оптическими тензодатчиками, которые установлены на шейке рельса и закреплены посредством клея на измерительных точках нейтральной оси шейки рельса, при этом параллельно волоконно-оптическому тензодатчику установлен датчик температуры рельсовой плети и прикреплен к рельсу посредством теплопроводного геля кремниевой кислоты, датчики температуры рельсовой плиты, опорной плиты и моста установлены в отверстиях, выполненных в этих элементах конструкции, причем отверстия для установки датчиков температуры рельсовой плиты выполнены на верхней и торцевой ее сторонах, датчики смещения рельса относительно рельсовой плиты, относительного смещения рельсовой плиты и основания и продольного относительного смещения концов моста установлены в измерительных точках этих элементов конструкции, при этом датчики температуры, датчики смещения и волоконно-оптические тензодатчики выполнены на основе волоконных решеток Брэгга, а их выходы через соответствующие демодуляторы по линии связи соединены с сервером сбора данных, который каналом связи соединен с сервером обработки данных.

Документы, цитированные в отчете о поиске Патент 2019 года RU2681766C1

CN 107444431 A, 08.12.2017
RU 2017114064 A, 09.08.2017
УСТРОЙСТВО ДИСТАНЦИОННОГО КОНТРОЛЯ СОСТОЯНИЯ БЕЗБАЛЛАСТНОГО ЖЕЛЕЗНОДОРОЖНОГО ПУТИ 2015
  • Савин Александр Владимирович
  • Солодянкин Максим Алексеевич
  • Ермилов Алексей Леонидович
  • Чугунов Денис Анатольевич
RU2613126C1
CN 204506923 U, 29.07.2015
CN 202294870 U, 04.07.2012.

RU 2 681 766 C1

Авторы

Левшунов Виталий Петрович

Белый Андрей Анатольевич

Даты

2019-03-12Публикация

2018-05-30Подача