Изобретение относится к области порошковой металлургии и может быть использовано для удаления сорбированных газов и воды с поверхности и из объема нанопорошка вольфрама при подготовке порошка к дальнейшему использованию в технологическом процессе, например, при получении плотных прессованных или спеченных изделий.
Известен способ очистки порошка титана от примеси кислорода [RU 2494837 С1, МПК B22F 9/00 (2006.01), опубл. 10.10.2013], заключающийся в насыщении порошка титана водородом с получением порошкообразного гидрида титана и последующим удалением водорода в вакууме при температуре ниже температуры активного спекания порошка.
Сложностью реализации данного способа является необходимость использования водорода, что делает процесс пожаро- и взрывоопасным, учитывая процессы выделения кислорода из очищаемого порошка титана и его взаимодействия с водородом. Кроме того, особенностью способа является использование оборудования, работающего при высоком вакууме, что делает процесс длительным и трудоемким в обслуживании.
Известен способ десорбции-ионизации химических соединений [RU 2285253 С1, МПК G01N 27/62 (2006.01), опубл. 10.10.2006], выбранный в качестве прототипа, заключающийся в быстром нагреве активного (сорбирующего) слоя электромагнитным излучением или потоком частиц, способствующим десорбции сорбированных ионов.
Особенностью способа является использование лазера и УФ-лампы в качестве источника электромагнитного ионизирующего излучения: вследствие малой площади сечения лазерного луча и малой глубины проникновения лазерного - излучения объемная дегазация материала этим способом низкоэффективна. Кроме того, в способе необходимо использовать подложки из полупроводника, графита или активированного угля, модифицированные химическими группами, являющимися донорами и/или акцепторами электронов.
Техническим результатом предложенного способа является дегазация нанопорошка вольфрама.
Способ дегазации нанопорошка вольфрама включает облучение образца импульсным СВЧ-излучением, которым облучают образец в атмосфере воздуха импульсами длительностью от 5 до 3000 нс, длиной волны 10 см, частотой следования импульсов не более 50 Гц в течение не менее 1 минуты.
Предлагаемый способ позволяет решить техническую проблему дегазации сорбированных нанопорошком вольфрама молекул химических соединений (Н2О, СО2, О2 и др.), и так же, как в прототипе, включает облучение образца электромагнитным излучением для обеспечения десорбции сорбированных химических соединений.
Способ обеспечивает дегазацию нанопорошка вольфрама путем десорбции имеющихся в необработанном нанопорошке вольфрама 4,2 мас.% молекул химических соединений вследствие быстрого кратковременного нагревания наночастиц вольфрама импульсным СВЧ-излучением.
В таблице 1 представлены результаты термогравиметрического анализа облученных образцов нанопорошка вольфрама.
На фиг. 1 представлена термограмма нанопорошка вольфрама, не подвергнутого дегазации.
На фиг. 2 представлена термограмма нанопорошка вольфрама после дегазации.
Использовали нанопорошок вольфрама, образцы которого навеской по 2 г помещали в кварцевые пробирки объемом 3 см3 и диаметром 10 мм2 с диэлектрической проницаемостью 3,8 и располагали в волноводе генератора СВЧ-излучения на основе магнетрона МИ456. Облучение образцов проводили в воздушной атмосфере СВЧ-излучением с длиной волны 10 см и плотностью мощности не более 8 кВт/см2, импульсами длительностью от 5 до 3000 нс с частотой следования не более 50 Гц в течение 1 минуты.
После облучения образцы нанопорошка вольфрама подвергали дифференциальному термическому анализу, используя термоанализатор SDT Q 600. Точность измерения температуры составляла 0,001°С, калориметрическая точность ±1,8%, масса навески ~8 мг, скорость нагрева 10°С/с, атмосфера - воздух.
Содержание сорбированных нанопорошком вольфрама газов до и после воздействия СВЧ-излучением определяли по величине уменьшения массы образца при нагревании до начала окисления нанопорошка вольфрама (до ~350°С). В качестве образца сравнения принимали образец необработанного нанопорошка вольфрама, содержащего 4,2 мас.% сорбированных химических соединений (фиг. 1).
На фиг. 2 в качестве примера реализации представлена термограмма нанопорошка вольфрама после облучения СВЧ-излучением с длительностью импульса 25 нс. Согласно термограмме, после воздействия СВЧ-излучения произошла десорбция химических соединений, что подтверждается неизменностью массы образца при нагревании в процессе термогравиметрического анализа до температуры начала окисления. Аналогичным образом определяли дегазацию нанопорошков вольфрама при облучении импульсами длительностью 5 и 3000 нс (таблица 1).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ МОДИФИЦИРОВАНИЯ МИКРО- И НАНОПОРОШКОВ АЛЮМИНИЯ | 2017 |
|
RU2657677C1 |
СПОСОБ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ МЕТАЛЛОВ И ИХ СПЛАВОВ | 1994 |
|
RU2078149C1 |
Способ получения нанодисперсного изотопно-модифицированного борида молибдена | 2023 |
|
RU2811828C1 |
СПОСОБ АКТИВАЦИИ НАНОПОРОШКА АЛЮМИНИЯ | 2018 |
|
RU2687121C1 |
ПИГМЕНТ ДЛЯ ТЕРМОРЕГУЛИРУЮЩИХ ПОКРЫТИЙ КОСМИЧЕСКИХ АППАРАТОВ НА ОСНОВЕ ПОРОШКА BaSO, МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ SiO | 2019 |
|
RU2716436C1 |
СПОСОБ ВОССТАНОВЛЕНИЯ ЖЕЛЕЗА, ВОССТАНОВЛЕНИЯ КРЕМНИЯ И ВОССТАНОВЛЕНИЯ ДИОКСИДА ТИТАНА ДО МЕТАЛЛИЧЕСКОГО ТИТАНА ПУТЁМ ГЕНЕРАЦИИ ЭЛЕКТРОМАГНИТНЫХ ВЗАИМОДЕЙСТВИЙ ЧАСТИЦ SiO, КРЕМНИЙСОДЕРЖАЩЕГО ГАЗА, ЧАСТИЦ FeTiО И МАГНИТНЫХ ВОЛН | 2012 |
|
RU2561081C2 |
СПОСОБ ДЕТЕКТИРОВАНИЯ И ИДЕНТИФИКАЦИИ ХИМИЧЕСКИХ СОЕДИНЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2414697C1 |
СПОСОБ ДЕСОРБЦИИ-ИОНИЗАЦИИ ХИМИЧЕСКИХ СОЕДИНЕНИЙ | 2005 |
|
RU2285253C1 |
Способ получения порошка карбонитрида титана | 2016 |
|
RU2638471C2 |
СПОСОБ ФОРМИРОВАНИЯ ЭМИТТЕРА ИОНОВ ДЛЯ ЛАЗЕРНОЙ ДЕСОРБЦИИ-ИОНИЗАЦИИ ХИМИЧЕСКИХ СОЕДИНЕНИЙ | 2010 |
|
RU2426191C1 |
Изобретение относится к области порошковой металлургии, в частности к очистке нанопорошка вольфрама. Может быть использовано для удаления сорбированных газов и воды с поверхности и из объема порошка при ее подготовке к дальнейшему использованию в технологическом процессе. Дегазацию осуществляют облучением образца СВЧ-излучением в атмосфере воздуха импульсами длительностью от 5 до 3000 нс, длиной волны 10 см, частотой следования импульсов не более 50 Гц в течение не менее 1 минуты. Обеспечивается дегазация абсорбированных порошком молекул химических соединений. 1 табл., 2 ил.
Способ дегазации нанопорошка вольфрама, включающий облучение образца электромагнитным излучением, отличающийся тем, что в качестве электромагнитного излучения используют импульсное СВЧ-излучение, которым облучают образец в атмосфере воздуха импульсами длительностью от 5 до 3000 нс, длиной волны 10 см, частотой следования импульсов не более 50 Гц в течение не менее 1 минуты.
СПОСОБ ДЕСОРБЦИИ-ИОНИЗАЦИИ ХИМИЧЕСКИХ СОЕДИНЕНИЙ | 2005 |
|
RU2285253C1 |
УСТАНОВКА ДЛЯ ЗАПОЛНЕНИЯ И ГЕРМЕТИЗАЦИИ КАПСУЛ С МЕТАЛЛИЧЕСКИМ ПОРОШКОМ | 2013 |
|
RU2536021C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ДИСПЕРСИОННО-УПРОЧНЕННЫХ ВЫСОКОЛЕГИРОВАННЫХ СПЛАВОВ | 1990 |
|
SU1785141A1 |
Устройство для дегазации порошковых материалов | 1980 |
|
SU925551A1 |
СПОСОБ ВАКУУМНОЙ ТЕРМИЧЕСКОЙ ДЕГАЗАЦИИ ГРАНУЛ ЖАРОПРОЧНЫХ СПЛАВОВ В ПОДВИЖНОМ СЛОЕ | 2011 |
|
RU2477669C1 |
WO 2003033753 A2, 24.04.2003 | |||
US 20170209922 A1, 27.07.2017. |
Авторы
Даты
2019-03-14—Публикация
2018-05-24—Подача