УСТАНОВКА ДЛЯ ЗАПОЛНЕНИЯ И ГЕРМЕТИЗАЦИИ КАПСУЛ С МЕТАЛЛИЧЕСКИМ ПОРОШКОМ Российский патент 2014 года по МПК B22F1/00 B22F3/00 

Описание патента на изобретение RU2536021C1

Изобретение относится к порошковой металлургии, в частности к установкам для заполнения и герметизации капсул с металлическим порошком перед их компактированием.

Целью изобретения является улучшение качества изделий за счет повышения эффективности процесса дегазации.

Существует устройство для дегазации и герметизации металлического порошка (авт. свидетельство №890641 от 31.03.89 г.). Оно состоит из вакуумной печи, питателя, установленного внутри печи, бункера, связанного с питателем посредством трубки ввода и вакуумного крана, загрузочного приспособления с капсулой для загрузки порошка, электронно-лучевой печи и манипулятора. Недостатками способа являются неравномерный нагрев порошка, затрудненное и неполное удаление десорбируемых газов из неподвижного слоя порошка с помощью полых металлических патрубков из-за отсутствия вибрационного воздействия на порошок.

Существует также установка для заполнения и герметизации капсул с металлическим порошком (авт. свидетельство №788539 от 31.03.89 г.). Она снабжена обогреваемым желобом из газопоглощающего материала, в частности титана (что исключает возможность обратного взаимодействия десорбируемых газов с поверхностью гранул), выполненным с углом наклона зигзагообразных участков 18-33° к горизонтали и установленным после питателя по ходу движения порошка. Время прохождения порошка в таком желобе составляет несколько секунд, толщина слоя достигает 6,5 мм, что не обеспечивает нагрев порошка до требуемой температуры и, следовательно, полноту дегазации. Более того, закрытый желоб не позволяет вакуумным насосом полностью удалять газы, выделяющиеся в процессе десорбции. Этот способ был выбран в качестве прототипа.

Задачей настоящего изобретения является повышение качества термической дегазации жаропрочных никелевых сплавов и за счет этого стабилизация жаропрочных свойств дисков из таких гранул.

Предлагается конструкция установки, которая обеспечивает высокую степень дегазации за счет того, что с поверхности гранул, находящихся в высоком вакууме 5·10-5 мм рт.ст. и нагретых до температуры не менее 450°C, происходит их активная десорбция и удаление вакуумными насосами. Использованием в качестве нагревающей поверхности дефлекторов из газопоглощающего материала, их вибрации и нагрева до температуры 450-500°C, обеспечивается слой гранул в 0,5-1,0 мм при угле наклона дефлекторов в 17-18°C, т.е. близком к углу естественного откоса гранул. Тем самым осуществляется равномерный и полный нагрев гранул до требуемой температуры, что способствует более полному удалению газов с их поверхности. Высокое качество дегазации подтверждается отсутствием наследственных границ гранул в структуре компактного материала и результатами испытаний заготовок дисков при температуре 650°C (повышение жаропрочности на 2÷3 кг/мм2).

Технический результат: достижение высокой степени десорбции газовых примесей с поверхности гранул и за счет этого консолидация гранул в компакт со 100% плотностью, возможность изготовления крупногабаритных дисков (с диаметром до 1000 мм) за счет дегазации и заполнения капсул больших размеров.

Принципиальная схема установки дегазации представлена на чертеже.

Установка содержит загрузочный бункер 1, снабженный механическим затвором 2 и вакуумным затвором 3. Загрузочный бункер 1 через стыковочное устройство 4 присоединен к вакуумной камере 5, внутри которой размещен зажимной механизм 6 для капсулы со съемным торцевым элементом 7. Зажимной механизм 6 установлен на подставке 8, а электронагреватели 9 и питатель 10 - в камере 5, причем питатель 10 выполнен разъемным и его примыкающая к капсуле часть 11 смонтирована с возможностью поворота вокруг вертикальной оси при помощи механизма 12. Установка содержит также форвакуумную камеру 13 с механизмом 14 вибрации и вибростолом 15, который установлен по линии разъема камер и снабжен уплотняющей эластичной перегородкой 16, защищенной от нагревателей экранами 17. Опоры 18 вибростола установлены на фундаменте вне форвакуумной камеры 13 и герметично соединены с неэластичными элементами 19, а приводной вал 20 механизма 14 вибрации выведен из форвакуумной камеры 13 через вакуумные уплотнения 21 и присоединен к двигателю 22 с регулируемым числом оборотов.

Для выполнения операций заполнения и герметизации вакуумная камера снабжена смотровым окном 23, датчиком 24 контроля уровня порошка в воронке и электронной сварочной пушкой 25, соединенной с вакуумной камерой посредством герметичного затвора 26. Загрузочный бункер, электронная сварная пушка, вакуумная и форвакуумная камеры выполнены соответственно с патрубками 27, 28, 29 и 30 для присоединения к вакуумной системе установки.

Для интенсификации процесса дегазации питатель 10 снабжен размещенными в камере 5 дефлекторами 31, представляющими собой наклонные поверхности, выполненные из газопоглощающего металла, например, титана. При этом угол наклона дефлекторов к горизонтали составляет немного меньше угла естественного откоса никелевых гранул, т.е. 17-18°.

К дефлекторам подведен вибратор 34, они также подсоединены к самостоятельному источнику 32 нагрева токоподводами 33.

Установка работает следующим образом.

Капсулу закрепляют в зажимном механизме 6 и устанавливают на подставке вибростола 15, после чего устанавливают над капсулой поворотную часть 11 питателя с помощью механизма 12 и к установке через стыковочное устройство 4 присоединяют бункер 1 с металлическим порошком. После выполнения указанных подготовительных операций производят вакуумирование объемов установки с помощью вакуумной системы (не показана на чертеже) через патрубки 27, 28, 29, 30. При достижении заданного разрежения включают электронагреватели 9 и производят дегазацию пустой капсулы с целью удаления адсорбированных газов и влаги с ее внешних поверхностей и внутренней полости. Рабочее давление в камере достигается и поддерживается на уровне 5·10-5 мм рт.ст., давление в капсуле составляет такую же величину.

После проведения операции дегазации капсулы включают источник 32 нагрева и вибратор 34, одновременно разогревают дефлекторы 31. При достижении 450-500°C на дефлекторы 31 подают через питатель 10 металлический порошок, который, контактируя с поверхностью дефлекторов, нагревается до той же температуры. Нагрев происходит быстрее, чем по способу-прототипу, за счет большей площади контакта гранулы с поверхностью дефлекторов и регламентированного времени нахождения на них гранул.

Через стыковочное устройство 4 после открытия механического затвора 2 бункера 1 подают металлический порошок по питателю и дефлекторам в камеру. Контактируя с поверхностью дефлекторов, порошок нагревается до температуры 450-500°C благодаря прохождению его по поверхности дефлекторов за счет увеличения времени нахождения гранул в зоне нагрева. Выделяющиеся газы удаляются вакуумными насосами и частично поглощаются дефлекторами, так как они выполнены из газопоглощающего материала. Контроль заполнения капсулы порошком осуществляют с помощью датчика 24 и визуально через смотровое окно 23. После заполнения капсулы порошком отключают нагреватель 9 и источник нагрева 32, отводят в сторону поворотную часть 11 питателя и производят герметизацию загрузочного отверстия капсулы с помощью электронной пушки 25, наблюдая за этим процессом через смотровое окно 23. Заканчивают цикл работы на установке охлаждением капсулы и выгрузкой ее из установки. Затем цикл работы повторяется.

Воздействие вибратора 34 позволило установить угол дефлекторов немного меньшим, чем угол естественного откоса гранул, т.е. ≤18°, более того, он может быть изменен, за счет чего реализуется контроль над скоростью течения порошка, что повышает эффективность дегазации. Также конструкция камеры с дефлекторами позволяет откачивать десорбированные с поверхности частиц порошка газы вакуумными насосами. Все это в целом снижает содержание газовых примесей в гранулах никелевых сплавов.

Для определения эффективности предлагаемой схемы было проведена оценка остаточного содержания газов в гранулах из сплава ЭП741НП при ее использовании. Результаты сведены в таблицу 1. Для сравнения в ней также приведены результаты дегазации по способу-прототипу.

Из таблицы видно, что предлагаемый метод имеет преимущество перед прототипом при угле наклона дефлекторов, близком к углу естественного откоса гранул, т.е. 18°.

Конструкция установки позволяет снизить остаточное содержание газов на поверхности порошков никелевых сплавов в 1,5-2 раза по сравнению с содержанием газов, полученным при использовании установки-прототипа.

Таблица 1 Сравнение методов дегазации Тип установки дегазации Угол наклона желоба/дефлекторов, град Толщина движущегося слоя порошка, мм Остаточное содержание газов в порошке после дегазации, мас.% 18 6,5 0,010 20 5,0 0,009 Известная 25 3,5 0,007 30 2,0 0,0065 33 0,3 0,006 15 2,0 0,0065 Предлагаемая 16 1,5 0,006 17 1,0 0,005 18 0,5 0,004

Похожие патенты RU2536021C1

название год авторы номер документа
Установка для получения герметичных капсул с металлическим порошком для горячего изостатического прессования (ГИП) изделий и способ получения герметичных капсул с металлическим порошком для ГИП изделий 2017
  • Тимофеев Анатолий Николаевич
  • Логачёва Алла Игоревна
  • Логачев Иван Александрович
  • Степкин Евгений Петрович
  • Константинов Виктор Вениаминович
RU2650375C1
СПОСОБ ВАКУУМНОЙ ТЕРМИЧЕСКОЙ ДЕГАЗАЦИИ ГРАНУЛ ЖАРОПРОЧНЫХ, ТИТАНОВЫХ СПЛАВОВ И СТАЛЕЙ В ПОДВИЖНОМ СЛОЕ И УСТРОЙСТВО 2019
  • Рябцев Анатолий Данилович
  • Явтушенко Павел Михайлович
  • Миргородский Сергей Викторович
  • Демченко Алексей Игоревич
RU2720008C1
СПОСОБ ВАКУУМНОЙ ТЕРМИЧЕСКОЙ ДЕГАЗАЦИИ ГРАНУЛ ЖАРОПРОЧНЫХ СПЛАВОВ В ПОДВИЖНОМ СЛОЕ 2011
  • Гарибов Генрих Саркисович
  • Кошелев Виктор Яковлевич
  • Сухов Дмитрий Игоревич
RU2477669C1
Способ заполнения капсул гранулами порошка 2022
  • Хлыбов Александр Анатольевич
  • Беляев Евгений Сергеевич
  • Рябцев Анатолий Данилович
  • Гетмановский Юрий Андреевич
  • Беляева Сульгун Сабуровна
  • Явтушенко Павел Михайлович
RU2802842C2
СПОСОБ ПРОИЗВОДСТВА ЗАГОТОВОК ИЗ БЫСТРОЗАКРИСТАЛЛИЗОВАННЫХ АЛЮМИНИЕВЫХ СПЛАВОВ 2011
  • Конкевич Валентин Юрьевич
  • Лебедева Татьяна Ивановна
  • Бочвар Сергей Георгиевич
RU2467830C1
Способ получения изделий из гранул, выполненных из сплавов на основе никеля или из сплавов на основе титана 2023
  • Кошелев Александр Владимирович
  • Ваулин Дмитрий Дмитриевич
  • Казберович Алексей Михайлович
  • Старовойтенко Евгений Иванович
RU2799458C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛ 1993
  • Родников В.А.
  • Куликов А.Ф.
  • Гусев Г.А.
  • Струев И.И.
  • Антоненко Б.В.
  • Кольцов А.Т.
RU2038194C1
Устройство для заполнения капсул сыпучим материалом 1983
  • Синолицин Евгений Васильевич
  • Копров Михаил Евгеньевич
  • Шаврин Сергей Иванович
  • Гиршов Владимир Леонидович
  • Сигачев Юрий Николаевич
  • Мебель Владимир Симонович
SU1127809A1
Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления 2021
  • Каблов Евгений Николаевич
  • Оспенникова Ольга Геннадиевна
  • Антипов Владислав Валерьевич
  • Бакрадзе Михаил Михайлович
  • Неруш Святослав Васильевич
  • Мазалов Павел Борисович
  • Сухов Дмитрий Игоревич
  • Ходырев Никита Алексеевич
  • Тарасов Сергей Александрович
  • Пашков Александр Игоревич
  • Асланян Гарегин Григорович
  • Шакиров Артем Ренатович
  • Тарасов Георгий Георгиевич
  • Мурысин Денис Александрович
  • Титов Семен Сергеевич
RU2767968C1
СПОСОБ ГОРЯЧЕГО ИЗОСТАТИЧЕСКОГО ПРЕССОВАНИЯ ИЗДЕЛИЙ ИЗ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ 1990
  • Бувин Е.П.
  • Казмирук В.И.
  • Кошелев В.Я.
  • Мешалин В.С.
RU2007275C1

Иллюстрации к изобретению RU 2 536 021 C1

Реферат патента 2014 года УСТАНОВКА ДЛЯ ЗАПОЛНЕНИЯ И ГЕРМЕТИЗАЦИИ КАПСУЛ С МЕТАЛЛИЧЕСКИМ ПОРОШКОМ

Изобретение относится к порошковой металлургии, в частности к установкам для заполнения и герметизации капсул с металлическим порошком перед их компактированием. Установка для заполнения и герметизации капсул с гранулами из жаропрочных никелевых сплавов состоит из загрузочного бункера, вакуумной камеры, внутри которой размещены электронагреватели и питатель, и форвакуумной камеры, внутри которой размещены механизм для вибрации и вибростол для капсулы. Питатель снабжен дефлекторами в виде плоских пластин из газопоглощающего металла, установленных под углом наклона к горизонтали 17-18°, причем пластины выполнены с возможностью вибрации и нагрева независимым источником нагрева. Осуществляется равномерный и полный нагрев гранул до требуемой температуры, что способствует более полному удалению газов с их поверхности. Улучшается качество изделий за счет повышения эффективности процесса дегазации. 1 ил., 1 табл.

Формула изобретения RU 2 536 021 C1

Установка для заполнения и герметизации капсул с гранулами из жаропрочных никелевых сплавов, состоящая из загрузочного бункера, вакуумной камеры, внутри которой размещены электронагреватели и питатель, и форвакуумной камеры, внутри которой размещены механизм для вибрации и вибростол для капсулы, отличающаяся тем, что питатель снабжен дефлекторами в виде плоских пластин из газопоглощающего металла, установленных под углом наклона к горизонтали 17-18°, причем пластины выполнены с возможностью вибрации и нагрева независимым источником нагрева.

Документы, цитированные в отчете о поиске Патент 2014 года RU2536021C1

RU 2001717 C1, 30.10.1993
СПОСОБ ВАКУУМНОЙ ТЕРМИЧЕСКОЙ ДЕГАЗАЦИИ ГРАНУЛ ЖАРОПРОЧНЫХ СПЛАВОВ В ПОДВИЖНОМ СЛОЕ 2011
  • Гарибов Генрих Саркисович
  • Кошелев Виктор Яковлевич
  • Сухов Дмитрий Игоревич
RU2477669C1
Устройство объемного дозирования порошков 1990
  • Ашихмин Митрофан Петрович
  • Джангирян Валерий Гургенович
  • Юганова Татьяна Николаевна
  • Сикавин Геннадий Иванович
  • Громов Владимир Борисович
SU1750966A1
US 20070071632 A1, 29.03.2007
CN 101391301 A, 25.03.2009
KR 1058145 B1, 24.08.2011

RU 2 536 021 C1

Авторы

Гарибов Генрих Саркисович

Кошелев Виктор Яковлевич

Сухов Дмитрий Игоревич

Кожевникова Ольга Ивановна

Даты

2014-12-20Публикация

2013-08-21Подача